Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Genome Biol ; 22(1): 93, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785070

RESUMO

The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .

2.
Nat Microbiol ; 6(2): 196-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398099

RESUMO

Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures or synthetic assemblies. Here, we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microorganisms) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites such as amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microorganisms poorly suited for milk survive in-and even dominate-the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.

3.
Pediatr Transplant ; 24(7): e13866, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32997434

RESUMO

Despite ground-breaking advances in allogeneic transplantation, allograft rejection and immunosuppressant-specific complications remain a major challenge in transplant medicine. Growing evidence suggests the human gut microbiome as a potential contributor to transplant outcome and patient health. After breakthrough findings in haematopoietic stem cell transplantation (HSCT), the relevance of the microbiome in solid organ transplantation (SOT) is becoming increasingly clear. Here, we review the role of the microbiome in SOT focusing on its significance for transplant-associated complications such as allograft rejection and infections, and highlight its potential impact on immunosuppressive treatment. Moreover, we shed light on the emerging role of the microbiome as a diagnostic biomarker and therapeutic target and discuss current microbial intervention strategies. In addition, this review includes some practical considerations in designing clinical microbiome trials and offers some advice for the interpretation of the resulting data. Further investigation of the gut microbiome harbours countless clinical application possibilities and holds great promise of having a lasting impact on transplant medicine.

4.
Genome Biol ; 21(1): 138, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513234

RESUMO

BACKGROUND: Eubacterium rectale is one of the most prevalent human gut bacteria, but its diversity and population genetics are not well understood because large-scale whole-genome investigations of this microbe have not been carried out. RESULTS: Here, we leverage metagenomic assembly followed by a reference-based binning strategy to screen over 6500 gut metagenomes spanning geography and lifestyle and reconstruct over 1300 E. rectale high-quality genomes from metagenomes. We extend previous results of biogeographic stratification, identifying a new subspecies predominantly found in African individuals and showing that closely related non-human primates do not harbor E. rectale. Comparison of pairwise genetic and geographic distances between subspecies suggests that isolation by distance and co-dispersal with human populations might have contributed to shaping the contemporary population structure of E. rectale. We confirm that a relatively recently diverged E. rectale subspecies specific to Europe consistently lacks motility operons and that it is immotile in vitro, probably due to ancestral genetic loss. The same subspecies exhibits expansion of its carbohydrate metabolism gene repertoire including the acquisition of a genomic island strongly enriched in glycosyltransferase genes involved in exopolysaccharide synthesis. CONCLUSIONS: Our study provides new insights into the population structure and ecology of E. rectale and shows that shotgun metagenomes can enable population genomics studies of microbiota members at a resolution and scale previously attainable only by extensive isolate sequencing.

5.
Nutrients ; 12(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053988

RESUMO

Gut microbial-derived short-chain fatty acids (SCFAs) may regulate energy homeostasis and exert anti-carcinogenic, immunomodulatory and anti-inflammatory effects. Smaller trials indicate that dietary weight loss may lead to decreased SCFA production, but findings have been inconclusive. SCFA concentrations were measured by HPLC-MS/MS in plasma samples of 150 overweight or obese adults in a trial initially designed to evaluate the metabolic effects of intermittent (ICR) versus continuous (CCR) calorie restriction (NCT02449148). For the present post hoc analyses, participants were classified by quartiles of weight loss, irrespective of the dietary intervention. Linear mixed models were used to analyze weight-loss-induced changes in SCFA concentrations after 12, 24 and 50 weeks. There were no differential changes in SCFA levels across the initial study arms (ICR versus CCR versus control) after 12 weeks, but acetate concentrations significantly decreased with overall weight loss (mean log-relative change of -0.7 ± 1.8 in the lowest quartile versus. -7.6 ± 2 in the highest, p = 0.026). Concentrations of propionate, butyrate and other SCFAs did not change throughout the study. Our results show that weight-loss, achieved through calorie restriction, may lead to smaller initial decreases in plasma acetate, while plasma SCFAs generally remain remarkably stable over time.

6.
Cancer Metab ; 8: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32055399

RESUMO

Background: Colorectal cancer (CRC) is a complex multifactorial disease. Increasing evidence suggests that the microbiome is involved in different stages of CRC initiation and progression. Beyond specific pro-oncogenic mechanisms found in pathogens, metagenomic studies indicate the existence of a microbiome signature, where particular bacterial taxa are enriched in the metagenomes of CRC patients. Here, we investigate to what extent the abundance of bacterial taxa in CRC metagenomes can be explained by the growth advantage resulting from the presence of specific CRC metabolites in the tumor microenvironment. Methods: We composed lists of metabolites and bacteria that are enriched on CRC samples by reviewing metabolomics experimental literature and integrating data from metagenomic case-control studies. We computationally evaluated the growth effect of CRC enriched metabolites on over 1500 genome-based metabolic models of human microbiome bacteria. We integrated the metabolomics data and the mechanistic models by using scores that quantify the response of bacterial biomass production to CRC-enriched metabolites and used these scores to rank bacteria as potential CRC passengers. Results: We found that metabolic networks of bacteria that are significantly enriched in CRC metagenomic samples either depend on metabolites that are more abundant in CRC samples or specifically benefit from these metabolites for biomass production. This suggests that metabolic alterations in the cancer environment are a major component shaping the CRC microbiome. Conclusion: Here, we show with in sillico models that supplementing the intestinal environment with CRC metabolites specifically predicts the outgrowth of CRC-associated bacteria. We thus mechanistically explain why a range of CRC passenger bacteria are associated with CRC, enhancing our understanding of this disease. Our methods are applicable to other microbial communities, since it allows the systematic investigation of how shifts in the microbiome can be explained from changes in the metabolome.

7.
Nucleic Acids Res ; 48(D1): D621-D625, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647096

RESUMO

Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.


Assuntos
Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Genômica , Biologia Computacional/métodos , Ecossistema , Internet , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Células Procarióticas , Reprodutibilidade dos Testes , Software
8.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
10.
Adv Nutr ; 10(4): 673-684, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075175

RESUMO

Short-chain fatty acids (SCFAs, mainly acetate, propionate, and butyrate), which are primarily derived from the gut microbiome, may exert anti-inflammatory and immunomodulatory effects, and regulate energy homeostasis. It has been suggested that weight loss may affect SCFA metabolism, but a systematic review of intervention studies is lacking. We aimed to systematically assess the effects of dietary, physical activity-based, and surgical weight-loss interventions among overweight [body mass index (BMI) 25-29.9 kg/m2)] or obese (BMI ≥30 kg/m2) adults (≥18 y) on concentrations of acetate, propionate, butyrate, and total SCFAs in blood, urine, or feces. We conducted a systematic literature search in PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL) up to April 30, 2018 for randomized and nonrandomized weight-loss trials among overweight or obese adults, in which the concentrations of individual and total SCFAs were assessed. A total of 9 studies consisting of 2 randomized parallel-arm trials, 4 crossover trials, and 3 nonrandomized clinical or surgical trials were included. In the majority of studies, changes in fecal SCFA concentrations were assessed, whereas changes in serum SCFAs were reported from 1 trial. Individual and total SCFA concentrations either remained unchanged or decreased significantly following weight loss. Three of the dietary interventions that resulted in decreased SCFA concentrations were low (≤5% of energy) in total carbohydrates. Most of the studies had a high risk of bias. Decreases in SCFA concentrations may accompany weight loss induced by bariatric surgery or dietary restriction among overweight or obese adults, particularly when carbohydrate intake is reduced. However, findings were inconsistent and based on studies with high to unclear risk of bias, and small sample sizes. Because measurements of fecal SCFAs may not be ideal due to limited sample standardization, well-powered trials with repeated blood measurements of SCFAs are required. This review was registered at PROSPERO as CRD42018088716.


Assuntos
Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/sangue , Obesidade/terapia , Sobrepeso/terapia , Perda de Peso , Adulto , Cirurgia Bariátrica , Ensaios Clínicos como Assunto , Dieta , Dietoterapia , Exercício Físico , Terapia por Exercício , Ácidos Graxos Voláteis/urina , Fezes , Feminino , Humanos , Masculino
11.
Nat Med ; 25(4): 679-689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936547

RESUMO

Association studies have linked microbiome alterations with many human diseases. However, they have not always reported consistent results, thereby necessitating cross-study comparisons. Here, a meta-analysis of eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was controlled for several confounders, identified a core set of 29 species significantly enriched in CRC metagenomes (false discovery rate (FDR) < 1 × 10-5). CRC signatures derived from single studies maintained their accuracy in other studies. By training on multiple studies, we improved detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation genes. Moreover, we inferred elevated production of secondary bile acids from CRC metagenomes, suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. Through extensive validations, this meta-analysis firmly establishes globally generalizable, predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma , Adenoma/genética , Adenoma/microbiologia , Idoso , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Reprodutibilidade dos Testes , Especificidade da Espécie
12.
Nat Med ; 25(4): 667-678, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936548

RESUMO

Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.


Assuntos
Colina/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Metagenômica , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Bases de Dados Genéticas , Microbioma Gastrointestinal , Humanos , Liases/genética , Liases/metabolismo , Especificidade da Espécie
13.
Nat Commun ; 10(1): 1014, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833550

RESUMO

Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).


Assuntos
Metagenômica , Microbiota/genética , Filogenia , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genes Essenciais , Marcadores Genéticos , Genoma , Interações entre Hospedeiro e Microrganismos , Humanos , Anotação de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747106

RESUMO

The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.


Assuntos
Bactérias/classificação , Bactérias/genética , Intestino Grosso/microbiologia , Microbiota , Boca/microbiologia , Análise por Conglomerados , Fezes/microbiologia , Humanos , Metagenômica , Saliva/microbiologia
15.
Nat Microbiol ; 3(4): 514-522, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556107

RESUMO

Bacterial metabolism plays a fundamental role in gut microbiota ecology and host-microbiome interactions. Yet the metabolic capabilities of most gut bacteria have remained unknown. Here we report growth characteristics of 96 phylogenetically diverse gut bacterial strains across 4 rich and 15 defined media. The vast majority of strains (76) grow in at least one defined medium, enabling accurate assessment of their biosynthetic capabilities. These do not necessarily match phylogenetic similarity, thus indicating a complex evolution of nutritional preferences. We identify mucin utilizers and species inhibited by amino acids and short-chain fatty acids. Our analysis also uncovers media for in vitro studies wherein growth capacity correlates well with in vivo abundance. Further value of the underlying resource is demonstrated by correcting pathway gaps in available genome-scale metabolic models of gut microorganisms. Together, the media resource and the extracted knowledge on growth abilities widen experimental and computational access to the gut microbiota.


Assuntos
Bactérias/metabolismo , Meios de Cultura/química , Microbioma Gastrointestinal/fisiologia , Aminoácidos/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo , Humanos , Mucinas/metabolismo
16.
Nature ; 555(7698): 623-628, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29555994

RESUMO

A few commonly used non-antibiotic drugs have recently been associated with changes in gut microbiome composition, but the extent of this phenomenon is unknown. Here, we screened more than 1,000 marketed drugs against 40 representative gut bacterial strains, and found that 24% of the drugs with human targets, including members of all therapeutic classes, inhibited the growth of at least one strain in vitro. Particular classes, such as the chemically diverse antipsychotics, were overrepresented in this group. The effects of human-targeted drugs on gut bacteria are reflected on their antibiotic-like side effects in humans and are concordant with existing human cohort studies. Susceptibility to antibiotics and human-targeted drugs correlates across bacterial species, suggesting common resistance mechanisms, which we verified for some drugs. The potential risk of non-antibiotics promoting antibiotic resistance warrants further exploration. Our results provide a resource for future research on drug-microbiome interactions, opening new paths for side effect control and drug repurposing, and broadening our view of antibiotic resistance.


Assuntos
Bactérias/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Antipsicóticos/farmacologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Estudos de Coortes , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Viabilidade Microbiana/efeitos dos fármacos , Reprodutibilidade dos Testes , Simbiose/efeitos dos fármacos
18.
Nat Microbiol ; 3(1): 8-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29255284

RESUMO

Population stratification is a useful approach for a better understanding of complex biological problems in human health and wellbeing. The proposal that such stratification applies to the human gut microbiome, in the form of distinct community composition types termed enterotypes, has been met with both excitement and controversy. In view of accumulated data and re-analyses since the original work, we revisit the concept of enterotypes, discuss different methods of dividing up the landscape of possible microbiome configurations, and put these concepts into functional, ecological and medical contexts. As enterotypes are of use in describing the gut microbial community landscape and may become relevant in clinical practice, we aim to reconcile differing views and encourage a balanced application of the concept.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Bactérias/genética , Técnicas de Tipagem Bacteriana , Biodiversidade , Humanos , Metagenômica , RNA Ribossômico 16S/genética
19.
Mol Syst Biol ; 13(12): 960, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242367

RESUMO

Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large-scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture-independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single-nucleotide variation clearly indicates the existence of sub-populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies-specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro-inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host.


Assuntos
Microbioma Gastrointestinal , Microbiota , Escherichia coli/fisiologia , Microbioma Gastrointestinal/genética , Genes Bacterianos , Humanos , Microbiota/genética , Fenótipo , Filogeografia , Especificidade da Espécie
20.
Nat Biotechnol ; 35(11): 1069-1076, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967887

RESUMO

Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.


Assuntos
Fracionamento Químico/métodos , DNA/química , Fezes/química , Metagenômica , Bactérias/genética , Biologia Computacional , Humanos , Controle de Qualidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...