RESUMO
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Hepatitis B virus (HBV) infection accounts for nearly 50% of HCC cases. Recent studies indicate that HBV infection induces resistance to sorafenib, the first-line systemic treatment for advanced HCC for more than a decade, from 2007 to 2020. Our previous research shows that variant 1 (tv1) of proliferating cell nuclear antigen clamp-associated factor (PCLAF), overexpressed in HCC, protects against doxorubicin-induced apoptosis. However, there are no reports on the relevance of PCLAF in sorafenib resistance in HBV-related HCC. In this article, we found that PCLAF levels were higher in HBV-related HCC than in non-virus-related HCC using bioinformatics analysis. Immunohistochemistry (IHC) staining of clinical samples and the splicing reporter minigene assay using HCC cells revealed that PCLAF tv1 was elevated by HBV. Furthermore, HBV promoted the splicing of PCLAF tv1 by downregulating serine/arginine-rich splicing factor 2 (SRSF2), which hindered the inclusion of PCLAF exon 3 through a putative cis-element (116-123), "GATTCCTG". The CCK-8 assay showed that HBV decreased cell susceptibility to sorafenib through SRSF2/PCLAF tv1. HBV reduced ferroptosis by decreasing intracellular Fe2+ levels and activating GPX4 expression via the SRSF2/PCLAF tv1 axis, according to a mechanism study. Suppressed ferroptosis, on the other hand, contributed to HBV-mediated sorafenib resistance through SRSF2/PCLAF tv1. These data suggested that HBV regulated PCLAF abnormal alternative splicing by suppressing SRSF2. HBV caused sorafenib resistance by reducing ferroptosis via the SRSF2/PCLAF tv1 axis. As a result, the SRSF2/PCLAF tv1 axis may be a prospective molecular therapeutic target in HBV-related HCC, as well as a predictor of sorafenib resistance. The inhibition of the SRSF2/PCLAF tv1 axis may be crucial in the emergence of systemic chemotherapy resistance in HBV-associated HCC.
Assuntos
Carcinoma Hepatocelular , Ferroptose , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Vírus da Hepatite B , Neoplasias Hepáticas/metabolismo , Fatores de Processamento de Serina-Arginina , Sorafenibe/farmacologiaRESUMO
Ciprofloxacin (CIP) is a third-generation quinolone antimicrobial with broad-spectrum antimicrobial activity, and is not fully metabolized in the human body, resulting in more than 70% of CIP being excreted into water as a prodrug. In this study, g-C3N4/BiOCl heterojunction structure composites were prepared to study the degradation effect of ciprofloxacin (CIP) under photocatalytic conditions. The results showed that CIP at 10 mg L-1 was best degraded after 90 min at 0.3 g L-1 g-C3N4/BiOCl-2, pH of 5.8 and PS dosing of 1 mM. The quenching experiments and electron spin resonance spectroscopy (ESR) confirmed that ËOH, ËSO4 - and h+ played a major role. After the photocatalytic degradation of this reaction system, the biological toxicity of CIP was effectively controlled. This material is stable and the CIP removal rate remained above 80% after four cycles of experiments.
RESUMO
There is some evidence that nighttime blood pressure varies between seasons. In the present analysis, we investigated the seasonal variation in ambulatory nighttime blood pressure and its associations with target organ damage. In 1054 untreated patients referred for ambulatory blood pressure monitoring, we performed measurements of urinary albumin-to-creatinine ratio (ACR, n = 1044), carotid-femoral pulse wave velocity (cfPWV, n = 1020) and left ventricular mass index (LVMI, n = 622). Patients referred in spring (n = 337, 32.0%), summer (n = 210, 19.9%), autumn (n = 196, 18.6%) and winter (n = 311, 29.5%) had similar 24-h ambulatory systolic/diastolic blood pressure (P ≥ 0.25). However, both before and after adjustment for confounding factors, nighttime systolic/diastolic blood pressure differed significantly between seasons (P < 0.001), being highest in summer and lowest in winter (adjusted mean values 117.0/75.3 mm Hg vs. 111.4/71.1 mm Hg). After adjustment for confounding factors, nighttime systolic/diastolic blood pressure were significantly and positively associated with ACR, cfPWV and LVMI (P < 0.006). In season-specific analyses, statistical significance was reached for all the associations of nighttime blood pressure with target organ damage in summer (P ≤ 0.02), and for some of the associations in spring, autumn and winter. The association between nighttime systolic blood pressure and ACR was significantly stronger in patients examined in summer than those in winter (standardized ß, 0.31 vs 0.11 mg/mmol, P for interaction = 0.03). In conclusion, there is indeed seasonality in nighttime blood pressure level, as well as in its association with renal injury in terms of urinary albumin excretion. Our study shows that there is indeed seasonal variability in nighttime blood pressure, highest in summer and lowest in winter, and its association with renal injury in terms of urinary albumin excretion varies between summer and winter as well.
RESUMO
The experiments were conducted in the Tibetan plateau environment, and the sewage treatment conditions were designed with ultraviolet (UV) irradiation for 5 min, 10 min, 30 min, and 180 min. The Illumina MiSeq high-throughput sequencing technology was used to analyze the microbiological and metabolomic patterns of the plateau sewage treatment at the experimental scale, and then the response mechanisms of microbial and nitrogen metabolism in sewage treatment were explored. The abundance of metabolism at the first level and global and overview maps at the second level were higher in the plateau environment than in other regions. The KEGG pathway shows the effect of UV on nitrogen metabolism and its aptitude to improving or inhibit it. The two main nitrogen removal processes are nitrification and dissimilatory nitrate reduction. This study reveals the response of activated sludge to UV radiation in a plateau environment from microbiological and metabolomic perspectives, providing ideas and perspectives for the study of water treatment system methods, as well as laying a valuable theoretical foundation for the enhancement of plateau sewage treatment capacity.
RESUMO
Microneedle technology can effectively suppress the formation of hypertrophic scarring in both animals and humans. Our previous research has revealed that this is due to the physical contact inhibition effect by using microneedles made of liquid-crystal polymers as the model device. One important factor we didn't study is the influence of the fabrication materials of microneedles. Therefore, this article examines this key point on a rabbit ear hypertrophic scar model. We monitor the thickness of the scars, and the expression of α-SMA and Ki-67 protein, and TGF-ß1 mRNA in a period of 42 days. Among microneedles made of 6 polymeric materials and stainless steel, polymethylmethacrylate microneedles present superiority in all aspects including the reduction of tissue fibrosis, and the expression of α-SMA, Ki-67 protein and TGF-ß1 mRNA. On the other hand, polycarbonates, polyurethane, and polylactic-co-glycolic acid microneedles could suppress three biomarker expressions.
RESUMO
Long-term light exposure, especially in the spectrum of blue light, frequently causes excessive oxidative stress in dry age-related macular degeneration (AMD). Here, to gain insight into the underlying mechanism, we focused on mitochondrial dynamics alterations under long-term exposure to blue light in mouse and retinal cells. Six-month-old C57BL/6 mice were exposed to blue light (450 nm, 800 lx) for 2 weeks. The phenotypic changes in the retina were assayed using haematoxylin-eosin staining and transmission electron microscopy. Long-term blue light exposure significantly thinned each retinal layer in mice, induced retinal apoptosis and impaired retinal mitochondria. A retinal pigment epithelial cell line (ARPE-19) was used to verify the phototoxicity of blue light. Flow cytometry, immunofluorescence and MitoSox Red probe experiments confirmed that more total and mitochondria-specific ROS were generated in the blue light group than in the control group. Mito-Tracker Green probe showed fragmented mitochondrial morphology. The western blotting results indicated a significant increase in DRP1, OMA1, and BAX and a decrease in OPA1 and Bcl-2. In conclusion, long-term exposure to blue light damaged the retinas of mice, especially the ONL and RPE cells. There was destruction and dysfunction of mitochondria in RPE cells in vivo and in vitro. Mitochondrial dynamics were disrupted with characteristics of fusion-related obstruction after blue-light irradiation.
Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/etiologia , Espécies Reativas de Oxigênio/metabolismo , Dinâmica Mitocondrial , Camundongos Endogâmicos C57BL , Retina/metabolismo , Estresse Oxidativo/efeitos da radiação , Luz , Epitélio Pigmentado da RetinaRESUMO
Depression is the most prevalent psychiatric disease, and its pathogenesis is still unclear. Currently, studies on the pathogenesis of depression are mainly focused on the brain. The liver can modulate brain function via the liver-brain axis, indicating that the liver plays an important role in the development of depression. This study aims to explore the protective effect of quercetin against chronic unpredictable mild stress (CUMS)-induced metabolic changes and the corresponding mechanisms in the rat liver based on untargeted metabolomics technology. In this study, 96 male rats were divided into six groups: control, different doses of quercetin (10 mg per kg bw or 50 mg per kg bw), CUMS, and CUMS + different doses of quercetin. After 8 weeks of CUMS modeling, the liver samples were collected for metabolomics analysis. A total of 17 altered metabolites were identified, including D-glutamic acid, S-adenosylmethionine, lithocholylglycine, L-homocystine, prostaglandin PGE2, leukotriene E4, cholic acid, 5-methyltetrahydrofolic acid, taurochenodeoxycholic acid, S-adenosylhomocysteine, deoxycholic acid, folic acid, L-methionine, leukotriene C5, estriol-17-glucuronide, PE, and PC, indicating that methionine metabolism, bile acid metabolism, and phosphatidylcholine biosynthesis are the major pathways involved in CUMS-induced hepatic metabolic disorders. Hepatic methylation damage may play a role in the pathophysiology of depression, as evidenced by the first discovery of the abnormality of hepatic methionine metabolism. Abnormal changes in hepatic bile acids may provide stronger evidence for depression pathogenesis involving the microbiota-gut-brain axis, suggesting that the liver is involved in depression development and may be a treatment target. The quercetin treatment alleviated the CUMS-induced liver metabolism disorder, suggesting that quercetin may protect against depression by regulating liver metabolism.
Assuntos
Depressão , Hepatopatias , Ratos , Masculino , Animais , Depressão/metabolismo , Quercetina/farmacologia , Metabolômica , Metaboloma , Metionina/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de DoençasRESUMO
Three drying methods, including far infrared drying, infrared convection drying, and ultrasonic pretreatment assisted far infrared drying, were adopted in the drying of ginger slices. The effects of main parameters (ultrasonic pretreatment power and time, far infrared temperature and power, sample thickness, infrared convection temperature) on the drying kinetics, energy consumption, and color change were investigated and discussed in detail. The results showed that the drying process of ginger slices was controlled by falling rate period. For far infrared drying, the drying rate increased with the increase of infrared temperature and decrease of sample thickness, while the infrared power had no obvious effect on the drying process. The infrared convection drying showed the fastest drying rate and the smallest color change, however, the energy consumption was the highest. For ultrasonic pretreatment assisted far infrared drying, an appropriate ultrasonic pretreatment time and power would promote the far infrared drying process and the energy consumption was only slightly increased. However, the color change was relatively large. The ultrasound technology showed its greatest potential to enhance the drying rate at the early stage of drying and increasing ultrasonic power was more effective than prolonging the pretreatment time in promoting far infrared drying.
Assuntos
Gengibre , Ultrassom , Dessecação/métodos , Cinética , TemperaturaRESUMO
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, in which prognosis is determined by liver fibrosis. A common variant in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13, rs72613567-A) is associated with a reduced risk of fibrosis in NAFLD, but the underlying mechanism(s) remains unclear. We investigated the effects of this variant in the human liver and in Hsd17b13 knockdown in mice by using a state-of-the-art metabolomics approach. We demonstrate that protection against liver fibrosis conferred by the HSD17B13 rs72613567-A variant in humans and by the Hsd17b13 knockdown in mice is associated with decreased pyrimidine catabolism at the level of dihydropyrimidine dehydrogenase. Furthermore, we show that hepatic pyrimidines are depleted in two distinct mouse models of NAFLD and that inhibition of pyrimidine catabolism by gimeracil phenocopies the HSD17B13-induced protection against liver fibrosis. Our data suggest pyrimidine catabolism as a therapeutic target against the development of liver fibrosis in NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Fígado/metabolismo , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Pirimidinas/farmacologia , Pirimidinas/metabolismoRESUMO
Lactobacillus fermentation can increase the value of wheat bran, but the benefits of fermented wheat bran for pig production are poorly understood. We evaluated the phenolic acid content of wheat bran fermented with Lactobacillus. The bacterial and fungal compositions, short-chain fatty acids, and heavy metals concentrations in the feces of growing pigs were determined, and the correlations between the bacterial and fungal compositions and short-chain fatty acid and heavy metals concentrations were also assessed. The concentrations of phenolic acids (caffeic acid, catechinic acid, and gallic acid) were higher in fermented bran than in control wheat bran. The diversity of feces bacterial species was significantly higher, whereas the diversity of fungi was lower in fermented wheat bran treatment than those in the control group, and pigs consuming fermented and control wheat bran with different bacterial and fungal compositions had different growth rates. The abundance of genera in fungi that were less abundant in the fermented group samples than in the control samples (including Wallemia, Trichosporon, Candida, Aspergillus, and unclassified_f__Microascaceae) was positively correlated with heavy metals concentrations in pig feces, and the abundances of these fungi were negatively correlated with caffeic acid, catechinic acid, and gallic acid concentrations. Metagenomic function predictions indicated that larger amounts of secondary metabolites were synthesized in the fermented group than in the control group. The results provide new insights into the roles of bacterial-fungal interactions in the growth and decreasing environmental pollution of pigs consuming fermented wheat bran.
Assuntos
Catequina , Metais Pesados , Suínos , Animais , Fibras na Dieta , Lactobacillus , Ácidos Cafeicos , Ácido GálicoRESUMO
BACKGROUND: Intensive blood pressure (BP) lowering in patients with hypertension has been associated with a lowered risk of atrial fibrillation (AF). It is still uncertain what is the optimal BP levels to prevent AF in the general elderly population. In the present prospective study, we investigated the association between incident AF and BP in an elderly Chinese population. METHODS AND FINDINGS: Elderly (≥65 years) residents were recruited from 6 communities in Shanghai. 9019 participants who did not have AF at baseline and had at least one ECG recording during follow-up were included in the present analysis. During a median of 3.5 years follow-up, the overall incidence rate of AF was 5.6 per 1000 person-years (n = 178). Systolic BP was associated with increased AF risk (age- and sex-adjusted hazard ratio [HR] per 20-mmHg increase for systolic BP 1.21, 95% CI 1.04-1.39, P = 0.01), but risk estimate was attenuated after adjustment for common AF risk factors. In categorical analyses, statistical significance was achieved for HR relative to optimal BP only in stage 2 or 3 systolic and diastolic hypertension (multivariate-adjusted HR 1.76, 95% CI 1.00-3.08, P = 0.05). The association between AF incidence and BP status tended to be stronger in the absence than presence of a history of cardiovascular disease at baseline (P for interaction = 0.06). CONCLUSION: In this Chinese population of 65 years and older, linear increases in systolic and diastolic BP were not independently associated with increased risk of AF, and only exposure to stage 2 or 3 hypertension carries a higher risk of AF.
Assuntos
Fibrilação Atrial , Hipertensão , Idoso , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/complicações , Pressão Sanguínea/fisiologia , China/epidemiologia , População do Leste Asiático , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Hipertensão/complicações , Incidência , Estudos Prospectivos , Fatores de RiscoRESUMO
AIMS/HYPOTHESIS: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS: C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS: We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION: These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.
RESUMO
BACKGROUND: Changes in the retina and choroid blood vessels are regularly observed in myopia. However, if the retinal glial cells, which directly contact blood vessels, play a role in mammalian myopia is unknown. We aimed to explore the potential role and mechanism of retinal glial cells in form deprived myopia. METHODS: We adapted the mice form-deprivation myopia model by covering the right eye and left the left eye open for control, measured the ocular structure with anterior segment optical coherence tomography, evaluated changes in the morphology and distribution of retinal glial cells by fluorescence staining and western blotting; we also searched the online GEO databases to obtain relative gene lists and confirmed them in the form-deprivation myopia mouse retina at mRNA and protein level. RESULTS: Compared with the open eye, the ocular axial length (3.54 ± 0.006 mm v.s. 3.48 ± 0.004 mm, p = 0.027) and vitreous chamber depth (3.07 ± 0.005 mm v.s. 2.98 ± 0.006 mm, p = 0.007) in the covered eye became longer. Both glial fibrillary acidic protein and excitatory amino acid transporters 4 elevated. There were 12 common pathways in human myopia and anoxic astrocytes. The key proteins were also highly relevant to atropine target proteins. In mice, two common pathways were found in myopia and anoxic Müller cells. Seven main genes and four key proteins were significantly changed in the mice form-deprivation myopia retinas. CONCLUSION: Retinal astrocytes and Müller cells were activated in myopia. They may response to stimuli and secretory acting factors, and might be a valid target for atropine.
Assuntos
Células Ependimogliais , Miopia , Humanos , Camundongos , Animais , Astrócitos , Neuroglia , Atropina , Retina , Modelos Animais de Doenças , Hipóxia , MamíferosRESUMO
BACKGROUND: Pathogenesis of posterior capsular opacification (PCO) was related to pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). It has been reported that blue light could have an effect on EMT. This study aims to elucidate the role and potential mechanism of autophagy in EMT after blue light exposure in LECs. METHODS: HLE-B3 cells were treated with TGF-ß2 with different concentration and time to induce EMT as a model of PCO in vitro. Cells were exposed to blue light with or without TGF-ß2. The expression levels of EMT-associated markers were analyzed by qRT-PCR, western blotting and cell migration ability was determined by transwell migration assay and wound healing assay. The expressions of autophagy-related proteins were analyzed by western blotting, immunofluorescence and transmission electron microscopy. Rapamycin and chloroquine were utilized in cells for autophagy activation and inhibition. RESULTS: TGF-ß2 induced autophagy activation during EMT progression in HLE-B3 cells in a dose- and time-dependent manner. Blue light exposure inhibited TGF-ß2-induced EMT characterized by inhibited expression of EMT related markers and reduced migration capacity. Meanwhile, blue light exposure impaired autophagy activated by TGF-ß2. Furthermore, Autophagy activation with rapamycin rescued EMT attenuated by blue light. Autophagy inhibition with chloroquine reduced TGF-ß2-induced EMT in HLE-B3 cells. CONCLUSION: Blue light exposure had inhibited effects on TGF-ß2-induced EMT in LECs through autophagy impairment, which provides a new insight on prevention and treatment of PCO.
Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta2 , Humanos , Autofagia , Cloroquina , Células Epiteliais , Sirolimo , Fator de Crescimento Transformador beta2/farmacologia , LuzRESUMO
The accurate extraction of wheat lodging areas can provide important technical support for post-disaster yield loss assessment and lodging-resistant wheat breeding. At present, wheat lodging assessment is facing the contradiction between timeliness and accuracy, and there is also a lack of effective lodging extraction methods. This study aims to propose a wheat lodging assessment method applicable to multiple Unmanned Aerial Vehicle (UAV) flight heights. The quadrotor UAV was used to collect high-definition images of wheat canopy at the grain filling and maturity stages, and the Unet network was evaluated and improved by introducing the Involution operator and Dense block module. The performance of the Improved_Unet was determined using the data collected from different flight heights, and the robustness of the improved network was verified with data from different years in two different geographical locations. The results of analyses show that (1) the Improved_Unet network was better than other networks (Segnet, Unet and DeeplabV3+ networks) evaluated in terms of segmentation accuracy, with the average improvement of each indicator being 3% and the maximum average improvement being 6%. The Improved_Unet network was more effective in extracting wheat lodging areas at the maturity stage. The four evaluation indicators, Precision, Dice, Recall, and Accuracy, were all the highest, which were 0.907, 0.929, 0.884, and 0.933, respectively; (2) the Improved_Unet network had the strongest robustness, and its Precision, Dice, Recall, and Accuracy reached 0.851, 0.892, 0.844, and 0.885, respectively, at the verification stage of using lodging data from other wheat production areas; and (3) the flight height had an influence on the lodging segmentation accuracy. The results of verification show that the 20-m flight height performed the best among the flight heights of 20, 40, 80 and 120 m evaluated, and the segmentation accuracy decreased with the increase of the flight height. The Precision, Dice, Recall, and Accuracy of the Improved_Unet changed from 0.907 to 0.845, from 0.929 to 0.864, from 0.884 to 0.841, and from 0.933 to 0.881, respectively. The results demonstrate the improved ability of the Improved-Unet to extract wheat lodging features. The proposed deep learning network can effectively extract the areas of wheat lodging, and the different height fusion models developed from this study can provide a more comprehensive reference for the automatic extraction of wheat lodging.
RESUMO
Stem form is the shape of the trunk, differs among tree species and mainly affected by stand density factor. Accurate taper equations are crucial for estimating the stem diameter, form and tree volume, which is conducive to timber utilization and sustainable forest management and planning. Larch (Larix principis-rupprechtii Mayr.) is a valuable afforestation species under large-scale development in North China, but no study on the effect of density on its stem taper has been reported yet. The dataset included 396 analytical trees from 132 standard plots of larch plantation in Saihanba, Hebei Province. Based on 12 different forms of models, we explored the optimal basic equation for plantations and the effects of the stand density, basal area, canopy density and different forms of stand density on the prediction accuracy of the variable-exponent models. The variable-exponent taper equation that includes Sd (stand density) was constructed by using nonlinear regression, a nonlinear mixed effect model and the nonlinear quantile regression method. The results indicate that the Kozak's 2004 variable-exponent taper equation was the best basic model for describing changes in the stem form of larch plantations, and the density factor in the form of S d improved the prediction accuracy of the basic model. Among the three regression methods, the quantile regression method had the highest fitting accuracy, followed by the nonlinear mixed effect model. When the quantile was 0.5, the nonlinear quantile regression model exhibited the best performance which provides a scientific basis for the rational management of larch plantations.
RESUMO
BACKGROUND: Galectin-3 is a multi-functional lectin protein and a ligand of mucin-1 (CA15-3), and has been linked to renal fibrosis in animal models and renal function in humans. However, no population study has ever explored the associations with both ligand and receptor. We therefore investigate the independent association of renal function with serum galectin-3 and mucin-1 (CA15-3) in untreated Chinese patients. METHODS: The study participants were outpatients who were suspected of hypertension, but had not been treated with antihypertensive medication. Serum galectin-3 and mucin-1 (CA15-3) concentrations were both measured by the enzyme-linked immunosorbent assay (ELISA) method. Estimated glomerular filtration rate (eGFR) was calculated from serum creatinine by the use of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. RESULTS: The 1789 participants included 848 (47.4%) men. Mean (±SD) age was 51.3±10.7 years. Multiple regression analyses showed that eGFR was significantly associated with serum galectin-3 and mucin-1 (CA15-3) concentration (0.68 and 1.32 ml/min/1.73 m2 decrease per 1-SD increase in log transformed serum galectin-3 and mucin-1 (CA15-3) concentration, respectively; P≤0.006). The association of eGFR with serum mucin-1 (CA15-3) concentration was significantly stronger in the overweight (BMI 24.0-27.9 kg/m2) and obese (BMI ≥28.0 kg/m2) than in normal weight subjects (BMI <24.0 kg/m2, P for interaction 0.018). Path analysis showed that serum galectin-3 concentration had both a direct (P=0.016) and a mucin-1 mediated indirect effect (P=0.014) on eGFR. CONCLUSIONS: Both circulating galectin-3 and mucin-1 (CA15-3) were significantly associated with renal function. The role of galectin-3 on renal function might be partially via mucin-1.