RESUMO
One-step sequence-selective block copolymerization requires stringent catalytic control of monomers relative activity and enchainment order. It has been especially rare for AnBm-type block copolymers from simple binary monomer mixtures. Here, ethylene oxide (EO) and N-sulfonyl aziridine (Az) compose a valid pair provided with a bicomponent metal-free catalyst. Optimal Lewis acid/base ratio allows the two monomers to strictly block-copolymerize in a reverse order (EO-first) as compared with the conventional anionic route (Az-first). Livingness of the copolymerization facilitates one-pot synthesis of multiblock copolymers by addition of mixed monomers in batches. Calculation results reveal that a Janus effect of Lewis acid on the two monomers is key to enlarge the activity difference and reverse the enchainment order.
RESUMO
The electrochemical stability window of the electrolyte solution limits the energy content of non-aqueous lithium metal batteries. In particular, although electrolytes comprising fluorinated solvents show good oxidation stability against high-voltage positive electrode active materials such as LiNi0.8Co0.1Mn0.1O2 (NCM811), the ionic conductivity is adversely affected and, thus, the battery cycling performance at high current rates and low temperatures. To address these issues, here we report the design and synthesis of a monofluoride ether as an electrolyte solvent with Li-F and Li-O tridentate coordination chemistries. The monofluoro substituent (-CH2F) in the solvent molecule, differently from the difluoro (-CHF2) and trifluoro (-CF3) counterparts, improves the electrolyte ionic conductivity without narrowing the oxidation stability. Indeed, the electrolyte solution with the monofluoride ether solvent demonstrates good compatibility with positive and negative electrodes in a wide range of temperatures (i.e., from -60 °C to +60 °C) and at high charge/discharge rates (e.g., at 17.5 mA cm-2). Using this electrolyte solution, we assemble and test a 320 mAh Li||NCM811 multi-layer pouch cell, which delivers a specific energy of 426 Wh kg-1 (based on the weight of the entire cell) and capacity retention of 80% after 200 cycles at 0.8/8 mA cm-2 charge/discharge rate and 30 °C.
RESUMO
All-solid-state lithium batteries (ASSBs) enabled by solid-state electrolytes (SEs) including oxide-based and sulfide-based electrolytes have gained worldwide attention because of their intrinsic safety and higher energy density over conventional lithium-ion batteries (LIBs). However, despite the high ionic conductivity of advanced SEs, ASSBs still exhibit high overall internal resistance, the most significant contributor of which can be ascribed to the cathode-SE interfaces. This review seeks to clarify the critical issues regarding the cathode-SE interfaces, including fundamental principles and corresponding solutions. First, major issues concerning electro-chemo-mechanical instability between cathodes and SEs and their formation mechanisms are discussed. Then, specific problems in oxides and sulfides and various solutions and strategies toward interfacial modifications are highlighted. Efforts toward the characterization and analysis of cathode-SE interfaces with advanced techniques are also summarized. Finally, perspectives are offered on several problems demanding urgent solutions and the future development of SE applications and ASSBs.
RESUMO
Flexible hard coatings with strong adhesion are critical requirements for several foldable devices and marine applications; however, only a few such coatings have been reported. Herein, we report a non-isocyanate polyurethane (NIPU) coating prepared by the epoxy-oligosiloxane nanocluster-amine curing reaction and cyclic carbonate-amine polyaddition, where the former provides the coating with ceramic-like hardness and polymer-like flexibility while the latter polymerization results in NIPU with strong substrate adhesion. The coating is transparent (>92% transmittance), hard (5-7 H), and flexible (2 mm bending diameter). It has strong adhesion to various substrates including aluminum alloy, titanium, steel, glass, ceramic, epoxy, and polyethylene terephthalate (2-8 MPa), which can be attributed to the high density of polar groups in NIPU. Moreover, we can facilely endow the coating with anti-icing, self-cleaning, and anti-smudge capabilities by incorporating amine-terminated low-surface-tension polydimethylsiloxane (PDMS) to replace a part of the amine curing agent. Particularly, the mechanical properties of NIPU coatings are only slightly affected by the introduction of low-content PDMS since it intends to enrich on the surface. The novel coating has promising future for use in fields of foldable devices and marine applications.
RESUMO
Raman spectra are often masked by strong fluorescence, which severely hinders the applications of Raman spectroscopy. Herein, for the first time, we report ionic-wind-enhanced Raman spectroscopy (IWERS) incorporated with photobleaching (PB) as a noninvasive approach to detect fluorescent and vulnerable samples without a substrate. In this study, ionic wind (IW) generated by needle-net electrodes transfers charges to the sample surface in air on the scale of millimeters rather than nanometers in surface-enhanced Raman spectroscopy. Density functional theory calculations reveal that the ionic particles in IW increase the susceptibility of the sample molecules, thus enhancing the Raman signals. Meanwhile, the incorporation of IW with PB yields a synergistic effect to quench fluorescence. Therefore, this approach can improve the signal-to-noise ratio of Raman peaks up to three times higher than that with only PB. At the same time, IWERS can avoid sample pollution and destruction without substrates as well as high laser power. For archeological samples and a red rock as an analogue to Mars geological samples, IWERS successfully identified weak but key Raman peaks, which were masked by strong florescence. It suggests that IWERS is a promising tool for characterizations in the fields of archeology, planetary science, biomedicine, and soft matter.
Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Razão Sinal-Ruído , FotodegradaçãoRESUMO
Marine organisms such as barnacle larvae and spores of algae adhere to underwater surfaces leading to marine biofouling. This phenomenon has numerous adverse impacts on marine industries and maritime activities. Due to the diversity of fouling organisms and the complexity of the marine environment, it is a huge challenge to combat marine biofouling, which limits the development and utilization of marine resources. Since the International Marine Organization banned the use of tributyltin self-polishing copolymer (SPC) coatings in 2008, the development of an environmentally friendly and efficient anti-biofouling polymer has been the most important task in this field. Tin-free SPC is a well-established and widely used polymer binder for anti-biofouling coating today. Being a nondegradable vinyl polymer, SPC exhibits poor anti-biofouling performance in static conditions. Even more, such nondegradable polymers were considered to be a source of microplastics by the International Union for the Conservation of Nature in 2019. Recently, numerous degradable polymers, which can form dynamic surface through main chain scission, have been developed for preventing marine biofouling in static conditions. Nevertheless, the regulation of their degradation and mechanical properties is limited, and they are also difficult to functionalize. A new polymer combining the advantages of vinyl polymers and degradable polymers is needed. However, such a combination is a challenge since the former are synthesized via free radical polymerization whereas the latter are synthesized via ring-opening polymerization.In this Account, we review our recent progress toward degradable vinyl polymers for marine anti-biofouling in terms of polymerization methods and structures and properties of polymers. First, we introduce the strategies for preparing degradable vinyl polymers with an emphasis on hybrid copolymerization. Then, we present the synthesis and performance of degradable and hydrolyzable polyacrylates, degradable polyurethanes with hydrolyzable side groups, and surface-fragmenting hyperbranched polymers. Polymers with degradable main chains and hydrolyzable side groups combine the advantages of SPC and degradable polymers, so they are degradable and functional. They are becoming new-generation polymers with great potential for preparing high-efficiency, long-lasting, environmentally friendly and broad-spectrum coatings to inhibit marine biofouling. They can also find applications in wastewater treatment, biomedical materials, and other fields.
Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Plásticos , Polimerização , Polímeros/química , Propriedades de SuperfícieRESUMO
The increasing preference for minimally invasive surgery requires novel soft materials that are injectable, with rapid self-healing abilities, and biocompatible. Here, by utilizing the synergetic effect of hydrophobic interaction and quadruple hydrogen bonding, an injectable supramolecular hydrogel with excellent self-healing ability was synthesized. A unique ABA triblock copolymer was designed containing a central poly(ethylene oxide) block and terminal poly(methylmethacrylate) (PMMA) block, with ureido pyrimidinone (UPy) moieties randomly incorporated (termed MA-UPy-PEO-UPy-MA). The PMMA block could offer a hydrophobic microenvironment for UPy moieties in water and thus boost the corresponding quadruple hydrogen bonding interaction of Upy-Upy dimers. Owing to the synergetic effect of hydrophobicity and quadruple hydrogen bonding interaction, the obtained MA-UPy-PEO-UPy-MA hydrogel exhibited excellent self-healing properties, and injectable capability, as well as superior mechanical strength, and therefore, it holds great promise in tissue engineering applications, including in cell support and drug release.
RESUMO
Hard yet flexible coatings with multi-functionalities are useful for foldable displays and marine industries but rare. In this study, a highly cross-linked multifunctional hybrid coating with ceramic-like hardness and polymer-like flexibility is reported. The coating is prepared via a step-by-step strategy, where two types of epoxy-oligosiloxane nanoclusters are first synthesized by sol-gel chemistry, and amine-terminated curing agents are used to cross-link them at room temperature. The coating is highly transparent (>92% transmittance), hard (6-7H), and flexible (10 mm bending diameter) because of the unique combination of siloxane nanoclusters and polymer networks. Meanwhile, since the coating contains fouling-resistant telomer and low-surface-tension liquid lubricant polydimethylsiloxane (PDMS), it exhibits excellent anti-biofouling and self-cleaning properties. The results indicate that the mechanical and antifouling properties of the coating can be easily tuned and prove that the step-by-step strategy is a promising and universal method. The novel coatings can meet the needs of applications in foldable displays, marine industries, and other fields.
RESUMO
Superhydrophobic coatings have tremendous potential for protecting porous structures from corrosion. However, the weak adhesion and poor abrasion resistance have long been challenges for their real-life applications. Inspired by tree roots, we prepared a robust superhydrophobic coating by spraying fluorinated nanodiamonds (FNDs) on a permeable epoxy coating. The epoxy can not only coat the surface but also permeate deeply inside a porous substrate and consolidate in situ as tree roots in soil. Thus, the structure is thoroughly reinforced where the pull-off strength reaches 9.4 MPa for concrete. On the other hand, the surface is covered with immobilized FNDs, forming a superhydrophobic surface. Thanks to the ultra-hard FNDs, the coating surface has high abrasion resistance and its superhydrophobicity holds even after 100 abrasion cycles. Moreover, it exhibits self-cleaning, anti-icing, and anticorrosion performance. It is promising in protecting various porous structures such as concrete, wood, and untreated corroded steel.
RESUMO
Silicone elastomer-based fouling release coatings have been gaining increased attention in marine antibiofouling. However, the lack of fouling resistance limits their application. Introducing a zwitterionic polymer into silicone enhances its fouling resistance, but their incompatibility makes this challenging. In this work, a silicone elastomer with zwitterionic pendant chains has been prepared by grafting a telomer of tertiary carboxybetaine dodecafluoroheptyl ester ethyl acrylate (TCBF) and 3-mercaptopropyltriethoxysilane to the bis-silanol-terminated poly(dimethylsiloxane) (PDMS). The fluorocarbon groups drive the telomer onto the surface in the film formation process, while the TCBF groups hydrolyze and generate zwitterions on the surface, which is confirmed by attenuated total reflection infrared spectra analysis and water contact angle measurements. Bioassays using marine bacteria (Pseudomonas sp.) and diatoms (Navicula incerta) demonstrate that the antifouling efficacy is improved as the telomer content increases. The bacteria and diatom adhesion decreases by 95 and 81%, respectively, for the PDMS with 30 wt % telomer compared with the unmodified PDMS control. Meanwhile, the fouling release performance of PDMS is maintained with a pseudobarnacle removal strength of â¼0.1 MPa. This work provides a facile way to fabricate efficient silicone-based antifouling coatings.
Assuntos
Incrustação Biológica , Diatomáceas , Incrustação Biológica/prevenção & controle , Polímeros , Pseudomonas , Elastômeros de Silicone , Propriedades de SuperfícieRESUMO
Traditional antifouling coatings are generally based on a single antifouling mechanism, which can hardly meet the needs of different occasions. Here, a single "kill-resist-renew trinity" polymeric coating integrating fouling killing, resistance, and releasing functions is reported. To achieve the design, a novel monomer-tertiary carboxybetaine ester acrylate with the antifouling group N-(2,4,6-trichlorophenyl)maleimide (TCB-TCPM) is synthesized and copolymerized with methacrylic anhydride via reversible addition-fragmentation chain transfer polymerization yielding a degradable hyperbranched polymer. Such a polymer at the surface/seawater is able to hydrolyze and degrade to short segments forming a dynamic surface (releasing). The hydrolysis of TCB-TCPM generates the antifouling groups TCPM (killing) and zwitterionic groups (resistance). Such a polymeric coating exhibits a controllable degradation rate, which increases with the degrees of branching. The antibacterial assay demonstrates that the antifouling ability arise from the synergistic effect of "attacking" and "defending". This study provides a new strategy to solve the challenging problem of marine biofouling.
Assuntos
Incrustação Biológica/prevenção & controle , Maleimidas/química , Polímeros/química , Anidridos/química , Halogenação , Polimerização , Propriedades de SuperfícieRESUMO
The mechanism for protein stabilization or destabilization has long been an open quest. In the present study, we have studied the interactions between amino acids and guanidinium (Gdm+)/ammonium (NH4+) ions by using low field nuclear magnetic resonance (LF-NMR), where Gdm+ and NH4+ are denaturant and stabilizer for proteins, respectively. It shows that Gdm+ favors to bind to the thiol group or the hydroxyl group on the side chain but weakly interacts with the α-carboxyl group. In contrast, NH4+ prefers to bind to the α-carboxyl group but slightly interacts with the thiol group or the hydroxyl group on the side chain of amino acids. 1HNMR reveals the hydrogen bonding between NH4+ and the α-carboxyl group, which is not involved in the interactions between Gdm+ and cysteine. Our study demonstrates that the strong interactions between the denaturant and the sulfur atom or the disulfide bond promote the direct binding of the denaturant toward proteins, leading to the destabilization.
Assuntos
Aminoácidos/química , Cloreto de Amônio/química , Cátions , Guanidina/química , Hidrogênio , Estabilidade Proteica , Espectroscopia de Prótons por Ressonância Magnética , SoluçõesRESUMO
Silicone elastomer coatings have attracted increasing attention owing to their eco-friendly nature, excellent fouling release ability and drag-reducing property. However, the poor mechanical properties and lack of fouling resistance limit their applications. Herein, a silicone-based polyurethane with 2-ureido-4[1H]-pyrimidinone (UPy) and amphiphilic pendant chains is reported. The UPy groups and urethane can form hydrogen bonds with various substrates so that the coating has significantly improved adhesion strength (0.9-3.0 MPa) compared with the PDMS elastomer (0.3-0.4 MPa). Moreover, the quadruple hydrogen bonding between UPy moieties allows the polymer to have excellent self-healing ability and high elasticity. The modified polymeric coating has low surface energy (24 mJ m-2) and low elastic modulus (1.9 MPa), so it exhibits good fouling release performance. Besides, the amphiphilic side chains can effectively resist protein adsorption and adhesion of the marine bacteria Pseudomonas sp. and diatom Navicula incerta. The novel design can improve the resistance of silicone coating to biofouling and mechanical forces and is promising for high-performance antifouling coatings.
Assuntos
Poliuretanos/química , Silicones/química , Animais , Incrustação Biológica , Peixes , Propriedades de SuperfícieRESUMO
In this study, the 3D motion behaviors and the underlying adaptation mechanism of planktonic Pseudomonas aeruginosa (PAO1) in response to the deposited dead siblings nearby were explored. Utilizing a real-time 3D tracking technique, digital holographic microscopy (DHM), we demonstrate that planktonic cells near the surface covered with dead siblings have a lower density and a reduced 3D velocity compared with those upon viable ones. As a sign of chemosensory responses, bacteria swimming near the dead siblings exhibit increase in frequency of the 'flick' motion. Transcriptomic analysis by RNA-seq reveals an upregulated expression of dgcM and dgcE inhibited the movement of PAO1, accompanied by increased transcriptional levels of the virulence factor-related genes hcp1, clpV1, and vgrG1. Moreover, the decrease in l-glutamate and the increase in succinic acid in the metabolites of the dead bacteria layer promote the dispersion of planktonic bacteria. As a result, the dead siblings on a surface inhibit the bacterial accumulation and activate the adaptive defensive responses of planktonic PAO1 in the vicinity.
Assuntos
Plâncton , Pseudomonas aeruginosa , Adaptação Psicológica , Proteínas de Bactérias , Biofilmes , Humanos , Plâncton/genética , Pseudomonas aeruginosa/genética , IrmãosRESUMO
The synthesis of poly(ethylene oxide) (PEO) with amino end group, a key functionality for PEGylation, is a long-standing challenge. Multistep routes based on postmodification or covalent protection have been adopted to circumvent ethoxylation of the amino group by ethylene oxide (EO). Here, we report a noncovalent protection strategy for one-step synthesis of PEO amine. An amino (di)alcohol is mixed with a small amount of mild phosphazene base and excess triethylborane (Et3B) before addition of EO. The complexation of the amino group with Et3B guarantees that polymerization of EO occurs selectively from the hydroxyl group through the bicomponent metal-free catalysis. Simply by precipitation in diethyl ether, the protective Et3B as well as the catalyst can be removed to afford α-amino-ω-hydroxyl PEO with controlled molar mass, low dispersity, and complete end functionality. The effect of initiator structure and retention of Et3B on the storage (oxidative) stability of PEO amine is also revealed.
Assuntos
Óxido de Etileno , Polietilenoglicóis , Aminas , Óxido de Etileno/química , Peso Molecular , PolimerizaçãoRESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is a heterogeneous tumor that accounts for approximately 85% of all lung cancer cases worldwide. microRNAs (miRNAs) are believed to play an important role in regulating a variety of biological processes, including immunity and cancer. We investigated the effect of miR-519d-3p on the mitigation of NSCLC in vitro and in vivo. METHODS: RT-PCR or immunohistochemical assays were used to assess the expression of miR-519d-3p. Colony formation, flow cytometry, and transwell assay were respectively used to detect proliferation, apoptosis, and invasion of A549 and NCI-H661 cell lines. Luciferase reporter assay was used to verify targeting the relationship between mir-519d-3p and VEGFA. Western blot was used to examine the expression of Ki67, caspase-3, E-cadherin, N-cadherin, VEGF, P38, and PI3K/AKT. Animal models were established by BABL/c mice to research the effect of mir-519d-3p overexpression in vivo. RESULTS: In vitro, miR-519d-3p overexpression inhibited A549 and NCI-H661 cells proliferation, invasion, and also promoted apoptosis. In addition, miR-519d-3p overexpression downregulated VEGFA expression and decreased the P38 and PI3K/AKT phosphorylation level. In vivo, miR-519d-3p overexpression significantly restrained tumor volume (2087±265 mm3 vs 599±135 mm3, *P< 0.05) and tumor weight (0.45±0.08 g vs 0.13±0.06 g, *P<0.05) compared with the control group. Overexpression of miR-519d-3p downregulated levels of Ki67 and N-cadherin significantly. CONCLUSION: The data indicated that miR-519d-3p could be a novel therapy or adjuvant against NSCLC.
RESUMO
Behaviors of platonic bacteria individuals are profoundly influenced by their interplay. However, probing such interplay still remains a challenge since identification and tracking of bacterial individuals becomes difficult as they come close and interact with each other. Herein, we report 3D tracking of the motions of multiple bacteria by using digital holographic microscopy (DHM), where the subtle 3D behaviors can be characterized as bacteria approach and run away from each other. An algorithm was developed to identify and recover the gap between 3D trajectory segments raising by the interruption from other bacteria through lateral image recognition and axial loalization utilizing cost function. We value the performance of the algorithm in terms of the statistics in trajectory length and correct rate. The study clearly shows how the interplaying Escherichia coli alter their motions.
Assuntos
Fenômenos Fisiológicos Bacterianos , Escherichia coli/fisiologia , Holografia/métodos , Imageamento Tridimensional , Microscopia/métodos , Algoritmos , Biometria , Rastreamento de CélulasRESUMO
The Li-S battery is a promising next-generation technology due to its high theoretical energy density (2600 Wh kg-1) and low active material cost. However, poor cycling stability and coulombic efficiency caused by polysulfide dissolution have proven to be major obstacles for a practical Li-S battery implementation. In this work, we develop a novel strategy to suppress polysulfide dissolution using hydrofluoroethers (HFEs) with bi-functional, amphiphlic surfactant-like design: a polar lithiophilic "head" attached to a fluorinated lithiophobic "tail." A unique solvation mechanism is proposed for these solvents whereby dissociated lithium ions are readily coordinated with lithiophilic "head" to induce self-assembly into micelle-like complex structures. Complex formation is verified experimentally by changing the additive structure and concentration using small angle X-ray scattering (SAXS). These HFE-based electrolytes are found to prevent polysulfide dissolution and to have excellent chemical compatibility with lithium metal: Li||Cu stripping/plating tests reveal high coulombic efficiency (>99.5%), modest polarization, and smooth surface morphology of the uniformly deposited lithium. Li-S cells are demonstrated with 1395 mAh g-1 initial capacity and 71.9% retention over 100 cycles at >99.5% efficiency-evidence that the micelle structure of the amphiphilic additives in HFEs can prohibit polysulfide dissolution while enabling facile Li+ transport and anode passivation.
RESUMO
Zwitterionic polymers have attracted increasing attention due to their excellent fouling resistance ability and eco-friendliness. Yet, their non-degradability and hydrophilic nature limit their applications. In this study, we have prepared a novel surface-fragmenting hyperbranched copolymer with tertiary carboxybetaine ester (TCB) primary chains and poly(ε-caprolactone) (PCL) bridged chains, where the former and the latter can hydrolyze and degrade in marine environments, continuously generating zwitterions, so the polymer coating has a fouling resistant and renewable surface. Our study demonstrates that the degradation rate of the polymer is well controlled by the content of PCL bridges. Protein resistance and antibacterial assays show that the coating can inhibit the adhesion of protein and marine bacteria (Pseudomonas sp.). This new surface-fragmenting, self-regenerating hyperbranched zwitterionic copolymer has multiple applications in antifouling coatings.
Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Polímeros/farmacologia , Pseudomonas/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Hidrólise , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Propriedades de SuperfícieRESUMO
BACKGROUND: Long non-coding RNA (lncRNA) is a class of endogenous RNA with a length of more than 200 nucleotides, which is emerging as a pivotal player in cancer development and progression. However, the functional roles of many members in this class remain largely uncharacterized. In the present study, we explored the biological relevance of linc02042 in esophageal squamous cell carcinoma (ESCC). METHODS: qRT-PCR was used to detect the levels of linc02042 and c-Myc. Western blot was used to assess protein expression level. CCK-8 and Transwell assays were employed to test ESCC cell proliferation and invasion, respectively. The mice study including xenograft tumor and lung metastasis models was used to determine the role of linc02042 in vivo. RNA pull-down, ChIP and luciferase reporter assays were employed to test the relationship between linc02042, YBX1 and c-Myc. RESULTS: Linc02042 was found to be markedly upregulated in ESCC cell lines, tissues and plasma, and was closely correlated with malignant clinical features. Knockdown of linc02042 significantly inhibited ESCC cell viability and invasion in vitro as well as tumor growth and lung metastasis in vivo, whereas overexpression of linc02042 resulted in the opposite results. Mechanistically, linc02042 acted as a scaffold for YBX-1 binding to the 3'-UTR of c-Myc mRNA, leading to enhanced c-Myc mRNA stability, thereby facilitating ESCC growth and metastasis. Moreover, in turn, c-Myc was able to transcriptionally elevate linc02042 by directly binding to the E-box motif proximal to the transcription start site (TSS) of linc02042 promoter. Clinically, linc02042 was identified as an effective diagnostic and prognostic biomarker for ESCC patients, and its expression was strongly positively correlated with c-Myc expression in ESCC tissues. CONCLUSION: Our data suggest that linc02042 plays an important tumor-promoting role in ESCC, which lays a foundation for considering it as a potential target for ESCC patients.