Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.269
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36917189

RESUMO

OBJECTIVES: The study aimed to analyze the poor prognosis of microcalcification in breast cancer (BC), including the pathological complete response (pCR) to neoadjuvant chemotherapy (NACT) and the risk of bone metastases. MATERIALS AND METHODS: 313 breast cancer patients received NACT to evaluate pCR and 1182 patients from a multicenter database to assess bone metastases were retrospectively included. Two groups were divided according to the presence or absence of mammography microcalcification. Clinical data, image characteristics, neoadjuvant treatment response, bone involvement, and follow-up information were recorded. The pCR and bone metastases were compared between subgroups using the Mann-Whitney and χ2 tests and logistic regression, respectively. RESULTS: Mammographic microcalcification was associated with a lower pCR than uncalcified BC in the NACT cohort (20.6% vs 31.6%, P = 0.029). Univariate and multivariate analysis suggested that calcification was a risk factor for poor NACT response [OR = 1.780, 95%CI (1.065-2.974), P = 0.028], [OR = 2.352, 95%CI (1.186-4.667), P = 0.014]. Microcalcification was more likely to be necrosis on MRI than those without microcalcification (53.0% vs 31.7%, P < 0.001), multivariate analysis indicated that tumor necrosis was also a risk factor for poor NACT response [OR = 2.325, 95%CI (1.100-4.911), P = 0.027]. Age, menopausal status, breast density, mass, molecular, and pathology type were not significantly associated with non-pCR risk assessment. In a multicenter cohort of 1182 patients with pathologically confirmed BC, those with microcalcifications had a higher proportion of bone metastases compared to non-calcified BC (11.6% vs 4.9%, P < 0.001). Univariate and multivariate analysis showed that microcalcification was an independent risk factor for bone metastasis [OR = 2.550, 95%CI (1.620-4.012), P < 0.001], [OR = 2.268(1.263-4.071), P = 0.006)]. Osteolytic bone metastases predominated but there was no statistical difference between the two groups (78.9% vs 60.7%, P = 0.099). Calcified BC was mainly involved in axial bone, but was more likely to involve the whole-body bone than non-calcified BC (33.8% vs 10.7%, P = 0.021). CONCLUSION: This study provides important insights into the poor prognosis of microcalcification, not only in terms of poor response to NACT but also the risk factor of bone metastases.

2.
J Clin Med ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902773

RESUMO

Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis.

3.
Zhongguo Zhen Jiu ; 43(3): 309-16, 2023 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-36858394

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) on NLRP3 inflammasome and its downstream protein gastermin D (GSDMD) in rats with primary dysmenorrhea (PDM), and to explore the potential mechanism of EA on the treatment of PDM. METHODS: Forty healthy female SD rats without pregnancy were randomly divided into a control group, a model group, an EA group and an ibuprofen group, 10 rats in each group. PDM model was prepared by injection of estradiol benzoate and oxytocin. Except the control group, the rats in each group were subcutaneously injected with estradiol benzoate for 10 days, and oxytocin was injected on the 11th day. The rats in the EA group were intervened with EA (dense wave, frequency of 50 Hz) at "Guanyuan" (CV 4) and "Sanyinjiao" (SP 6) at the same time of modeling, once a day, 20 min each time, for 10 consecutive days. The rats in the ibuprofen group were treated with 0.8 mL of ibuprofen by gavage (concentration of ibuprofen solution was 1.25 mg/mL) for 10 consecutive days. After modeling, the writhing reaction was observed. After intervention, the HE staining method was used to observe the histological morphology of uterus and evaluate the pathological damage score of uterus; ELISA method was used to detect the serum levels of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α); Western blot method was used to detect the protein expression of NLRP3, apoptosis related spot like protein (ASC), caspase-1, GSDMD, GSDMD-N and inflammatory factors (interleukin [IL]-1ß, IL-18) in uterine tissue. RESULTS: In the model group, a large number of vacuolar degeneration and death of endometrial epithelial cells, spiral arterioles congestion in lamina propria and neutrophil infiltration were observed. In the EA group, there was a small amount of vacuolar degeneration and death of endometrial epithelial cells, a small amount of spiral arterioles congestion in the lamina propria, and a small amount of neutrophils infiltration. In the ibuprofen group, there was very small number of degeneration and death of endometrial epithelial cells, and no obvious arterial congestion was found in lamina propria, and neutrophil infiltration was occasionally seen. Compared with the control group, in the model group the number of writhing was increased (P<0.01), the writhing reaction score and serum level of PGF2α and PGF2α/PGE2 value were increased (P<0.01), the level of PGE2 was decreased (P<0.01). Compared with the model group, in the EA group and the ibuprofen group the number of writhing were decreased (P<0.05), the latency of writhing was prolonged (P<0.01), the writhing reaction scores and serum levels of PGF2α and PGF2α/PGE2 values were decreased (P<0.05, P<0.01), the levels of PGE2 were increased (P<0.01). Compared with the control group, the protein expression of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1ß and IL-18 in the uterine tissues of rats was increased in the model group (P<0.01). Compared with the model group, the protein expression of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1ß and IL-18 in the uterine tissues of rats was decreased in the EA group and the ibuprofen group (P<0.01, P<0.05). There was no significant difference between the EA group and the ibuprofen group in the above indexes (P>0.05). CONCLUSION: EA could alleviate pain and uterine tissue injury in rats with PDM. The mechanism may be related to the inhibition of the activation of NLRP3 inflammasome in rat uterine tissues, thereby inhibiting pyroptosis and its inflammatory factors release.


Assuntos
Eletroacupuntura , Ocitocina , Animais , Feminino , Gravidez , Ratos , Caspases , Dinoprosta , Dinoprostona , Dismenorreia , Ibuprofeno , Inflamassomos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Ratos Sprague-Dawley , Útero
4.
Front Genet ; 14: 1094793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891150

RESUMO

Background: Copper is an indispensable mineral element involved in many physiological metabolic processes. Cuproptosis is associated with a variety of cancer such as hepatocellular carcinoma (HCC). The objective of this study was to examine the relationships between the expression of cuproptosis-related genes (CRGs) and tumor characteristics, including prognosis and microenvironment of HCC. Methods: The differentially expressed genes (DEGs) between high and low CRGs expression groups in HCC samples were identified, and further were analyzed for functional enrichment analysis. Then, CRGs signature of HCC was constructed and analyzed utilizing LASSO and univariate and multivariate Cox regression analysis. Prognostic values of CRGs signature were evaluated by Kaplan-Meier analysis, independent prognostic analysis and nomograph. The expression of prognostic CRGs was verified by Real-time quantitative PCR (RT-qPCR) in HCC cell lines. In addition, the relationships between prognostic CRGs expression and the immune infiltration, tumor microenvironment, antitumor drugs response and m6A modifications were further explored using a series of algorithms in HCC. Finally, ceRNA regulatory network based on prognostic CRGs was constructed. Results: The DEGs between high and low CRG expression groups in HCC were mainly enriched in focal adhesion and extracellular matrix organization. Besides, we constructed a prognostic model that consists of CDKN2A, DLAT, DLST, GLS, and PDHA1 CRGs for predicting the survival likelihood of HCC patients. And the elevated expression of these five prognostic CRGs was substantially in HCC cell lines and associated with poor prognosis. Moreover, immune score and m6A gene expression were higher in the high CRG expression group of HCC patients. Furthermore, prognostic CRGs have higher mutation rates in HCC, and are significantly correlated with immune cell infiltration, tumor mutational burden, microsatellite instability, and anti-tumor drug sensitivity. Then, eight lncRNA-miRNA-mRNA regulatory axes that affected the progression of HCC were predicted. Conclusion: This study demonstrated that the CRGs signature could effectively evaluate prognosis, tumor immune microenvironment, immunotherapy response and predict lncRNA-miRNA-mRNA regulatory axes in HCC. These findings extend our knowledge of cuproptosis in HCC and may inform novel therapeutic strategies for HCC.

5.
Colloids Surf B Biointerfaces ; 225: 113246, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36893663

RESUMO

Encapsulation of enzymes into metal-organic frameworks (enzyme@MOF) can improve the stability of enzymes. Most present synthesis methods of enzyme@MOF rely on the complex modification of enzymes or the natural negative surface charge of enzymes to promote the synthesis of enzyme@MOF. Despite extensive efforts, it remains challenging to develop a surface charge-independent and convenient strategy to encapsulate various enzymes into MOF efficiently. In this study, we proposed a convenient seed-mediated strategy for efficient synthesis of enzyme@MOF from the perspective of MOF formation. The seed, acting as nuclei, makes the slow nucleation stage skipped, leading to the efficient synthesis of enzyme@MOF. The successful encapsulation of several proteins demonstrated the feasibility and advantages of the seed-mediated strategy. Moreover, the resulting composite, cytochrome (Cyt c) encapsulated in ZIF-8, exhibited a 5.6-fold increase in bioactivity compared to free Cyt c. The seed-mediated strategy provides an efficient, enzyme surface charge-independent, and non-modified method for the synthesis of enzyme@MOF biomaterials, which warrants further exploration and application in diverse fields.

6.
Heliyon ; 9(3): e13883, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895398

RESUMO

As a form of clean energy, nuclear energy has unique advantages compared to other energy sources in the present era, where low-carbon policies are being widely advocated. The exponential growth of artificial intelligence (AI) technology in recent decades has resulted in new opportunities and challenges in terms of improving the safety and economics of nuclear reactors. This study briefly introduces modern AI algorithms such as machine learning, deep learning, and evolutionary computing. Furthermore, several studies on the use of AI techniques for nuclear reactor design optimization as well as operation and maintenance (O&M) are reviewed and discussed. The existing obstacles that prevent the further fusion of AI and nuclear reactor technologies so that they can be scaled to real-world problems are classified into two categories: (1) data issues: insufficient experimental data increases the possibility of data distribution drift and data imbalance; (2) black-box dilemma: methods such as deep learning have poor interpretability. Finally, this study proposes two directions for the future fusion of AI and nuclear reactor technologies: (1) better integration of domain knowledge with data-driven approaches to reduce the high demand for data and improve the model performance and robustness; (2) promoting the use of explainable artificial intelligence (XAI) technologies to enhance the transparency and reliability of the model. In addition, causal learning warrants further attention owing to its inherent ability to solve out-of-distribution generalization (OODG) problems.

7.
Biosci Trends ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36928222

RESUMO

Over three years have passed since the COVID-19 pandemic started. The dangerousness and impact of COVID-19 should definitely not be ignored or underestimated. Other than the symptoms of acute infection, the long-term symptoms associated with SARS-CoV-2 infection, which are referred to here as "sequelae of long COVID (LC)", are also a conspicuous global public health concern. Although such sequelae were well-documented, the understanding of and insights regarding LC-related sequelae remain inadequate due to the limitations of previous studies (the follow-up, methodological flaws, heterogeneity among studies, etc.). Notably, robust evidence regarding diagnosis and treatment of certain LC sequelae remain insufficient and has been a stumbling block to better management of these patients. This awkward situation motivated us to conduct this review. Here, we comprehensively reviewed the updated information, particularly focusing on clinical issues. We attempt to provide the latest information regarding LC-related sequelae by systematically reviewing the involvement of main organ systems. We also propose paths for future exploration based on available knowledge and the authors' clinical experience. We believe that these take-home messages will be helpful to gain insights into LC and ultimately benefit clinical practice in treating LC-related sequelae.

8.
Front Nutr ; 10: 1133488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969809

RESUMO

Introduction: Homocysteine (Hcy) is a critical factor for cardiovascular injury, and the elevation of Hcy in children will inevitably increase the risk of cardiovascular disease in adulthood. This study explored the effect of very low-mineral water on children's Hcy and cardiovascular health. Materials and methods: This was a retrospective cohort study that recruited two groups of 10-13-year-old children who had consumed direct drinking water (DDW) in school for 4 years. The control group (NW) (119 boys, 110 girls) consumed normal DDW (conductivity 345 µs/cm). The very low-mineral water consumption group (VLW) (223 boys, 208 girls) consumed very low-mineral DDW (conductivity 40.0 µs/cm). Serum Hcy, Hcy metabolites, cofactors of Hcy metabolism, and cardiovascular biomarkers were assessed and standardized by age- and sex-specific Z-scores, and the differences between the two groups were analyzed with independent t-test. The relationships between Hcy metabolism biomarkers and key factors, cardiovascular biomarkers, serum Ca, and mineral intake were analyzed with linear regression. Results: Compared with the NW group, the VLW group had significantly higher serum Hcy, Apo-B, Apo-B/A1, and oxLDL, and lower serum 1,25,(OH)2D3, vitamin B6 and B12, 5-methyltetrahydrofolate, and Apo-A1. Serum Hcy was positively associated with serum Apo-B and Apo-B/A1, and negatively associated with Ca intake from water and serum 1,25,(OH)2D3. Conclusion: This study suggested that drinking very low-mineral water may increase Hcy level and oxidative stress, worsen lipid profile, and threaten the cardiovascular system in children. Reducing 1,25,(OH)2D3, and disordering of calcium metabolism might play important roles. This study first established an association between demineralized drinking water and cardiovascular health in children, suggesting a new environmental concern risk to cardiovascular health.

9.
Oncol Rep ; 49(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928140

RESUMO

Gastric diffuse large B­cell lymphoma (GDLBCL) is a common disease with an increasing incidence. However, the regulatory effect of exosomal programmed death­ligand 1 (PD­L1) on the immune microenvironment in GDLBCL is unclear. In the present study, the protein expression levels of exosomal PD­L1 in the supernatants of cultured diffuse large B­cell lymphoma (DLBCL) cells and the plasma of patients with GDLBCL was assessed using immunoblotting. Exosomes derived from DLBCL cells were cocultured with T lymphocytes or injected into tumor xenograft mice by tail vein injection. The relationship between the protein expression level of exosomal PD­L1 in the plasma and the clinical characteristics and immune microenvironmental parameters of GDLBCL was evaluated using immunoblotting and immunohistochemistry. High levels of exosomal PD­L1 were found in the supernatants of cultured DLBCL cells. Exosomes with high levels of PD­L1 promoted growth of tumors formed by DLBCL cells in vivo and inhibited the proliferation of T lymphocytes. Notably, the protein expression level of PD­L1 in plasma exosomes derived from GDLBCL patients was significantly higher than that of healthy individuals. High levels of PD­L1 in plasma exosomes were significantly associated with international prognostic index score, pathological type and advanced Lugano stage, which might lead to the poor prognosis of GDLBCL. Moreover, a high level of PD­L1 in plasma exosomes was significantly associated with an immunosuppressive microenvironment in GDLBCL. Therefore, the results of the present study indicated that exosomal PD­L1 inhibited the proliferation of T lymphocytes and promoted the formation of an immunosuppressive microenvironment in GDLBCL. High expression of exosomal PD­L1 may suggest a poor prognosis of GDLBCL, and exosomal PD­L1 in plasma may be a new diagnostic indicator for GDLBCL.


Assuntos
Exossomos , Linfoma Difuso de Grandes Células B , Neoplasias Gástricas , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Imunossupressores/metabolismo , Exossomos/metabolismo , Microambiente Tumoral
10.
Front Endocrinol (Lausanne) ; 14: 1085605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926022

RESUMO

Renal fibrosis (RF) is the common pathological manifestation of virtually all chronic kidney diseases (CKD) and one of the major causes of end-stage renal disease (ESRD), but the pathogenesis of which is still unclear. Renal tubulointerstitial lesions have been identified as a key pathological hallmark of RF pathology. Renal tubular epithelial cells are the resident cells of the tubulointerstitium and play an important role in kidney recovery versus renal fibrosis following injury. Studies in recent years have shown that senescence of renal tubular epithelial cells can accelerate the progression of renal fibrosis. Oxidative stress(OS), telomere attrition and DNA damage are the major causes of renal tubular epithelial cell senescence. Current interventions and therapeutic strategies for cellular senescence include calorie restriction and routine exercise, Klotho, senolytics, senostatics, and other related drugs. This paper provides an overview of the mechanisms and the key signaling pathways including Wnt/ß-catenin/RAS, Nrf2/ARE and STAT-3/NF-κB pathway involved in renal tubular epithelial cell senescence in RF and therapies targeting renal tubular epithelial cell senescence future therapeutic potential for RF patients. These findings may offer promise for the further treatment of RF and CKD.


Assuntos
Rim , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Senescência Celular , Insuficiência Renal Crônica/patologia , Células Epiteliais/metabolismo , Fibrose
11.
Brain Behav ; : e2972, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36938834

RESUMO

BACKGROUND: Alzheimer's disease (AD) is an irreversible, progressive brain disorder that impairs memory, thinking, language, and, eventually, the ability to carry out the simplest of tasks. Tau protein, the major component of neurofibrillary tangles, is considered a key mediator of AD pathogenesis. The association between obstructive sleep apnea (OSA) and circulating tau remains unclear. The aim of the present meta-analysis was to evaluate the relationship between OSA and circulating tau via quantitative analysis. METHODS: A systematic search of Pubmed, Embase, and Web of Science were performed. The mean values of circulating total tau (T-tau) and phosphorylated tau (P-tau) in OSA and control groups were extracted. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated by using a random-effect model or fixed-effect model. RESULTS: A total of seven studies comprising 233 controls and 306 OSA patients were included in this study. The meta-analysis showed that the circulating T-tau level was significantly higher in OSA patients than those in the control group (SMD = 1.319, 95% CI = 0.594 to 2.044, z = 3.56, p < .001). OSA patients also had significantly higher circulating P-tau level than control group (SMD = 0.343, 95% CI = 0.122 to 0.564, z = 3.04, p = .002). CONCLUSIONS: The present meta-analysis demonstrated that both circulating T-tau and P-tau levels were significantly increased in OSA subjects when compared with non-OSA subjects. Larger sample-size studies on the association between OSA and circulating tau are still required to further validate our results.

12.
Biochem Pharmacol ; 210: 115464, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849062

RESUMO

Cancer is characterized by metabolic reprogramming, which is a hot topic in tumor treatment research. Cancer cells alter metabolic pathways to promote their growth, and the common purpose of these altered metabolic pathways is to adapt the metabolic state to the uncontrolled proliferation of cancer cells. Most cancer cells in a state of nonhypoxia will increase the uptake of glucose and produce lactate, called the Warburg effect. Increased glucose consumption is used as a carbon source to support cell proliferation, including nucleotide, lipid and protein synthesis. In the Warburg effect, pyruvate dehydrogenase activity decreases, thereby disrupting the TCA cycle. In addition to glucose, glutamine is also an important nutrient for the growth and proliferation of cancer cells, an important carbon bank and nitrogen bank for the growth and proliferation of cancer cells, providing ribose, nonessential amino acids, citrate, and glycerin necessary for cancer cell growth and proliferation and compensating for the reduction in oxidative phosphorylation pathways in cancer cells caused by the Warburg effect. In human plasma, glutamine is the most abundant amino acid. Normal cells produce glutamine via glutamine synthase (GLS), but the glutamine synthesized by tumor cells is insufficient to meet their high growth needs, resulting in a "glutamine-dependent phenomenon." Most cancers have an increased glutamine demand, including breast cancer. Metabolic reprogramming not only enables tumor cells to maintain the reduction-oxidation (redox) balance and commit resources to biosynthesis but also establishes heterogeneous metabolic phenotypes of tumor cells that are distinct from those of nontumor cells. Thus, targeting the metabolic differences between tumor and nontumor cells may be a promising and novel anticancer strategy. Glutamine metabolic compartments have emerged as promising candidates, especially in TNBC and drug-resistant breast cancer. In this review, the latest discoveries of breast cancer and glutamine metabolism are discussed, novel treatment methods based on amino acid transporters and glutaminase are discussed, and the relationship between glutamine metabolism and breast cancer metastasis, drug resistance, tumor immunity and ferroptosis are explained, which provides new ideas for the clinical treatment of breast cancer.

13.
New Phytol ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792969

RESUMO

Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50=4.21 Mb, scaffold N50=75.55 Mb; 2n=24) harbors 31,584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome and transcriptome resources further enrich Quercus genomics, and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36791309

RESUMO

Background: Cannabis consumption for recreational and medical use is increasing worldwide. However, the long-term effects on kidney health and disease are largely unknown. Materials and Methods: Post hoc analysis of cannabis use as a risk factor for kidney disease was performed using data from the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) study that enrolled hospitalized adults with and without acute kidney injury from four U.S. centers during 2009-2015. Associations between self-reported cannabis consumption and the categorical and continuous outcomes were determined using multivariable Cox regression and linear mixed models, respectively. Results: Over a mean follow-up of 4.5±1.8 years, 94 participants without chronic kidney disease (CKD) (estimated glomerular filtration rate [eGFR] >60 mL/min/1.73 m2) who consumed cannabis had similar rates of annual eGFR decline versus 889 nonconsumers (mean difference=-0.02 mL/min/1.73 m2/year, p=0.9) and incident CKD (≥25% reduction in eGFR compared with the 3-month post-hospitalization measured eGFR and achieving CKD stage 3 or higher) (adjusted hazard ratio [aHR]=1.2; 95% confidence interval [CI]=0.7-2.0). Nineteen participants with CKD (eGFR <60 mL/min/1.73 m2) who consumed cannabis had more rapid eGFR decline versus 597 nonconsumers (mean difference=-1.3 mL/min/1.73 m2/year; p=0.02) that was not independently associated with an increased risk of CKD progression (≥50% reduction in eGFR compared with the 3-month post-hospitalization eGFR, reaching CKD stage 5, or receiving kidney replacement therapy) (aHR=1.6; 95% CI=0.7-3.5). Cannabis consumption was not associated with the rate of change in urine albumin to creatinine ratio (UACR) over time among those with (p=0.7) or without CKD (p=0.4). Conclusions: Cannabis consumption did not adversely affect the kidney function of participants without CKD but was associated with a faster annual eGFR decline among participants with CKD. Cannabis consumption was not associated with changes in UACR over time, incident CKD, or progressive CKD regardless of baseline kidney function. Additional research is needed to investigate the kidney endocannabinoid system and the impact of cannabis use on kidney disease outcomes.

16.
J Tissue Viability ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36803882

RESUMO

OBJECTIVE: To determine the influencing factors of medical device related pressure injury (MDRPU) in medical staff by meta-analysis. METHODS: A comprehensive literature search was conducted by PubMed, Embase, Cochrane Library, Web of Science, CNKI, VIP, CBM, and WanFang Data (from inception to July 27, 2022). Two researchers independently performed literature screening, quality evaluation and data extraction, and meta-analysis was conducted with RevMan 5.4 and Stata12.0 software. RESULTS: Total of 11215 medical staff were included in 9 articles. Meta analysis showed that gender, occupation, sweating, wearing time, single working time, department of COVID-19, preventive measures, and level 3 PPE were the risk factors for MDRPU in medical staff (P < 0.05). CONCLUSION: The outbreak of COVID-19 led to the occurrence of MDRPU among medical staff, and the influencing factors should be focused on. The medical administrator can further improve and standardize the preventive measures of MDRPU according to the influencing factors. Medical staff should accurately identify high-risk factors in the clinical work process, implement intervention measures, and reduce the incidence of MDRPU.

17.
Front Genet ; 14: 1101683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816047

RESUMO

Background: Increasing evidence indicates a crucial role for N7-methylguanosine (m7G) methylation modification in human disease development, particularly cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. However, the role of m7G in sarcomas (SARC) has not been adequately evaluated. Materials and methods: Transcriptome and clinical data were gathered from the TCGA database for this study. Normal and SARC groups were compared for the expression of m7G-related genes (m7GRGs). The expression of m7GRGs was verified using real-time quantitative PCR (RT-qPCR) in SARC cell lines. Then, differentially expressed genes (DEGs) were identified between high and low m7GRGs expression groups in SARC samples, and GO enrichment and KEGG pathways were evaluated. Next, prognostic values of m7GRGs were evaluated by Cox regression analysis. Subsequently, a prognostic model was constructed using m7GRGs with good prognostic values by Lasso regression analysis. Besides, the relationships between prognostic m7GRGs and immune infiltration, clinical features, cuproptosis-related genes, and antitumor drugs were investigated in patients with SARC. Finally, a ceRNA regulatory network based on m7GRGs was constructed. Results: The expression of ten m7GRGs was higher in the SARC group than in the control group. DEGs across groups with high and low m7GRGs expression were enriched for adhesion sites and cGMP-PKG. Besides, we constructed a prognostic model that consists of EIF4A1, EIF4G3, NCBP1, and WDR4 m7GRGs for predicting the survival likelihood of sarcoma patients. And the elevated expression of these four prognostic m7GRGs was substantially associated with poor prognosis and elevated expression in SARC cell lines. Moreover, we discovered that these four m7GRGs expressions were negatively correlated with CD4+ T cell levels, dendritic cell level and tumor purity, and positively correlated with tumor mutational burden, microsatellite instability, drug sensitivity and cuproptosis-related genes in patients with sarcomas. Then, a triple regulatory network of mRNA, miRNA, and lncRNA was established. Conclusion: The current study identified EIF4A1, EIF4G3, NCBP1, and WDR4 as prognostic genes for SARC that are associated with m7G.These findings extend our knowledge of m7G methylation in SARC and may guide the development of innovative treatment options.

18.
Plant Cell Rep ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810812

RESUMO

KEY MESSAGE: We find that the MYB family transcription factor, LiMYB108, has a novel function to regulate the floral fragrance affected by light intensity. Floral fragrance determines the commercial value of flowers and is influenced by many environmental factors, especially light intensity. However, the mechanism by which light intensity affects the release of floral fragrance is unclear. Here, we isolated an R2R3-type MYB transcription factor LiMYB108, the expression of which was induced by light intensity and located in the nucleus. Light of 200 and 600 µmol m-1 s-1 significantly increased the expression of LiMYB108, which was consistent with the improving trend of monoterpene synthesis under light. Virus-induced gene silencing (VIGS) of LiMYB108 in Lilium not only significantly inhibited the synthesis of ocimene and linalool, but also decreased the expression of LoTPS1; however, transient overexpression of LiMYB108 exerted opposite effects. Furthermore, yeast one-hybrid assays, dual-luciferase assays, and electrophoretic mobility shift assays (EMSA) demonstrated that LiMYB108 directly activated the expression of LoTPS1 by binding to the MYB binding site (MBS) (CAGTTG). Our findings demonstrate that light intensity triggered the high expression of LiMYB108, and then LiMYB108 as a transcription factor to activate the expression of LoTPS1, thus promoting the synthesis of the ocimene and linalool, which are important components of floral fragrance. These results provide new insights into the effects of light intensity on floral fragrance synthesis.

19.
Chem Commun (Camb) ; 59(14): 1959-1962, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36722985

RESUMO

One potentiometric nanosensor for monitoring intracellular hydrogen sulfide (H2S) with fast potential response, high selectivity and excellent antifouling properties was developed. This study constructs a powerful tool to real-time track the changes of intracellular H2S in situ, promoting the future studies of physiologically relevant processes.


Assuntos
Sulfeto de Hidrogênio , Análise de Célula Única , Nanotecnologia
20.
Front Oncol ; 13: 1103269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798818

RESUMO

Objectives: This study aimed to identify the computed tomography (CT) features associated with the new International Association for the Study of Lung Cancer (IASLC) three-tiered grading system to improve the preoperative prediction of disease-free survival of stage I lung adenocarcinoma patients. Methods: The study included 379 patients. Ordinal logistic regression analysis was used to identify the independent predictors of IASLC grades. The first multivariate Cox regression model (Model 1) was based on the significant factors from the univariate analysis. The second multivariate model (Model 2) excluded the histologic grade and based only on preoperative factors. Results: Larger consolidation tumor ratio (OR=2.15, P<.001), whole tumor size (OR=1.74, P=.002), and higher CT value (OR=3.77, P=.001) were independent predictors of higher IASLC grade. Sixty patients experienced recurrences after 70.4 months of follow-up. Model 1 consisted of age (HR:1.05, P=.003), clinical T stage (HR:2.32, P<.001), histologic grade (HR:4.31, P<.001), and burrs sign (HR:5.96, P<.001). Model 2 consisted of age (HR,1.04; P=.015), clinical T stage (HR:2.49, P<.001), consolidation tumor ratio (HR:2.49, P=.016), whole tumor size (HR:2.81, P=.022), and the burrs sign (HR:4.55, P=.002). Model 1 had the best prognostic predictive performance, followed by Model 2, clinical T stage, and histologic grade. Conclusion: CTR (cut-off values of <25% and ≥75%) and whole tumor size (cut-off value of 17 mm) could stratify patients into different prognosis and be used as preoperative surrogates for the IASLC grading system. Integrating these CT features with clinical T staging can improve the preoperative prognostic prediction for stage I lung adenocarcinoma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...