Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Biochim Biophys Acta Proteins Proteom ; 1869(6): 140621, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561576

RESUMO

Protein-protein interactions (PPIs) describe the direct physical contact of two proteins that usually results in specific biological functions or regulatory processes. The characterization and study of PPIs through the investigation of their pattern and principle have remained a question in biological studies. Various experimental and computational methods have been used for PPI studies, but most of them are based on the sequence similarity with current validated PPI participators or cellular localization patterns. Most methods ignore the fact that PPIs are defined by their specific biological functions. In this study, we constructed a novel rule-based computational method using gene ontology and KEGG pathway annotation of PPI participators that correspond to the complicated biological effects of PPIs. Our newly presented computational method identified a group of biological functions that are tightly associated with PPIs and provided a new function-based tool for PPI studies in a rule manner.

2.
Dalton Trans ; 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33634821

RESUMO

With the aim of improving the photocatalytic activity for water splitting, novel core-shell-structured crystalline-BaTiO3/amorphous-BaTiO3-x/crystalline-CdS composite nanocubes are prepared by a facile two-step synthesis approach. Basic characterization techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy are carried out on the as-prepared composite nanocubes in order to confirm the quality of their crystal structure, morphology and chemical components correspondingly. UV-Vis-NIR measurements of the as-prepared composite nanocubes validate the presence of extended visible-light absorbance due to oxygen-deficient BaTiO3-x. Photoelectrochemical tests are carried out on the as-prepared nanocomposite films that are coated directly on indium tin oxide (ITO) glass substrates. The as-prepared composite nanocubes show a photocurrent density of 100 µA cm-2 without electric field poling, whereas they show about 200 µA cm-2 with an electric field poling of 18.8 kV cm-1. This study suggests that the photoelectrochemical performance is highest in our prepared BaTiO3/BaTiO3-x/CdS composite film compared to the pure BaTiO3, CdS and BaTiO3/BaTiO3-x films, and it may offer a new potential route for designing cost-effective, highly stable and efficient photocatalysts.

3.
Toxicol Mech Methods ; : 1-29, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627030

RESUMO

Macrophages can polarize into different phenotypes in response to different microenvironmental stimuli. Macrophage polarization has been assigned to two extreme states, namely proinflammatory M1 and anti-inflammatory M2. Accumulating evidences have demonstrated that M1 polarized macrophages contribute to various toxicants-induced deleterious effects. Switching macrophages from proinflammatory M1 phenotype toward anti-inflammatory M2 phenotype could be a promising approach for treating various inflammatory diseases. Studies in the past few decades have revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) can modulate the polarization of macrophages. Specifically, activation of Nrf2 could block M1 stimuli-induced production of proinflammatory cytokines and chemokines, and shift the polarization of macrophages toward M2 by cross-talking with nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), peroxisome proliferator-activated receptor γ (PPARγ), and autophagy. Importantly, a great number of studies have confirmed the beneficial effects of natural and synthesized Nrf2 agonists on various inflammatory diseases; however, most of these compounds are far away from clinical application due to lack of characterization and defects of study designs. Interestingly, some endogenous Nrf2 inducers and compounds with dual activities (such as the Nrf2 inducing and CO releasing effects) exhibit potent anti-inflammatory effects, which points out an important direction for future researches.

4.
Cogn Process ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404899

RESUMO

This article explores the domain generality of hierarchical representation between linguistic and mathematical cognition by adopting the structural priming paradigm in an eye-tracking reading experiment. The experiment investigated whether simple arithmetic equations with high (e.g., (7 + 2) × 3 + 1)- or low (e.g., 7 + 2 × 3 + 1)- attachment influence language users' interpretation of Chinese ambiguous structures (NP1 + He + NP2 + De + NP3; Quantifier + NP1 + De + NP2; NP1 + Kan/WangZhe + NP2 + AP). On the one hand, behavioral results showed that high-attachment primes led to more high-attachment interpretation, while low-attachment primes led to more low-attachment interpretation. On the other hand, the eye movement data indicated that structural priming was of great help to reduce dwell time on the ambiguous structure. There were structural priming effects from simple arithmetic to three different structures in Chinese, which provided new evidence on the cross-domain priming from simple arithmetic to language. Besides attachment priming effect at global level, online sentence integration at local level was found to be structure-dependent by some differences in eye movement measures. Our results have provided some evidence for the Representational Account.

5.
Nucleic Acids Res ; 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33434272

RESUMO

Multiple driver genes in individual patient samples may cause resistance to individual drugs in precision medicine. However, current computational methods have not studied how to fill the gap between personalized driver gene identification and combinatorial drug discovery for individual patients. Here, we developed a novel structural network controllability-based personalized driver genes and combinatorial drug identification algorithm (CPGD), aiming to identify combinatorial drugs for an individual patient by targeting personalized driver genes from network controllability perspective. On two benchmark disease datasets (i.e. breast cancer and lung cancer datasets), performance of CPGD is superior to that of other state-of-the-art driver gene-focus methods in terms of discovery rate among prior-known clinical efficacious combinatorial drugs. Especially on breast cancer dataset, CPGD evaluated synergistic effect of pairwise drug combinations by measuring synergistic effect of their corresponding personalized driver gene modules, which are affected by a given targeting personalized driver gene set of drugs. The results showed that CPGD performs better than existing synergistic combinatorial strategies in identifying clinical efficacious paired combinatorial drugs. Furthermore, CPGD enhanced cancer subtyping by computationally providing personalized side effect signatures for individual patients. In addition, CPGD identified 90 drug combinations candidates from SARS-COV2 dataset as potential drug repurposing candidates for recently spreading COVID-19.

6.
Bull Environ Contam Toxicol ; 106(1): 175-182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392683

RESUMO

In order to clarify the effect of biochar-polylactic acid (PLA) composite on reductive dechlorination of HCB in paddy soils, an anaerobic incubation experiment was conducted with four treatments of Sterile control, Control, Biochar, and Biochar-PLA in Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). The results showed that in Ac, biochar addition significantly promoted HCB degradation during the whole incubation period, but biochar-PLA composite inhibited HCB dechlorination due to the low soil pH in the early period and then accelerated HCB degradation while soil pH climbed to nearly neutral. The dechlorination rate of HCB in An was: Biochar-PLA > Biochar > Control > Sterilization control. The degradation rate of HCB in An was faster than in Ac, due to the higher iron content and neutral pH condition in An. The results indicated that biochar-PLA composite promoted the reductive dechlorination of HCB efficiently in paddy soil under nearly neutral pH condition.


Assuntos
Hexaclorobenzeno , Poluentes do Solo , Carvão Vegetal , Concentração de Íons de Hidrogênio , Poliésteres , Solo , Poluentes do Solo/análise
7.
Dalton Trans ; 50(6): 2243-2252, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33503083

RESUMO

A series of neutral pentacoordinate dithieno[3,2-b:2',3'-d]phosphole compounds were synthesized by [4 + 1] cycloaddition with o-quinones. Counter to the expected trigonal bipyramidal geometry, the luminescent hypervalent dithienophospholes exhibit square pyramidal geometry with inherently Lewis acidic phosphorus center that is stabilized via supramolecular π-stacking interactions in the solid state and in solution. Due to their Lewis-acid character, the compounds react with nucleophiles, suggesting their potential as mediator in organic transformations. The new species thus present an intriguing structural plaform for the design of neutral P(v) Lewis acids with useful reactivities.

8.
J Hazard Mater ; 401: 123406, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653797

RESUMO

Engineered silver sulfide nanoparticles (e-Ag2S-NPs) are used in industry and can be released into the environment. Besides e-Ag2S-NPs, transformed silver sulfide nanoparticles (t-Ag2S-NPs) from silver nanoparticles are more likely to be the form that is widely distributed in the environment. Both e-Ag2S-NPs and t-Ag2S-NPs may be ingested and get into human gastrointestinal tract (GIT) through trophic transfer, posing a potential threat to human health. Nevertheless, knowledge of chemical stability of t-Ag2S-NPs and e-Ag2S-NPs in the human GIT is very limited. Herein e-Ag2S-NPs and a series of t-Ag2S-NPs with different degrees of sulfidation were selected as models for exposure to the simulated human GIT including mouth, stomach and small intestine phases under fed and fasted conditions. Silver ions were detected in the simulated saliva, gastric and small intestine fluids when t-Ag2S-NPs or e-Ag2S-NPs were incubated in the simulated GIT, but the amount (e.g., < 20 µg) of silver ion in each phase accounted for < 0.2‰ (w/w) of the silver added (i.e., 100 mg). Silver species of the residual particulate from each phase of the simulated GIT with t-Ag2S-NPs or e-Ag2S-NPs were thus analyzed through a developed analytical method that could selectively, successively and efficiently dissolve and quantify AgCl, Ag(0), and Ag2S in particulates. Both e-Ag2S-NPs and fully sulfidized t-Ag2S-NPs were shown to be highly stable in the simulated human GIT. Conversely, partially sulfidized t-Ag2S-NPs primarily underwent transformations in the mouth phase relative to stomach and small intestine phases regardless of fed or fasted status, wherein AgCl and Ag2S were observed besides Ag(0). The amount of Ag2S in the mouth phase negatively (r = -0.99, p < 0.001) correlated with the sulfidation degree of initial t-Ag2S-NPs. This work improved our understanding of potential transformations of t-Ag2S-NPs in the simulated human GIT, providing valuable information for future researches on evaluating health risks of ingested Ag2S-NPs.

9.
Microvasc Res ; 134: 104120, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309645

RESUMO

INTRODUCTION AND OBJECTIVES: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death around the world. Despite improvement in the prevention and treatment of HCC, the clinical prognosis is still poor with increasing mortality. Non-coding RNAs play pivotal roles in HCC oncogenesis, but the detailed mechanism is poorly known. Therefore, the functions and interaction of lncRNA NORAD and miR-211-5p in HCC was investigated in this study. METHODS: Quantitative real-time PCR method was used to analyze the expression of NORAD and miR-211-5p in clinical HCC tissues and cultured cell lines. Knockdown of NORAD and overexpression of miR-211-5p were then carried in HCC cells. Moreover, bioinformatics analysis and luciferase report assays were further employed to analyze the interaction between miR-211-5p and NORAD or FOXD1. RESULTS: Increased lncRNA NORAD and decreased miR-211-5p expression were first detected in HCC compared with the peritumorial area. Further studies showed that knockdown of NORAD or overexpression of miR-211-5p impaired the proliferation, migration and angiogenesis of HCC cells. Mechanistically, we found that NORAD functions as a sponge for miR-211-5p. Moreover, it was revealed that decreased miR-211-5p induced the expression of FOXD1 as well as its downstream target VEGF-A, thereby contributes to enhanced angiogenesis of HCC. CONCLUSION: Elevated NORAD works as a sponge for miR-211-5p in HCC, thus release the inhibition effect of the latter on its downstream target FOXD1 and VEGF-A, which finally promotes angiogenesis. These results provide new insights into the interaction between NORAD and miR-211-5p in HCC and their potential usage as targets for the development of novel therapeutics against HCC.

10.
Sci Total Environ ; 760: 144027, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321411

RESUMO

The exploration of low-cost, high-performance and stable catalytic materials for sulfate radical-based advanced oxidation processes (SR-AOPs) is of great importance. This study presents Fe3O4-wrapped SBA-15 mesoporous silica catalyst (Fe3O4@SBA-15) for persulfate (PS) activation. The Fe3O4@SBA-15 with an Fe3O4 to SBA-15 weight ratio of 3:1 exhibited an impressive carbamazepine (CBZ) removal efficiency of ~100% after 30 min of SR-AOP at an initial pH of 3.0, a temperature of 25 °C, an initial PS concentration of 300 mg L-1 and a catalyst concentration of 0.50 g L-1. The primary oxidizing species produced in the system were identified as SO4- and HO by electron paramagnetic resonance spectra and radical quenching experiments. Benefiting from the synergetic effects of improved Fe3O4 dispersion and enhanced adsorption of CBZ and PS by SBA-15, the as-obtained heterogeneous Fe3O4@SBA-15 catalysts offer large numbers of active sites for free radical generation and high surface concentrations of CBZ and PS for SR-AOPs, as verified by physicochemical characterization and Langmuir-Hinshelwood model analysis. In addition, the activity of Fe3O4@SBA-15 was maintained throughout six successive cycling tests. Various inorganic anions, including Cl-, NO3-, HCO3-, and CO32-, as well as organic material in natural water, exert a negative impact on the Fe3O4@SBA-15 catalyzed SR-AOPs and deserve special attention.


Assuntos
Poluentes Químicos da Água , Carbamazepina , Oxirredução , Dióxido de Silício , Água , Poluentes Químicos da Água/análise
11.
Anal Chim Acta ; 1142: 127-134, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280690

RESUMO

DNA methylation plays an important role in a variety of human diseases. Thus, accurately analyze 5-methylcytosine in different DNA segments is of great significance. Herein, we proposed a novel 3D matrixed DNA self-nanocatalyzer via gold nanoparticles (AuNPs) supporting DNA self-hybridization with hemin as biomimetic enzyme and methylene blue (MB) as electrochemical mediator, which was employed as an efficient electrochemical sensitizer for the ultrasensitive bioassay of DNA 5-methylcytosine. Meanwhile, the AuNPs, graphitic carbon nitride (g-C3N4) and reduced graphene oxide (rGO) was prepared as AuNPs/g-C3N4@rGO nanocomposites to coat on the electrode surface to immobilize the capture hairpin DNA (CH). In the presence of target DNA with 5-methylcytosine, the target DNA could hybridize with CH via the hyperstable triple-helix formation. Based on the specific biorecognition between biotin and streptavidin and immune recognition between anti-5-methylcytosine antibodies and 5-methylcytosine sites on the target DNA, the 3D matrixed DNA self-nanocatalyzer could be captured onto the electrode surface to generate an amplified electrochemical signal related to the concentration of 5-methylcytosine. Under the optimal conditions, the proposed strategy performed a linear range from 10-17 M to 10-8 M with a detection limit of 8.6 aM. Remarkably, this strategy could be expanded easily to various biomarkers, including protein, DNA, phosphorylation and glycosylation, providing a promising strategy for clinical diagnosis and mechanism investigation of various diseases.

12.
J Hazard Mater ; : 124563, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33261974

RESUMO

This study investigated the simultaneous photoelectrochemical (PEC) degradation of carbamazepine (CBZ), reduction of CO2 and production of H2 using a TiO2 thin film as photoanode and Ag plate as cathode. The photoanode was fabricated using sequential hydrothermal and calcination processes. The use of chloride during the hydrothermal process enhanced formation of oxygen vacancies and defects on the TiO2 surface. Calcination not only further strengthened those features but also enhanced the crystallinity and anatase/rutile ratio, endowing the TiO2 photoanode with superior PEC capacity. Characterization of physicochemical and PEC properties revealed that photogenerated electrons-holes were rapidly generated and efficiently separated on the TiO2 surface during the PEC process. Hydroxyl radicals were the main active species responsible for anodic oxidation of carbamazepine, while hydrogen radicals and carbon dioxide radical anions mediated CO2 reduction and H2 production in the cathodic process. This work confirms the suitability of the prepared TiO2 photoanode for PEC degradation of organic pollutants coupled with CO2 reduction and H2 production.

13.
Microb Biotechnol ; 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33377615

RESUMO

Diallyl sulfide (DAS) and diallyl disulfide (DADS), two constituents of garlic, can inhibit quorum sensing (QS) systems of Pseudomonas aeruginosa. However, the differences in the mechanism of QS inhibition between DAS and DADS, and the functional chemical groups of these sulfides that contribute in QS inhibition have not been elucidated yet. We assumed that the sulfide group might play a key role in QS inhibition. To prove this hypothesis and to clarify these unsolved problems, in this study, we synthesized diallyl ether (DAE), and compared and investigated the effects of DAS and DAE on the growth and production of virulence factors, including Pseudomonas quinolone signal (PQS), elastase and pyocyanin, of P. aeruginosa PAO1. Transcriptome analysis and qRT-PCR were used to compare and analyse the differentially expressed genes between the different treatment groups (DAS, DAE and control). The results indicated that DAS did not affect the growth dynamics of P. aeruginosa PAO1; however, DAS inhibited transcription of most of the QS system genes, including lasR, rhlI/rhlR and pqsABCDE/pqsR; thus, biosynthesis of the signal molecules C4 -HSL (encoded by rhlI) and PQS (encoded by pqsABCDE) was inhibited. Furthermore, DAS inhibited the transcription of virulence genes regulated by the QS systems, including rhlABC, lasA, lasB, lecA and phzAB, phzDEFG, phzM and phzS that encode for rhamnolipid, exoprotease, elastase, lectin and pyocyanin biosynthesis respectively. DAS also enhanced the expression of the key genes involved in the biosynthesis of three B vitamins: folate, thiamine and riboflavin. In conclusion, DAS suppressed the production of some virulence factors toxic to the host and enhanced the production of some nutrition factors beneficial to the host. These actions of DAS may be due to its thioether group. These findings would be significant for development of an effective drug to control the virulence and pathogenesis of the opportunistic pathogen P. aeruginosa.

14.
PLoS Genet ; 16(11): e1009119, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33186356

RESUMO

Avian eggshell color is an interesting genetic trait. Here, we report that the blue eggshell color of the domestic duck is caused by two cis-regulatory G to A transitions upstream of ABCG2, which encodes an efflux transporter. The juxtaposed blue eggshell allele A-A exhibited higher promoter activity and stronger nuclear protein binding capacity than the white eggshell allele G-G. Transcription factor analysis suggested differential binding capability of CTCF between blue eggshell and white eggshell alleles. Knockdown of CTCF expression significantly decreased the promoter activity of the blue eggshell but not the white eggshell allele. DNA methylation analysis revealed similar high methylation of the region upstream of the CTCF binding sites in both blue-eggshelled and white-eggshelled ducks. However, DNA methylation levels downstream of the binding sites were decreased and 35% lower in blue-eggshelled ducks than in white-eggshelled ducks. Consistent with the in vitro regulatory pattern of causative sites, ABCG2 exhibited higher expression in uteruses of blue-eggshelled ducks and also showed polarized distribution in their endometrial epithelial cells, distributing at the apical surface of endometrial epithelial cells and with orientation toward the uterine cavity, where the eggshell is pigmented. In conclusion, our results suggest that two cis-regulatory SNPs upstream of ABCG2 are the causative mutations for blue eggshells in ducks. The blue eggshell variant up-regulated ABCG2 expression through recruiting CTCF binding, which may function as a barrier element to shield the downstream region from high methylation levels present upstream. ABCG2 was identified as the only candidate causative gene for blue eggshells; it may function as an efflux transporter of biliverdin to the uterine cavity.

15.
Med Hypotheses ; : 110366, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33208242

RESUMO

Alcohol is a well-recognized hepatic carcinogen. Alcohol is metabolized into genotoxic acetaldehyde in hepatocytes, which is catalyzed by aldehyde dehydrogenase 2 (ALDH2). The detailed underlying mechanisms of alcohol-related hepatocellular carcinoma (HCC) remains unclear, at least partially, due to the absence of appropriate experimental models. Current studies suggest that rodents are not good models of the most common liver diseases that trigger HCC including alcoholic liver injury. We hypothesize that ethanol could induce transformation of immortalized normal liver cells, which may serve as a versatile tool for studying alcoholic HCC. Besides, we believe that knockout of ALDH2 will help to shorten the time course of transformation, as ALDH2 deficiency will significantly increase the accumulation of acetaldehyde in hepatocytes. Using this model, the dynamic changes of carcinogenesis-related molecular events could be easily examined. Furthermore, the transformed cells isolated from soft agar could be inoculated to mice for studying invasion, metastasis, and also for screening prophylactics.

16.
Poult Sci ; 99(11): 5461-5471, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142463

RESUMO

Antibiotics are one of the most important medical discoveries of the 20th century and will remain an essential tool for treating animal and human diseases in the 21st century. However, misuse of antibiotics imperils the development of animal husbandry and human health all over the world, and it is important to find reliable alternatives to antibiotics to reduce the use of antibiotics. In this study, 22 potential immunopotentiators were screened on the levels of apoptosis and inflammatory factor in duck embryo fibroblast cells (DEFs). The results indicated that interferon (IFN)-ß and tumor necrosis factor-α gene transcriptions were significantly upregulated, while interleukin (IL)-2 and Bcl2 mRNA levels were significantly decreased during 22 immunopotentiators treatment. Besides, the expression level of IL-1ß mRNA showed significant increase during dihydromyricetin, chlorogenic acid, naringin, imiquimod, thymopentin, ß-D-Glucan, astragalus polysacharin, astragalus saponin I, astragalus flavone, curcumin, CpG-DNA-2, and LPS treatment. And the level of caspase 3 protein was significantly upregulated with treating chlorogenic acid, ß-D-Glucan, astragalus polysacharin, astragalus flavone, curcumin, CpG-DNA-2, chicken IgG, LPS, and poly(I:C). These results indicated that chlorogenic acid, ß-D-Glucan, astragalus flavone, CpG-DNA-2, and chicken IgG have the positive immune regulation effects on duck DEFs. Thus, the 5 immunopotentiators were chosen to further verify their immunomodulatory function in vivo. The results showed that the activity of serum AST was significantly downregulated during all immunopotentiators treatments excepting for ß-D-Glucan, and the activities of serum IL12p40, IL-1ß, IFN-α, and IFN-ß were significantly increased compared with the control group. Five immunopotentiators also induced the duck's pattern recognition receptors and inflammatory factor gene expression. In addition, 5 immunopotentiators could facilitate the contents of serum caspase 3, iNOSm and COX2 and reduce the Bcl2. These results suggested that these 5 immunopotentiators could enhance duck innate immune responses. Taken together, our study not only screened out 5 kinds of duck innate immune immunopotentiators but also initially clarified their underlying mechanism of action, which provide a new insight for the development of efficient approaches to prevent the duck disease from pathogen infections.

17.
Medicine (Baltimore) ; 99(43): e22288, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33120732

RESUMO

INTRODUCTION: Dexmedetomidine and midazolam have become important approaches for the sedation of dental surgery. However, the comparison of these 2 drugs for the sedation of dental surgery has not been well established. We conduct a systematic review and meta-analysis to evaluate the efficacy of dexmedetomidine versus midazolam for dental surgery. METHODS: PubMed, Embase, and the Cochrane Central Register of Controlled Trials are searched. Randomized controlled trials (RCTs) assessing the influence of dexmedetomidine versus midazolam on dental surgery are included. Two investigators independently have searched articles, extracted data, and assessed the quality of included studies. Meta-analysis is performed using the random-effect model. RESULTS: Five RCTs and 420 patients are included in the meta-analysis. Compared with midazolam intervention for dental surgery, dexmedetomidine intervention has similar lowest SpO2, lowest heart rate and lowest systolic blood pressure, duration of surgery, and total volume of local anesthetic, but is associated with stable and reduced lowest diastolic blood pressure. CONCLUSIONS: Similar benefits of dexmedetomidine and midazolam intervention are observed for the sedation of dental surgery in terms of SpO2, heart rate, systolic blood pressure, and the volume of local anesthetic, but dexmedetomidine may result in more stable diastolic blood pressure.


Assuntos
Dexmedetomidina/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Midazolam/uso terapêutico , Procedimentos Cirúrgicos Bucais , Anestésicos Locais/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Diástole/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Duração da Cirurgia , Oxigênio/sangue , Sístole/efeitos dos fármacos
18.
Mol Reprod Dev ; 87(11): 1141-1151, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33084116

RESUMO

We analyzed the transcriptome of pigeon magnum in three stages (C1: pre-ovulation, C2: post-ovulation, C3: 5-6 days after ovulation) to elucidate the molecular and cellular events associated with morphological changes during the laying cycle. We observed that C1 was highly developed, apoptosis rate was highest in C2, and C3 attained the smallest size. Through RNA-sequencing, we obtained 54,764,938 (97.2%) high-quality clean reads that aligned to 20,767 genes. Gene expression profile analysis showed the greatest difference between C1 and C3; 3966 differentially expressed genes (DEGs) were identified, of which 2250 genes were upregulated and 1716 genes were downregulated in C1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that protein processing and transport activities were prominent in C1, and upregulated genes included those related to signal recognition particle (SRP), signal recognition particle receptor (SRPR), translocon, GRP78, RRBP1, TRAP, TRAM1, and OST. Egg white protein-related gene expression was highest, with OVALY being the most highly expressed. In C2, apoptosis-related gene expression was higher than in C1, and fatty acid metabolism was active, which may be correlated with magnum tissue regression. Collagen- and laminin-related gene expression was prominent in C1 and C3, indicating roles in egg white protein generation and magnum reconstruction. PR gene expression was highest and exhibited drastic change in the three groups, indicating that PR and its regulation may be involved in changes in magnum morphology and function. Through the identification and functional analysis of DEGs and other crucial genes, this may contribute to understand the egg white protein production, magnum tissue regression, and magnum regeneration mechanisms.

19.
Technol Cancer Res Treat ; 19: 1533033820956991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33025864

RESUMO

BACKGROUND: We evaluated the diagnostic value of plasma Macrophage inhibitory cytokine-1 (MIC-1) in distinguishing patients with nasopharyngeal carcinoma (NPC) and explored its complementary role with widely used Epstein-Barr virus (EBV) related markers, EBV capsid antigen-specific IgA (VCA-IgA) and EBV copy number. METHODS: ELISA was used to analyze the plasma MIC-1 levels in 190 NPC patients, 72 VCA-IgA-positive healthy donors (VP), and 219 normal subjects with negative VCA-IgA (VN). 10 pairs of plasma samples before and after radiotherapy were also included. RESULTS: The plasma MIC-1 levels were significantly higher in NPC patients (Median: 678.39 ng/mL) than those in VN and VP (310.29 and 294.59, p < 0.001). Receiver operating characteristic (ROC) curves of the MIC-1 concentrations revealed that the area under the ROC curve (AUC) was 0.790 (95% confidence interval [CI]: 0.748-0.832), with a sensitivity of 63.7%, and a specificity of 85.9% respectively, for distinguishing NPC patients from the healthy donors. Similarly, between NPC and VP, ROC was 0.796 (0.738-0.853) with sensitivity of 63.7%, and specificity of 88.9%. In addition, between NPC and VN, ROC was 0.788(0.744-0.832) with sensitivity of 63.7%, and specificity of 84.9%. Further, we found that MIC-1 could complement VCA-IgA and EBV DNA markers, with a negative rate of 88.9% in VCA-IgA-positive healthy controls, and a positive rate of 59.0% in EBV DNA negative NPC patients, respectively. Also, the MIC-1 plasma concentration dropped significantly after radiotherapy (p = 0.027). CONCLUSIONS: MIC-1 can complement VCA-IgA titers and EBV DNA copy number tests in NPC detection, improve identification of EBV DNA-negative NPC patients, and distinguish NPC from VCA -IgA positive healthy controls.

20.
J Immunol ; 205(10): 2926-2935, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046503

RESUMO

Emerging evidence indicates that Myo9b is a cancer metastasis-related protein and functions in a variety of immune-related diseases. However, it is not clear whether and how Myo9b functions in malignant pleural effusion (MPE). In this study, our data showed that Myo9b expression levels correlated with lung cancer pleural metastasis, and nucleated cells in MPE from either patients or mice expressed a lower level of Myo9b than those in the corresponding blood. Myo9b deficiency in cancer cells suppressed MPE development via inhibition of migration. Myo9b deficiency in mice suppressed MPE development by decreasing TH1 cells and increasing TH17 cells. CD4+ naive T cells isolated from Myo9b-/- mouse spleens exhibited less TH1 cell differentiation and more TH17 cell differentiation in vitro. mRNA sequencing of nucleated cells showed that T cell-specific adaptor protein (TSAd) was downregulated in Myo9b-/- mouse MPE, and enrichment of the H3K27me3 mark in the TSAd promoter region was found in the Myo9b-/- group. Naive T cells purified from wild type mouse spleens transfected with TSAd-specific small interfering RNAs (siRNAs) also showed less TH1 cell differentiation and more TH17 cell differentiation than those from the siRNA control group. Furthermore, downregulation of TSAd in mice using cholesterol-conjugated TSAd-specific siRNA suppressed MPE development, decreased TH1 cells, and increased TH17 cells in MPE in vivo. Taken together, Myo9b deficiency suppresses MPE development not only by suppressing pleural cancer metastasis but also by regulating TH1/TH17 cell response via a TSAd-dependent pathway. This work suggests Myo9b and TSAd as novel candidates for future basic and clinical investigations of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...