RESUMO
Peri-urban vegetable field plays an essential role in providing vegetables for local residents. Because of its particularity, it is affected by both industrial and agricultural activities which have led to the accumulations of heavy metal in soil. So far, information on heavy metal pollution status, spatial features, and human health risks in peri-urban vegetable areas across China is still scarce. To fill this gap, we systematically compiled soil and vegetable data collected from 123 articles published between 2010 and 2022 at a national level. The pollution status of heavy metals (i.e., cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn)) in peri-urban vegetable soils and vegetables were investigated. To evaluate the levels of heavy metal pollution in soil and human health risks, the geoaccumulation index (Igeo) and target hazard quotient (HQ) were calculated. The results showed that mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn in peri-urban vegetable soils were 0.50, 0.53, 12.03, 41.97, 55.56, 37.69, 28.55, and 75.38 mg kg-1, respectively. The main pollutants in peri-urban vegetable soil were Cd and Hg, and 85.25% and 92.86% of the soil samples had Igeo > 1, respectively. The mean Igeo values of this regions followed the order of northwest > central > south > north > east > southwest > northeast for Cd and northeast > northwest > north > southwest > east > central > south for Hg. The mean Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn concentrations in vegetables were 0.30, 0.26, 0.37, 0.54, 1.17, 6.17, 1.96, and 18.56 mg kg-1, respectively. Approximately 87.01% (Cd), 71.43% (Hg), 20% (As), 65.15% (Pb), 27.08% (Cr) of the vegetable samples exceeded the safety requirement values. The vegetables grown in central, northwest, and northern China accumulated much more heavy metals than those grown in other regions. As the HQ values for adults, 53.25% (Cd), 71.43% (Hg), 84.00% (As), and 58.33% (Cr) of the sampled vegetables were higher than 1. For children, the HQ values were higher than 1 for 66.23% (Cd), 73.81% (Hg), 86.00% (As), and 87.50% (Cr) of the sampled vegetables. The findings of this study demonstrate that the situation of heavy metal pollution in peri-urban vegetable areas across China are not optimistic and residents who consume the vegetables are at high risk of health issues. To ensure soil quality and human health, strategies should be taken to guide vegetable production and remedy soil pollution in peri-urban areas with the rapidly urbanizing China.
RESUMO
Background: The shaping of an accurate and stable microcatheter plays a vital role in the successful embolization of intracranial aneurysms. Our study aimed to investigate the application and the role of AneuShape™ software in microcatheter shaping for intracranial aneurysm embolization. Methods: From January 2021 to June 2022, 105 patients with single unruptured intracranial aneurysms were retrospectively analyzed with or without AneuShape™ software to assist in microcatheter shaping. The rates of microcatheter accessibility, accurate positioning, and stability for shaping were analyzed. During the operation, fluoroscopy duration, radiation dose, immediate postoperative angiography, and procedure-related complications were evaluated. Results: Compared to the manual group, aneurysm-coiling procedures involving the AneuShape™ software exhibited superior results. The use of the software resulted in a lower rate of reshaping microcatheters (21.82 vs. 44.00%, p = 0.015) and higher rates of accessibility (81.82 vs. 58.00%, p = 0.008), better positioning (85.45 vs. 64.00%, p = 0.011), and higher stability (83.64 vs. 62.00%, p = 0.012). The software group also required more coils for both small (<7 mm) and large (≥7 mm) aneurysms compared to the manual group (3.50 ± 0.19 vs. 2.78 ± 0.11, p = 0.008 and 8.22 ± 0.36 vs. 6.00 ± 1.00, p = 0.081, respectively). In addition, the software group achieved better complete or approximately complete aneurysm obliteration (87.27 vs. 66.00%, p = 0.010) and had a lower procedure-related complication rate (3.60 vs. 12.00%, p = 0.107). Without this software, the operation had a longer intervention duration (34.31 ± 6.51 vs. 23.87 ± 6.98 min, p < 0.001) and a higher radiation dose (750.50 ± 177.81 vs. 563.53 ± 195.46 mGy, p < 0.001). Conclusions: Software-based microcatheter shaping techniques can assist in the precise shaping of microcatheters, reduce operating time and radiation dose, improve embolization density, and facilitate more stable and efficient intracranial aneurysm embolization.
RESUMO
Social isolation is an unpleasant experience associated with an increased risk of mental disorders. Exploring whether these experiences affect behaviors in aged people is particularly important, as the elderly is very likely to suffer from periods of social isolation during their late-life. In this study, we analyzed the depressive-like behaviors, plasma concentrations of homocysteine (Hcy), and brain-derived neurotropic factor (BDNF) levels in aged mice undergoing social isolation. Results showed that depressive-like behavioral performance and decreased BDNF level were correlated with increased Hcy levels that were detected in 2-month isolated mice. Elevated Hcy induced by high methionine diet mimicked the depressive-like behaviors and BDNF downregulation in the same manner as social isolation, while administration of vitamin B complex supplements to reduce Hcy alleviated the depressive-like behaviors and BDNF reduction in socially isolated mice. Altogether, our results indicated that Hcy played a critical role in social isolation-induced depressive-like behaviors and BDNF reduction, suggesting the possibility of Hcy as a potential therapeutic target and vitamin B intake as a potential value in the prevention of stress-induced depression.
RESUMO
OBJECTIVE: Major depressive disorder (MDD) is a debilitating psychiatric disorder which is common and endangers human physical and mental health. Studies have shown that hesperidin could improve the symptoms of depression with unclear mechanisms. METHOD: In this study, hesperidin was administered to chronic unpredictable mild stress (CUMS) depressed mice before behavioral test, network pharmacology analysis, RNA expression microarray analysis, pathway validation and molecular docking experiments. RESULTS: we found that hesperidin intervention could significantly improve the depressive symptoms and downregulate the expression level of pyroptosis pathway including caspase 1 (Casp1), interleukin 18 (IL18), interleukin-1ß (IL-1ß) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). In addition, we found that hesperidin could possibly bind to NLRP3. CONCLUSIONS: Our study demonstrated that hesperidin had huge potential as anti-depressive neuroprotectant, and may play a role in treating MDD by regulating NLRP3-mediated pyroptosis.
RESUMO
MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.
RESUMO
In order to understand the pollution status and trophic transfer of heavy metals across wetland food web organisms, four invertebrate species, six fish species, one snake species, and one bird species were collected from an abandoned e-waste site in South China for analysis of toxic elements (Ni, Zn, Cu, Cr, Cd, and Pb). The concentrations of Ni, Zn, Cu, Cr, Cd, and Pb were 0.16-15.6, 24.9-850, 1.49-645, 0.11-64.6, 0.01-4.53 and 0.41-40.4â¯mg/kg dry weight, respectively. The results demonstrated that the concentrations of six studied heavy metals decreased throughout the whole food web, but Cu and Zn concentrations increased along the bird and reptile food chains, respectively. The trophic transfer of metals for the key species should be of special attention, as the trophic biomagnification factor (TMF) in a food web may overlook the ecological risks of metals for certain species, especially those at high trophic levels. The estimated daily intake (EDI) and the target hazard quotient (THQ) results showed that Cu, Cd, and Pb posed the main risks on human health, especially through the consumption of snail and crab species.
RESUMO
INTRODUCTION: Colorectal cancer (CRC) is associated with a high incidence and mortality rate. Fecal occult blood test (FOBT) is effective in the prevention of CRC. OBJECTIVE: This study aimed to assess knowledge and beliefs regarding FOBT-based screening. METHODS: This study used PubMed, Cochrane Library, MEDLINE Complete, and Web of Science to search for articles. Original full-text studies in English language focusing on knowledge and beliefs of FOBT screening were included. RESULTS: A total of 32 articles were included. This study indicated that the population in most studies had inadequate knowledge and lacked beliefs toward FOBT-based screening. Most of the extracted studies showed that less than half of the participants had heard of FOBT-based screening. Six studies showed that less than 50% of participants had knowledge of FOBT age. Three studies found that less than 40% of participants were aware of the screening interval. Some participants perceived the benefits of FOBT-based screening, while others perceived many barriers to the test. CONCLUSION: Participants' knowledge and belief in FOBT-based screening were insufficient. This review highlights the importance of educational programs to increase knowledge and beliefs regarding FOBT-based screening. It is important to include FOBT-based screening in the health care system to promote the secondary prevention of CRC.
RESUMO
Background: Lymphovascular invasion (LVI) is an invasive biologic behavior that affects the treatment and prognosis of patients with early-stage lung cancer. This study aimed to identify LVI diagnostic and prognostic biomarkers using deep learning-powered 3D segmentation with artificial intelligence (AI) technology. Methods: Between January 2016 and October 2021, we enrolled patients with clinical T1 stage non-small cell lung cancer (NSCLC). We used commercially available AI software (Dr. Wise system, Deep-wise Corporation, China) to extract quantitative AI features of pulmonary nodules automatically. Dimensionality reduction was achieved through least absolute shrinkage and selection operator regression; subsequently, the AI score was calculated.Then, the univariate and multivariate analysis was further performed on the AI score and patient baseline parameters. Results: Among 175 enrolled patients, 22 tested positive for LVI at pathology review. Based on the multivariate logistic regression results, we incorporated the AI score, carcinoembryonic antigen, spiculation, and pleural indentation into the nomogram for predicting LVI. The nomogram showed good discrimination (C-index = 0.915 [95% confidence interval: 0.89-0.94]); moreover, calibration of the nomogram revealed good predictive ability (Brier score = 0.072). Kaplan-Meier analysis revealed that relapse-free survival and overall survival were significantly higher among patients with a low-risk AI score and without LVI than those among patients with a high-risk AI score (p = 0.008 and p = 0.002, respectively) and with LVI (p = 0.013 and p = 0.008, respectively). Conclusions: Our findings indicate that a high-risk AI score is a diagnostic biomarker for LVI in patients with clinical T1 stage NSCLC; accordingly, it can serve as a prognostic biomarker for these patients.
RESUMO
Active matter exhibits many intriguing non-equilibrium characteristics, for instance, without any attractive and aligned interactions, the active Brownian particle (ABP) system undergoing motility-induced phase separation forms a high-density phase with both structural ordering and dynamical coherence. Recently, the velocity correlation among the particles in this high-density phase was found in non-thermal overdamped ABP systems. However, it seemed to disappear if thermal noises were included, bringing some confusion about the generality of the consistency between structures and dynamics in ABPs. Here, we demonstrate that the thermal noises imposing a large random term on the instantaneous velocity of ABPs hinder the observation of the inherent correlation in the motions of ABPs. By averaging the instantaneous velocity (or equivalently, calculating the displacement), we show that the inherent motions of thermal-fluctuated ABPs are highly coherent. Whether there is thermal noise or not, the inherent collective motions of ABPs do exist, and the collective motion domains are consistent spatially with the ordered clusters of ABPs in the high-density phase. At the boundary of these ordered clusters, the active forces of the particles tend to point inward and compress to sustain these clusters, thus the particles in the clusters move coherently to form some vortex-like or aligned velocity domains.
RESUMO
Fatty acids not only form phospholipids that contribute to the formation of cell membranes but also participate in many metabolic activities, such as energy storage and cell signal transduction. The liver plays a key role in the synthesis and metabolism of fatty acids. The composition and contents of fatty acids in the liver are closely related to body health. Most fatty acid-detection methods require a large sample size and can detect only a small number of fatty acids. Therefore, a sensitive and efficient method to determine fatty acids in the liver is urgently required. Herein, a method based on gas chromatography-mass spectrometry (GC-MS) was established for the simultaneous determination of 39 fatty acids in 1.1 mg of liver tissue. Different extraction methods and derivatization conditions were compared to develop an optimal sample-treatment method. The performance of two different columns in separating the target fatty acids were also compared. A total of 10 mg of liver was added to 450 µL of normal saline and ground at -35 â to obtain a homogenate. Next, 50 µL of the homogenate (equivalent to 1.1 mg of liver) was added with 750 µL of chloroform-methanol (1â¶2, v/v) to extract total fatty acids. The fatty acid extracts were dried under nitrogen, and then derivatized at 100 â for 90 min after being added with methanol containing 5% sulfuric acid. The fatty acid methyl esters were extracted with hexane and then separated on an SP-2560 capillary column (100 m×0.25 mm×0.2 µm; Supelco, USA) via GC-MS. The results revealed that all 39 fatty acid methyl esters detected had good linearities in the certain mass concentration ranges with correlation coefficients (R2) greater than 0.9940. The limits of detection (LOD) and quantification (LOQ) of these methyl esters in the liver were 2-272 ng/mg and 7-906 ng/mg, respectively. The accuracy and precision of the method were evaluated by spiking the liver homogenate with tridecylic acid and eicosanoic acid at low (0.09 µg/mg), moderate (0.90 µg/mg), and high (5.40 µg/mg) concentration levels. The recoveries ranged from 82.4% to 101.0% with an intraday relative standard deviations (RSDs) (n=5) of 3.2%-12.0% and interday RSDs (n=3) of 5.4%-13.4%. The method was successfully applied to detect fatty acids in the livers of four healthy male Sprague-Dawley (SD) rats and four male SD rats with abnormal liver function induced by perfluorooctane sulfonate (PFOS). PFOS is a persistent organic pollutant. Twenty-six fatty acids were detected in the livers of both groups. Among the fatty acids investigated, pentadecanoic acid (C15â¶0), γ-linolenic acid (C18â¶3n6), and elaidic acid (C18â¶1n9t) cannot be detected by the methods reported in the literature. By contrast, the method developed in this study could separate the isomers of oleic acid (elaidic acid, C18â¶1n9t; oleic acid, C18â¶1n9c) and linolenic acid (linolelaidic acid, C18â¶2n6t; linoleic acid, C18â¶2n6c). In conclusion, the developed method is simple and can detect a large number of fatty acids using small sample amounts and few reagents. More importantly, it could successfully separate fatty acid isomers. These findings indicate that the developed method is suitable for the detection of fatty acid composition and contents in the liver in clinical and experimental research.
Assuntos
Ácidos Graxos , Metanol , Masculino , Ratos , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanol/análise , Ratos Sprague-Dawley , Ácidos Graxos/análise , Ácido Oleico , Fígado/química , Cromatografia Líquida de Alta PressãoRESUMO
BACKGROUND: Intravenous thrombolysis (IVT) is one of the most important means of therapy for patients with acute ischemic stroke (AIS). After cerebral infarction, the inflammatory response fulfills an essential role in the pathobiology of stroke, affecting the process of recanalization. Hence, we evaluated the usefulness of the systemic inflammatory response index (SIRI) for the prognosis of patients with AIS. METHODS: A total of 161 patients suffering from AIS were retrospectively analyzed. SIRI was introduced and calculated using the absolute neutrophil, monocyte, and lymphocyte numbers from the admission blood work. The study outcomes were determined using a modified Rankin Scale (mRS) at the 3-month timepoint, and a favorable clinical outcome was calculated in the mRS score range of 0 to 2. The analysis of receiver operating characteristic (ROC) curves was performed to determine the values of the optimal cutoff of SIRI for the prediction of clinical outcomes. In addition, multivariate analyses were performed to investigate the association between clinical outcomes and SIRI. RESULTS: The ROC curve analysis revealed that the ideal SIRI cutoff was at 2.54 [area under the curve, 78.85%; 95% CI, 71.70% to 86.00%; sensitivity, 70.89%; and specificity, 84.14%]. Multivariate analysis indicated that SIRI ≤2.54 (odds ratio, 1.557, 95% CI, 1.269 to 1.840; P=0.021) was an independent predictor of favorable clinical outcomes in patients suffering from AIS after treatment with IVT. CONCLUSIONS: We preliminary speculate that SIRI may serve as an independent predictor of clinical outcomes with AIS following IVT.
RESUMO
Microplastics are widely distributed in the marine environment and are harmful to the health of marine organisms (including corals). However, studies on the impact of microplastics on coral have been very limited, and the specific mechanism of their impact is not clear. Therefore, in this study, microplastic PA, which is common in the marine environment, was selected to conduct a 7-day microplastic exposure experiment on Sinularia microclavata. The effects of microplastic exposure at different times on the diversity, community structure, and function of the symbiotic bacterial community of coral were analyzed using high-throughput sequencing technology. The α-diversity of the symbiotic bacterial community of coral first decreased and then increased with the exposure time of microplastics. The analysis of ß-diversity and microbial community composition showed that microplastic exposure caused significant changes in the symbiotic bacterial community of coral, and the bacterial community composition also changed with the exposure time. A total of 49 phyla, 152 classes, 363 orders, 634 families, and 1390 genera were detected. At the phylum level, Proteobacteria was the dominant taxa in all samples, but the relative abundance varied among samples. Microplastic exposure increased the abundance of Proteobacteria, Chloroflexi, Firmicutes, Actinobacteriota, Bacteroidota, and Acidobacteriota. At the genus level, Ralstonia, Acinetobacter, and Delftia were the dominant taxa of symbiotic bacteria of coral after microplastic exposure. PICRUSt functional prediction indicated that functions of the coral symbiotic bacterial community, including signal transduction, cellular community prokaryotes, xenobiotics biodegradation and metabolism, and cell motility, decreased after microplastic exposure on coral. BugBase phenotype predictions indicated that microplastic exposure altered three phenotypes (pathogenic, anaerobic, and oxidative stress-tolerant) of the coral symbiotic bacterial community. FAPROTAX functional predictions indicated that microplastic exposure caused significant changes in functions such as the symbiotic relationship between coral symbiotic bacteria and the host, carbon and nitrogen cycling, and photosynthesis. This study provided basic data on the mechanism of microplastic impacts on corals and microplastics ecotoxicology.
Assuntos
Antozoários , Microbiota , Animais , Microplásticos/análise , Plásticos , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias , ProteobactériasRESUMO
In the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from Fusarium solani DO7 only in the presence of ß-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in F. solani DO7 was further confirmed as 1,4-α-glucosidase. Meanwhile, based on the debate on the antibacterial mechanism of AgNPs, this study elucidated in further depth that antibacterial action of AgNPs was achieved by absorbing to the cell membrane and destabilizing the membrane, leading to cell death. Moreover, AgNPs could accelerate the catalytic reaction of 4-nitroaniline, and 86.9% of 4-nitroaniline was converted to p-phenylene diamine in only 20 min by AgNPs of controllable size and morphology. Our study highlights a simple, green, and cost-effective process for biosynthesizing AgNPs with uniform sizes and excellent antibacterial activity and catalytic reduction of 4-nitroaniline.
Assuntos
Fusarium , Nanopartículas Metálicas , Prata/metabolismo , alfa-Glucosidases , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Fusarium/metabolismoRESUMO
GLI1-altered mesenchymal tumor is an emerging entity with distinctive clinicopathologic features. It shows a distinctive monomorphic round to epithelioid morphology, nested to trabecular pattern of growth, and S100+/SOX10-/SMA-immunophenotype. We report an example of this entity arising in the duodenum. A 31-year-old man presented with anemia for 1 year, a mass in the duodenal bulb was found for 9 days. Histopathologic examination revealed the tumor with distinct multilobulated architecture, a monomorphic appearance of round to epithelioid cells arranged in papillary structures, nests, cords, solid, reticular patterns, and hyalinized stroma surrounding a rich capillary network. The neoplastic cells had amphophilic to light eosinophilic or clear cytoplasm, uniform round nuclei with fine chromatin and inconspicuous nucleoli. Immunohistochemical analysis revealed strong positivity for vimentin, S100, CD56, CyclinD1, and negativity for SOX10, SMA, melan-A, HMB-45, synaptophysin, and a variety of other markers. Based on the morphology and immunophenotype, molecular studies were performed, which revealed the presence of an ACTB::GLI1 fusion transcript, confirming the diagnosis of GLI1-altered mesenchymal tumor.
RESUMO
The hydrochemical characteristics were analyzed by mathematical statistics, the hydrochemical types were analyzed by Piper three line diagram, and the sources and influencing factors of main ions in surface water were discussed by Gibbs diagram and ion correlation analysis. The results show that the TDS of surface water in the study area is 109-559 mg·L-1, and the average value is 318.67 mg·L-1; The pH value is 6.81-8.62, and the average value is 7.85. Most of them belong to weakly alkaline water. The surface water cation is mainly Ca2+ and Mg2+, the anion is mainly HCO3- and the hydrochemical type is HCO3-Ca. Through the correlation analysis of the main ions, it can be seen that TDS has a significant positive correlation with Na+, K+, Mg2+, Ca2+ and HCO3-, and these ions contribute to TDS. HCO3- has a significant correlation with Na+, K+ and Mg2+ and comes from carbonate rocks. According to the analysis of water-rock model, the hydrochemical genesis of surface water in the study area is mainly controlled by rock weathering, most ions are weathered and dissolved by carbonate rock and evaporated salt rock and a few cations are affected by water ion exchange.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , China , Qualidade da Água , Água/análise , Poluentes Químicos da Água/análise , Cátions/análiseRESUMO
The important identity attribute of self-information presents unique cognitive processing advantages in psychological experiments and has become a research hotspot in psychology and brain science. The unique processing mode of own information has been widely verified in visual and auditory experiments, which is a unique neural processing method for own name, face, voice and other information. In the study of individual behavior, the behavioral uniqueness of self-information is reflected in the faster response of the human brain to self-information, the higher attention to self-information, and the stronger memory level of self-reference. Brain imaging studies have also presented the uniqueness of self-cognition in the brain. EEG studies have shown that self-information induces significant P300 components. fMRI and PET results show that the differences in self and non-self working patterns were located in the frontal and parietal lobes. In addition, this paper combines the self-uniqueness theory and brain-print recognition technology to explore the application of self-information in experimental design, channel combination strategy and identity feature selection of brainprints.
RESUMO
Thermal radiation modulation facilitated by phase change materials (PCMs) needs a large thermal radiation contrast in broadband as well as in a non-volatile phase transition, which are only partially satisfied by conventional PCMs. In contrast, the emerging plasmonic PCM In3SbTe2 (IST) that undergoes a non-volatile dielectric-to-metal phase transition during crystallization offers a fitting solution. Here, we have prepared IST-based hyperbolic thermal metasurfaces and demonstrated their capabilities to modulate thermal radiation. By laser-printing crystalline IST gratings with different fill factors on amorphous IST films, we have achieved multilevel, large-range, and polarization-dependent control of the emissivity modulation (0.07 for the crystalline phase and 0.73 for the amorphous phase) over a broad bandwidth (8-14 µm). With the convenient direct laser writing technique that supports large-scale surface patterning, we have also demonstrated promising applications of thermal anti-counterfeiting with hyperbolic thermal metasurfaces.
RESUMO
Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis (LCH) that results in multiorgan disease involving the skin, bones, lungs, and kidneys. Female reproductive system manifestation of ECD was rare. Herein, we report a case of ECD involving the left ovary and fallopian tube. A 69-year-old woman presented with abdominal pain for 20 days. Magnetic resonance imaging revealed a solid and cystic mass on the left pelvic cavity. Histological examination revealed ovarian and fallopian tube infiltration by abundant histiocytes, with single small nuclei and foamy cytoplasm, reactive small lymphocytes, and plasma cells. Based on histopathological and immunohistochemical findings of positivity for CD68, CD163, and BRAF V600E and negativity for CD1α and S100, the molecular finding of BRAF V600E mutation, the patient was diagnosed with ECD. Positron emission tomography examination did not reveal any other lesions. The patient recovered well 12 months after surgery without any treatment. ECD involving the left fallopian tube and ovary was rare and needed to be differentiated from LCH, Rosai-Dorfman disease (RDD), juvenile xanthogranuloma (JXG), IgG4+-related disease (IgG4+RD), and metastatic signet ring cell carcinoma.
RESUMO
BACKGROUND: Maintenance hemodialysis (MHD) patients often suffer from sarcopenia, which is strongly associated with their long-term mortality. The diagnosis and treatment of sarcopenia, especially possible sarcopenia for MHD patients are of great importance. This study aims to use machine learning and medical data to develop two simple sarcopenia identification assistant tools for MHD patients and focuses on sex specificity. METHODS: Data were retrospectively collected from patients undergoing MHD and included patients' basic information, body measurement results and laboratory findings. The 2019 consensus update by Asian working group for sarcopenia was used to assess whether a MHD patient had sarcopenia. Finally, 140 male (58 with possible sarcopenia or sarcopenia) and 102 female (65 with possible sarcopenia or sarcopenia) patients' data were collected. Participants were divided into sarcopenia and control groups for each sex to develop binary classifiers. After statistical analysis and feature selection, stratified shuffle split and Synthetic Minority Oversampling Technique were conducted and voting classifiers were developed. RESULTS: After eliminating handgrip strength, 6-m walk, and skeletal muscle index, the best three features for sarcopenia identification of male patients are age, fasting blood glucose, and parathyroid hormone. Meanwhile, age, arm without vascular access, total bilirubin, and post-dialysis creatinine are the best four features for females. After abandoning models with overfitting or bad performance, voting classifiers achieved good sarcopenia classification performance for both sexes (For males: sensitivity: 77.50% ± 11.21%, specificity: 83.13% ± 9.70%, F1 score: 77.32% ± 5.36%, the area under the receiver operating characteristic curves (AUC): 87.40% ± 4.41%. For females: sensitivity: 76.15% ± 13.95%, specificity: 71.25% ± 15.86%, F1 score: 78.04% ± 8.85%, AUC: 77.69% ± 7.92%). CONCLUSIONS: Two simple sex-specific sarcopenia identification tools for MHD patients were developed. They performed well on the case finding of sarcopenia, especially possible sarcopenia.