Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33123880

RESUMO

In the present work, a spatio-temporal study of arsenic (As) concentration in groundwater and its impact in barley uptake is presented. The impact of As on barley is studied through the determination of its bioaccumulation in the soil-plant system, As uptake, as well as a correlation between As concentration in water and its temperature in the groundwater. For the groundwater, spatial and temporal variability of As concentration in central Mexico was determined through a geostatistical analysis using ordinary kriging. The results show that the variability of As in the ground water is correlated with its temperature (R2 > 0.83). The As accumulation in the structures of plant follows the order root > leaf > ear in concentration. The bioaccumulation factor BAFT suggests that As is mobilized to the aerial parts of the barely for both As concentrations used in the irrigation water. However, for As concentration lower than 25 µg L-1, the BAFT is lower than 0.57, suggesting that the amount of As in root is the same as that contained in the aerial parts; whereas, for higher As concentrations (from 170 to 250 µg L-1), the BAFT is around 0.92, indicating that the As is mainly contained in root. The spatial distribution of As concentration trend in groundwaters along the time is the same, which means high As concentration areas remain in the same groundwaters and these areas are presenting the highest water temperature. These results shall contribute to understand the bioaccumulation of As in barley and the As spatial variability in central Mexico.

2.
Arch Microbiol ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32964256

RESUMO

In this report, physical and chemical properties, and total arsenic (As) concentrations were analyzed in agricultural (MASE) and mining soils (SMI) in the State of Guanajuato, México. Additionally, a metagenomic analysis of both types of soils was the bases for the identification and selection of bacteria and fungi resistant to As. The SMI soil showed higher concentration of As (39 mg kg-1) as compared to MASE soil (15 mg kg-1). The metagenome showed a total of 175,240 reads from both soils. MASE soil showed higher diversity of bacteria, while the SMI soil showed higher diversity of fungi. 16S rRNA analysis showed that the phylum Proteobacteria showed the highest proportion (39.6% in MASE and 36.4% in SMI) and Acidobacteria was the second most representative (24.2% in SMI and 11.6% in MASE). 18S rRNA analysis, showed that the phylum Glomeromycota was found only in the SMI soils (11.6%), while Ascomycota was the most abundant, followed by Basidiomycota, and Zygomycota, in both soils. Genera Bacillus and Penicillium were able to grow in As concentrations as high as 5 and 10 mM, reduced As (V) to As (III), and removed As at 9.8% and 12.1% rates, respectively. When aoxB, arsB, ACR3(1), ACR3(2,) and arrA genes were explored, only the arsB gene was identified in Bacillus sp., B. simplex, and B. megaterium. In general, SMI soils showed more microorganisms resistant to As than MASE soils. Bacteria and fungi selected in this work may show potential to be used as bioremediation agents in As contaminated soils.

3.
Sci Total Environ ; 700: 134343, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677420

RESUMO

We assess the element pollution level of water reservoir sediments using environmental magnetism techniques as a novel approach. Although "La Purísima" Water Reservoir is an important source for multiple activities (e.g. recreational, fishing and agricultural) in Guanajuato state, it has been receiving for the last centuries a high load of pollutants by mining extraction, urbanization and land-use change from the Guanajuato Hydrological Basin. The analyses of environmental magnetism, geochemistry, X-ray energy dispersive spectroscopy, scanning electron microscopy and multivariate methods were applied to study sediments from the reservoir and basin. Accordingly, they indicate the presence of iron oxides (magnetite and hematite) and iron sulfides (pyrite and greigite), which evidences relevant differences in particle size and concentration within the water reservoir (median mass-specific magnetic susceptibility χ = 23.2 × 10-8 m3/kg), as well as with respect to the river basin sediments (median χ = 88.8 × 10-8 m3/kg). The highest enrichment factor EF values (median values of EF = 2-10 for As, Co, Ba, Cu, Cd, Ni and EF > 20 for S) are mainly associated with historical mining activities that have led to an enrichment of potentially toxic elements on these water reservoir sediments. We propose the use of concentration and grain size dependent magnetic parameters, i.e. χ, remanent magnetizations and anhysteretic ratios ARM/SIRM and χARM/χ, as proxies for Ba, Co, Cr, Ni, P and Pb pollution in these river and water reservoir sediments. Such parameters allow to evaluate this sedimentary environment, and similar ones, through useful and convenient proxies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...