Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Food Chem ; 409: 135280, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36587512

RESUMO

Abundant diet components are unexplored as vital factors in intestinal homeostasis. Dietary irritants stimulate the nervous system and provoke somatosensory responses, further inducing diarrhea, gut microbiota disorder, intestinal barrier damage or even severe gastrointestinal disease. We depicted the effects of food with piquancy, high fat, low pH, high-refined carbohydrates, and indigestible texture. The mechanism of dietary irritants on intestinal homeostasis were comprehensively summarized. Somatosensory responses to dietary irritants are palpable and have specific chemical and neural mechanisms. In contrast, even low-dose exposure to dietary irritants can involve multiple intestinal barriers. Their mechanisms in intestinal homeostasis are often overlapping and dose-dependent. Therefore, treating symptoms caused by dietary irritants requires personalized nutritional advice. The reprocessing of stimulant foods, additional supplementation with probiotics or prebiotics, and enhancement of the intestinal barrier are effective intervention strategies. This review provides promising preliminary guidelines for the treatment of symptoms and gastrointestinal injury caused by dietary irritants.


Assuntos
Irritantes , Probióticos , Intestinos , Prebióticos , Dieta , Probióticos/farmacologia , Homeostase
2.
Food Funct ; 14(1): 181-194, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477762

RESUMO

Probiotics have been evaluated as alternative approaches for preventing the relapse of Crohn's disease (CD). Previously, we observed strain-specific anti-inflammatory properties of Bifidobacterium bifidum in 2,4,6-trinitrobenzene sulfonic acid (TNBS) acute colitis models. In this study, we further assessed the effects of several B. bifidum strains on colonic damage, fibrosis, inflammatory factors, intestinal microbial and metabolic profiles, and peripheral regulatory T cells (Tregs) in the context of TNBS chronic colitis in mice. These results indicated that B. bifidum FJSWX19M5, but not FXJWS17M4, ameliorated body weight loss, reduced colonic shortening and injury, decreased markers of gut inflammation, and rebalanced colonic metabolism in TNBS-treated mice. FJSWX19M5 supplementation also promoted Treg cell differentiation and intestinal barrier restoration compared to other strains. All living B. bifidum strains (FJSWX19M5, FXJWS17M4 and FHENJZ3M6) seemed to restore the disruption of the gut microbiota caused by TNBS. The co-culture of B. bifidum strains and mesenteric lymph node cells from TNBS-treated mice showed that those strains with anti-colitis could induce higher IL-10 levels and a lower ratio of IL-22/IL-10 and IL-17/IL-10 when compared to those strains that were not protective. Furthermore, heat-killed FJSWX19M5 exhibited a relief effect on colitis-related symptoms (including body weight loss, colonic shortening and injury). These data imply that specific B. bifidum strains or their lysates may be the current therapeutic alternatives for CD.


Assuntos
Bifidobacterium bifidum , Colite , Doença de Crohn , Animais , Camundongos , Linfócitos T Reguladores , Interleucina-10/genética , Interleucina-10/metabolismo , Bifidobacterium bifidum/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Citocinas/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Redução de Peso , Modelos Animais de Doenças
3.
Food Funct ; 14(1): 388-398, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511852

RESUMO

This study describes the influence of Lactobacillus plantarum CCFM8610 on the host by employing transcriptome and untargeted metabolomics. According to the enrichment analysis, three pathways, including the complement and coagulation cascade pathway, antigen processing and presentation pathways, and protein processing in the endoplasmic reticulum pathway, were affected by L. plantarum CCFM8610 colonization. According to partial least squares-discriminant analysis, five metabolites, L-methionine, D-tryptophan, indoleacrylic acid, DL-acetylcarnitine, and L-norleucine, were identified as key metabolites in the serum. Furthermore, integrative analysis of the metabolome and transcriptome revealed connections between enriched pathways and differential metabolites, and the regulation strategy of choline by affecting gene expression was proposed. Overall, the effects of L. plantarum CCFM8610 on host health were investigated after excluding the influence of gut microbes, which provides a valuable reference for studying the potential mechanisms of the effect of probiotics on host health.


Assuntos
Lactobacillus plantarum , Probióticos , Animais , Camundongos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Transcriptoma , Probióticos/farmacologia , Metaboloma , Metabolômica
4.
Food Chem ; 406: 135010, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36463601

RESUMO

Levels of its utilization suggest that the host glycosaminoglycan heparin is an important carbohydrate in the human gut microbiota. However, the interaction between heparin and the gut microbiota is not well understood. In this study, an in vitro fermentation system combined with microbiome and metabolome technologies was used to study the interaction between heparin and the gut microbiota. Interestingly, we found that heparin can be used by the gut microbiota, which produce large amounts of short chain fatty acids leading to a decrease in pH. In addition, the addition of heparin increased the relative abundance of Bacteroides and Bifidobacterium and decreased the relative abundance of Escherichia-Shigella. Correlation analysis of the microbiome and metabolome revealed that the catabolism of heparin was accompanied by the biosynthesis of bile acids and tryptophan metabolism. Overall, this study provides new evidence on the role of heparin as a stable carbon source for the gut microbiota and forms a strong basis for the use of heparin to condition the gut microbiota.

5.
Foods ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553765

RESUMO

Popular edible mushrooms Ganoderma lucidum and Gloeostereum incarnatum can improve physical health as a prebiotic and positively alter intestinal microbiota. Our research investigated the prebiotic effects of Ganoderma lucidum and Gloeostereum incarnatum on colon inflammation through G. lucidum water extraction polysaccharides (GLP), G. incarnatum water extraction polysaccharides (GIP), G. lucidum ethanol extraction (GLE), and G. incarnatum ethanol extraction (GIE) administered in mice after 7 days of dextran sulphate sodium (DSS) administration. Among the extracts, GLE showed reduced mortality rates, prevention of weight loss, mitigated colon length shortening, and decreased disease activity indices and histological scores. COX-2, MPO, and iNOS activities and the inflammatory cytokines' expressions were determined to demonstrate the inhibition inflammation by GLE. Meanwhile, GLE upregulated the levels of MUC2, ZO-1, claudin-3, and occluding to protect the intestinal barrier. Furthermore, GLE modulated the composition of gut microbiota disturbed by DSS, as it decreased the abundance of Bacteroides, Staphylococcus, and Escherichia_Shigella, and increased Turicibacter and Bifidobacterium. Through cell experiment, GLE had a positive influence on adherens junction, tight junction, and TRAF6/MyD88/NF-κB signaling pathways. In conclusion, GLE supplementation promotes DSS-induced colitis recovery by regulating inflammatory cytokines, preserving the intestinal mucosal barrier, positively modulating microbiota changes, and positively influences immune response in TRAF6/MyD88/NF-κB signaling pathways.

6.
Microorganisms ; 10(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36557570

RESUMO

Polyethylene glycol (PEG) is one of the most commonly used bowel cleansing methods. Although the safety of PEG for bowel cleansing has been proven, its impact on intestinal microbiota has not been clearly explained, especially in terms of the dynamic changes in intestinal microbiota after PEG bowel cleansing, and there are no consistent results. In this study, stool samples were collected from 12 participants at six time points before and after bowel cleansing. We obtained data on the microbiota of these samples using 16S rRNA gene sequencing and analysis. The data revealed that the structure and composition of the microbiota changed greatly approximately 7 d after intestinal cleansing. The analysis of the dynamic changes in the microbiota showed that the change was most significant at day 3, but the internal structure of the microbiota was similar to that before bowel cleansing. A comparison of the most significantly changed microbiota at different time points before and after bowel cleansing revealed four bacteria: Bacteroides, Roseburia, Eubacterium, and Bifidobacterium. We also established a humanized mouse model to simulate human bowel cleansing using PEG. The results showed that the mouse model achieved similar effects to human bowel cleansing, but its recovery speed was one stage earlier than that of humans. These findings suggest that the intestinal microbiota after bowel cleansing initially underwent a short-term change and then actively returned to its initial status. The results on key bacteria and establishment of mouse models can provide a reference for subsequent research on bowel cleansing.

7.
Microorganisms ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36557624

RESUMO

Under bile salt treatment, strains display significant differences in their tolerance ability, suggesting the existence of diverse resistance mechanisms in Lactobacillus; however, the genes involved in this protective process are not fully understood. In this study, novel target genes associated with bile salt tolerance in Lactobacillus were identified using comparative genomics for PCR detection and the rapid screening of tolerant strains. The bile salt tolerance of 107 lactobacilli isolated from different origins was assessed, and 26 strains with comparatively large differences were selected for further comparative genomic analysis. Tolerant strains had 112 specific genes that were enriched in the phosphotransferase system, the two-component system, carbohydrate metabolism, and the ATP-binding cassette transporter. Six genes from Lactobacillus were cloned into the inducible lactobacillal expression vector pSIP403. Overexpression in the host strain increased its tolerance ability by 11.86-18.08%. The novel genes identified here can be used as targets to design primers for the rapid screening of bile salt-tolerant lactobacilli. Altogether, these results deepen our understanding of bile salt tolerance mechanisms in Lactobacillus and provide a basis for further rapid assessments of tolerant strains.

8.
Crit Rev Food Sci Nutr ; : 1-25, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537331

RESUMO

The gut microbiota influences many aspects of the host, including immune system maturation, nutrient absorption and metabolism, and protection from pathogens. Increasing evidences from cohort and animal studies indicate that changes in the gut microbiota early in life increases the risk of developing specific diseases early and later in life. Therefore, it is becoming increasingly important to identify specific disease prevention or therapeutic solutions targeting the gut microbiota, especially during infancy, which is the window of the human gut microbiota establishment process. In this review, we provide an overview of current knowledge concerning the relationship between disturbances in the gut microbiota early in life and health consequences later in life (e.g., necrotizing enterocolitis, celiac disease, asthma, allergies, autism spectrum disorders, overweight/obesity, diabetes and growth retardation), with a focus on changes in the gut microbiota prior to disease onset. In addition, we summarize and discuss potential microbiota-based interventions early in life (e.g., diet adjustments, probiotics, prebiotics, fecal microbiota transplantation, environmental changes) to promote health or prevent the development of specific diseases. This knowledge should aid the understanding of early life microbiology and inform the development of prediction and prevention measures for short- and long-term health disorders based on the gut microbiota.

9.
J Genet Genomics ; 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36356718

RESUMO

The immune regulatory effects of probiotics have been widely recognized to be strain-specific. However it is unknown if there is a species- or genus-dependent manner. In this study, we use an in vitro mesenteric lymph node (MLN) model to systematically evaluate the immunostimulatory effects of gut-derived potential probiotics. The results exhibite an obvious species or genus consensus immune response pattern. RNA-seq shows that T cell-dependent B cell activation and antibody responses may be inherent to this model. Of the five tested genera, Akkermansia spp. and Clostridium butyrium directly activate the immune response in vitro, as indicated by the secretion of interleukin-10. Bifidobacterium spp. and Bacteroides spp. activate immune response with the help of stimuli (anti-CD3 and anti-CD28 antibodies). Lactobacillus spp. blunt the immune response with or without stimuli. Further investigations show that the cell surface protein of A. muciniphila AH39, which may serve as a T cell receptor cognate antigen, might evoke an in vitro immune activation. In vivo, oral administration of A. muciniphila AH39 influences the proportion of T regulatory cells (Tregs) in MLNs and the spleen under homeostasis in both specific pathogen-free and germ-free mice. All these findings indicate the distinct effects of different genera or species of potential gut-derived probiotics on intestinal and systemic immunity.

10.
Food Funct ; 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36411976

RESUMO

In 2013, Limosilactobacillus fermentum was regarded as a "generally recognized as safe" organism by the US Food and Drug Administration, and emerging evidence showed that it can exert beneficial health effects on humans. In this study, five L. fermentum strains from different phylogroups of a phylogenetic tree containing 224 L. fermentum strains were chosen, and their protective effects against loperamide-induced constipation in mice were studied. Animal experiments showed that L. fermentum YN54 significantly alleviated weight loss, increased fecal moisture, accelerated intestinal peristalsis, and increased the small intestinal transit rate in mice with constipation by regulating gastrointestinal peptides and increasing the amount of intestinal short-chain fatty acids. However, the other four L. fermentum strains (XJ61, CECT5716, WX115, and GD121) did not relieve constipation in mice treated with loperamide. A comparative genomic analysis of these strains was conducted and "L. fermentum YN54 only" genes were functionally annotated and validated with the other three L. fermentum strains (FJ12, GX51, and ZH1010) that had different functional genes. Finally, the genes involved in the synthesis of fatty acid hydrase, polysaccharides, and cell membranes were identified to be associated with the probiotic effect of L. fermentum on mice with constipation through preliminary experiments in this study.

11.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364939

RESUMO

There is mounting evidence that the microbiota-gut-brain axis (MGBA) is critical in the pathogenesis and progression of Parkinson's disease (PD), suggesting that probiotic therapy restoring gut microecology may slow down disease progression. In this study, we examined the disease-alleviating effects of Bifidobacterium breve CCFM1067, orally administered for 5 weeks in a PD mouse model. Our study shows that supplementation with the probiotic B. breve CCFM1067 protected dopaminergic neurons and suppressed glial cell hyperactivation and neuroinflammation in PD mice. In addition, the antioxidant capacity of the central nervous system was enhanced and oxidative stress was alleviated. Moreover, B. breve CCFM1067 protected the blood-brain and intestinal barriers from damage in the MPTP-induced mouse model. The results of fecal microbiota analysis showed that B. breve CCFM1067 intervention could act on the MPTP-induced microecological imbalance in the intestinal microbiota, suppressing the number of pathogenic bacteria (Escherichia-Shigella) while increasing the number of beneficial bacteria (Bifidobacterium and Akkermansia) in PD mice. In addition, the increase in short chain fatty acids (acetic and butyric acids) may explain the anti-inflammatory action of B. breve CCFM1067 in the gut or brain of the MPTP-induced PD mouse model. In conclusion, we demonstrated that the probiotic B. breve CCFM1067, which can prevent or treat PD by modulating the gut-brain axis, can be utilized as a possible new oral supplement for PD therapy.


Assuntos
Bifidobacterium breve , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Bifidobacterium , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
Microbiol Spectr ; : e0165122, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321893

RESUMO

Probiotics can effectively improve ulcerative colitis (UC), but the mechanism is still unclear. Here, shotgun metagenome and transcriptome analyses were performed to explore the therapeutic effect and the mechanism of the probiotic Lactobacillus plantarum HNU082 (Lp082) on UC. The results showed that Lp082 treatment significantly ameliorated dextran sulfate sodium (DSS)-induced UC in mice, which was manifested as increases in body weight, water intake, food intake, and colon length and decreases in disease activity index (DAI), immune organ index, inflammatory factors, and histopathological scores after Lp082 intake. An in-depth study discovered that Lp082 could improve the intestinal mucosal barrier and relieve inflammation by cooptimizing the biological barrier, chemical barrier, mechanical barrier, and immune barrier. Specifically, Lp082 rebuilt the biological barrier by regulating the intestinal microbiome and increasing the production of short-chain fatty acids (SCFAs). Lp082 improved the chemical barrier by reducing intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM) and increasing goblet cells and mucin2. Lp082 ameliorated the mechanical barrier by increasing zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), and occludin while decreasing claudin-1 and claudin-2. Lp082 optimized the immune barrier by reducing the content of interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), myeloperoxidase (MPO), and interferon-γ (IFN-γ) and increasing IL-10, transforming growth factor-ß1 (TGF-ß1), and TGF-ß2, inhibiting the NF-κB signaling pathway. Taken together, probiotic Lp082 can play a protective role in a DSS-induced colitis mouse model by protecting the intestinal mucosal barrier, attenuating the inflammatory response, and regulating microbial imbalance. This study provides support for the development of probiotic-based microbial products as an alternative treatment strategy for UC. IMPORTANCE Many studies have focused on the therapeutic effect of probiotics on ulcerative colitis (UC), but few studies have paid attention to the mechanism of probiotics, especially the therapeutic effect. This study suggests that Lp082 has a therapeutic effect on colitis in mice. Its mechanisms of action include protecting the mucosal barrier and actively modulating the gut microbiome, modulating inflammatory pathways, and reducing neutrophil infiltration. Our study enriches the mechanism and provides a new prospect for probiotics in the treatment of colitis, helps to deepen the understanding of the intestinal mucosal barrier, and provides guidance for the future probiotic treatment of human colitis.

13.
Foods ; 11(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230211

RESUMO

Limosilactobacillus fermentum is ubiquitous in traditional fermented vegetables, meat products, and the human gut. It is regarded as a "generally recognized as safe" organism by the US Food and Drug Administration. So far, the genetic features and evolutionary strategies of L. fermentum from the human gut and food remain unknown. In this study, comparative genomic analysis of 224 L. fermentum strains isolated from food and human gut (164 L. fermentum strains isolated from human gut was sequenced in our lab) was performed to access genetic diversity and explore genomic features associated with environment. A total of 20,505 gene families were contained by 224 L. fermentum strains and these strains separated mainly into six clades in phylogenetic tree connected with their origin. Food source L. fermentum strains carried more carbohydrate active enzyme genes (belonging to glycosyltransferase family 2, glycoside hydrolase family 43_11, and glycoside hydrolase family 68) compared with that of human gut and L. fermentum derived from food showed higher ability to degrade xylulose and ribose. Moreover, the number of genes encoding otr(A), tetA(46), lmrB, poxtA, and efrB were more abundant in food source L. fermentum, which was consistent with the number of CRISPR spacers and prophages in L. fermentum of food source. This study provides new insight into the adaption of L. fermentum to the food and intestinal tract of humans, suggesting that the genomic evolution of L. fermentum was to some extent driven by environmental stress.

15.
Nutrients ; 14(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296914

RESUMO

Vitamin D (VD), a fat-soluble vitamin, has a variety of functions that are important for growth and development, including regulation of cell differentiation and apoptosis, immune system development, and brain development. As such, VD status during pregnancy is critical for maternal health, fetal skeletal growth, and optimal pregnancy outcomes. Studies have confirmed that adverse pregnancy outcomes, such as preeclampsia, low birth weight, neonatal hypocalcemia, poor postnatal growth, skeletal fragility, and increased incidence of autoimmune diseases, can be associated with low VD levels during pregnancy and infancy. Thus, there is growing interest in the role of VD during pregnancy. This review summarizes the potential adverse health outcomes of maternal VD status during pregnancy for both mother and offspring (gestational diabetes mellitus, hypertensive gestational hypertension, intrauterine growth restriction, miscarriage, stillbirth, and preterm birth) and discusses the underlying mechanisms (regulation of cytokine pathways, immune system processing, internal secretion, placental function, etc.) of VD in regulating each of the outcomes. This review aims to provide a basis for public health intervention strategies to reduce the incidence of adverse pregnancies.


Assuntos
Complicações na Gravidez , Nascimento Prematuro , Deficiência de Vitamina D , Recém-Nascido , Feminino , Gravidez , Humanos , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Complicações na Gravidez/epidemiologia , Nascimento Prematuro/epidemiologia , Placenta , Vitaminas , Resultado da Gravidez/epidemiologia , Citocinas
16.
Can J Infect Dis Med Microbiol ; 2022: 6432750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193094

RESUMO

Background: The beneficial effects of probiotic supplementation standard antibiotic therapies for Helicobacter pylori infection have been verified, but the ability of probiotic monotherapy to eradicate H. pylori remains unclear. Aim: To evaluate the accuracy and efficacy of specific Lactobacillus strains against H. pylori infection. Methods: Seventy-eight patients with H. pylori infection were treated with strain L. crispatus G14-5M (L. crispatus CCFM1118) or L. helveticus M2-09-R02-S146 (L. helveticus CCFM1121) or L. plantarum CCFM8610 at a dose of 2 g twice daily for one month. 14C-urea breath test, the gastrointestinal symptom rating scale, serum pepsinogen concentrations, and serum cytokine concentrations of patients were measured at baseline and end-of-trial to analyze the effect of the Lactobacillus strains in eradicating H. pylori infection and reducing gastrointestinal discomfort in patients. In addition, the composition and abundance of the intestinal microbiota of patients were also measured at end-of-trial. Results: The 14C-urea breath test value of the three Lactobacillus treatment groups had decreased significantly, and the eradication rate of H. pylori had increased by the end of the trial. In particular, the eradication rate in the G14-5M treatment group was significantly higher than the placebo group (70.59% vs. 15.38%, P=0.0039), indicating that one-month administration of the G14-5M regimen was sufficient to eradicate H. pylori infection. The ingestion of Lactobacillus strains also ameliorated the gastrointestinal symptom rating scale scores, and the serum interleukin-8 concentrations of H. pylori-infected patients appeared to modulate the gut microbiota of patients. However, none of the Lactobacillus strains had a significant effect on general blood physiological characteristics, serum tumor necrosis factor α concentrations, or serum pepsinogen concentrations in the patients. Conclusion: Three Lactobacillus strains significantly alleviate the gastrointestinal discomfort and the gastric inflammatory response of H. pylori-infected patients. The activity of probiotics in eradicating H. pyloriinfection may be species/strain specific.

17.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168909

RESUMO

The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, peanut butter, and various dry-based foods). Future efforts mainly include the effect of novel encapsulation materials on probiotics in the gut, encapsulation strategy oriented by microbial enthusiasm and precise encapsulation, development of novel techniques that consider both cost and efficiency, and co-encapsulation of multiple strains. In conclusion, encapsulation provides a strong impetus for the food application of probiotics.

18.
J Transl Med ; 20(1): 387, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059002

RESUMO

BACKGROUND: The association between oral dysbiosis and chronic kidney disease (CKD) has gained increasing attention in recent years. Diabetes and hypertension are the most common conditions in CKD. However, a case-control study with matched confounding variables on the salivary microbiome in CKD and the influence of diabetes and hypertension on the microbiome has never been reported. METHODS: In our study, we compared the salivary microbiome profile between patients with CKD and healthy controls (HC) using 16S ribosomal DNA sequencing and examine its association with diabetes, hypertension, and immunity. RESULTS: We observed that the bacterial community was skewed in the saliva of CKD, with increased Lautropia and Pseudomonas, and decreased Actinomyces, Prevotella, Prevotella 7, and Trichococcus. No difference in the bacterial community between the CKD patients complicated with and without diabetes, and between those with and without hypertension. Prevotella 7 declined in CKD patients with/without hypertension with respect to HC, while Pseudomonas increased in CKD patients with/without hypertension. Pseudomonas was negatively associated with immunoglobin G in CKD patients. Both CKD patients with positive and negative antistreptolysin O had declined Prevotella 7 and Trichococcus compared to HC, whereas increased Pseudomonas. CONCLUSIONS: Our study identifies a distinct bacterial saliva microbiome in CKD patients characterized by alteration in composition. We unravel here that the co-occurrence diseases of diabetes and hypertension are not associated with specific bacterial alterations, suggesting that bacterial dysbiosis in saliva plays a role in renal damage regardless of the occurrence of diabetes and hypertension.


Assuntos
Diabetes Mellitus , Hipertensão , Microbiota , Insuficiência Renal Crônica , Bactérias , Estudos de Casos e Controles , Disbiose/complicações , Disbiose/microbiologia , Humanos , Hipertensão/complicações , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/complicações , Saliva
19.
Int J Biol Macromol ; 222(Pt A): 1343-1352, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126811

RESUMO

The intestinal barrier is integral to the host's defense, and disrupting its integrity contributes to gut and systemic diseases. Lactobacillus plantarum has been widely reported to exhibit a protective effect on the gut barrier. However, the strain-specific mechanism of this bacterium's function remains unclear. This study characterized the regulative effects of 55 L. plantarum strains on the intestinal barrier using TNF-α-induced Caco-2 cells and a dextran sulfate sodium-induced colitis animal model and found that the regulative effect is strain-specific. Comparative genomic analysis suggested that the ability of L. plantarum to regulate the intestinal barrier is exerted in part by genes encoding proteins associated with polysaccharide synthesis. This observation was verified using surface protein/capsular polysaccharides separation experiments. Structural analysis of capsular polysaccharides showed that molecular weight and mole ratios of monosaccharide compositions may play important roles in strain-specific protective effects on the gut barrier. This study identified different effects of L. plantarum strains on intestinal barrier dysfunction and proved that this regulative ability relies on the characteristic of the capsular polysaccharides of the strains. Thus, our data provided genetic targets and molecular for screening L. plantarum strains with the ability to protect the gut barrier, and suggested the capsular polysaccharides of L. plantarum may be explored as a potential functional food component against intestinal barrier dysfunction.


Assuntos
Colite , Lactobacillus plantarum , Probióticos , Humanos , Animais , Lactobacillus plantarum/genética , Células CACO-2 , Probióticos/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Mucosa Intestinal/metabolismo
20.
Food Res Int ; 160: 111398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076366

RESUMO

The effects of Bacillus coagulans GBI-30, 6086 (BC30) as supplementation on yogurt fermentation and storage were investigated in this study. Over 14 d of storage at 4 °C, we monitored changes in multiple parameters, including pH, titratable acidity, bacterial level, texture profiles, volatile flavor compounds, and sensory quality. BC30 supplementation improved fermented milk acidification and proteolysis. The bacterial level was significantly higher at the fermentation termination (5.59 log CFU/mL) than the fermentation initiation (6.86 log CFU/mL) (P < 0.05), indicating that BC30 own the potential to serve as an adjunct start culture. During the storage period, a high bacterial level of BC30 was detected. With prolonged storage, the yogurt samples supplemented with BC30 showed a decrease in firmness and an increase in viscosity. Furthermore, 12 discriminatory volatiles of BC30 fermented yogurt were detected during storage. Notably, the contents of some important diketones (2,3-butanedione and 3-hydroxy-2-butanone) increased continuously during storage, peaking at 14 d. The BC30-supplemented fermented milk had similar human sensory scores to the control group. Comparative genomic analysis between BC30 and B. coagulans-70 indicated that both these two strains showed the potentially to survive in the dairy environment. Our results will be of interest to the dairy industry to develop novel functional dairy products.


Assuntos
Bacillus coagulans , Probióticos , Animais , Fermentação , Humanos , Leite/química , Iogurte/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...