Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.842
Filtrar
1.
Food Chem ; 308: 125676, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31655476

RESUMO

In this study, the improving effects of green tea powder, soluble tea, and tea polyphenols on the mixing and tensile qualities of dough and texture of tea-enriched noodles, as well as the physico-chemical and structural properties of gluten proteins were progressively investigated. Dough strength and noodle texture were significantly increased by all the three tea products. Tea polyphenols in particular presented the most effective improvement with highest dough stability, resistance, and noodle chewiness. SEM indicated that tea products all induced a more developed gluten network, and polyphenol noodle showed the most continuous and ordered structure. FT-IR and fluorescence spectrum indicated that tea polyphenols promoted an enhancement in α-helix structure and the hydrophobic interactions. Tea polyphenols induced the SH/SS interchange during processing and cooking, and enhanced the water-solids interaction in noodles. AFM results showed that polyphenols induced the polymerization of gluten protein molecular chains, with increased chain height and width.

2.
Carbohydr Polym ; 227: 115337, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590880

RESUMO

A gel delivery system was developed in the present work using whey protein isolate and lotus root amylopectin via regulating pH. The texture, thermodynamics, rheology and microstructure of gels were evaluated. Results showed that pH at 7.0 induced a more compact and stable gel structure than other pH. The composite gel formed at pH 7.0 was accordingly employed to encapsulate vitamin D3. Results exhibited that the encapsulation of composite gel of whey protein isolate and lotus root amylopectin could enhance the storage stability of vitamin D3 and protect vitamin D3 from photochemical degradation. Moreover, this encapsulation could control the release of vitamin D3 in simulated intestinal fluid. Animal experiments exhibited that the bioavailability was significantly increased after vitamin D3 was encapsulated by the composite gel. This work indicated that the whey protein isolate-lotus root amylopectin gel is a good delivery system to improve the stability and bioavailability of vitamin D3.

3.
Pharmazie ; 74(10): 590-594, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31685082

RESUMO

Inclusion complexes of essential oils with cyclodextrins are an effective way to improve stability and solubility, and turn liquid materials into easy to handle powders. In this work, an essential oil of Myristica fragrans Hott. (MFEO), already used in the food and cosmetics industries, was formulated with beta-cyclodextrins (ß-CD) using a co-precipitation method. The orthogonal array scheme was adapted for the optimization of preparation process. DSC and FT-IR spectroscopy analysis indicated the successful formation of MFEO/ß-CD inclusion complexes, which improved the thermal stability of MFEO. Furthermore, comparing the antimicrobial activity of MFEO/ß-CD inclusion complexes and free essential oil against Staphyloccocus aureus, Staphyloccocus epidermidis, Escherichia coli, Klebsiella pneumoniae, yeast Saccharomyces cerevisiae and Bacillus subtilis, it was found that the antimicrobial effect was enhanced after the formation of inclusion complexes. This study demonstrates the potential for the use of MFEO/ß-CD inclusion complexes in the treatment of bacterial infection.

4.
Cancer Res ; 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690668

RESUMO

The tumorigenic role and underlying mechanisms of lipid accumulation, commonly observed in many cancers, remains insufficiently understood. In this study we identified an AMP-activated protein kinase (AMPK)-GATA-binding protein 3 (GATA3)-enoyl-CoA hydratase short-chain 1 (ECHS1) pathway that induces lipid accumulation and promotes cell proliferation in clear cell renal cell carcinoma (ccRCC). Decreased expression of ECHS1, which is responsible for inactivation of fatty acid oxidation (FAO) and activation of de novo fatty acid (FA) synthesis, positively associated with ccRCC progression and predicted poor patient survival. Mechanistically, ECHS1 downregulation induced FA and branched-chain amino acid (BCAA) accumulation which inhibited AMPK-promoted expression of GATA3, a transcriptional activator of ECHS1. BCAA accumulation induced activation of mTORC1, de novo FA synthesis, and promoted cell proliferation. Furthermore, GATA3 expression phenocopied ECHS1 in predicting ccRCC progression and patient survival. The AMPK-GATA3-ECHS1 pathway may offer new therapeutic approaches and prognostic assessment for ccRCC in the clinic.

5.
Genes Genomics ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677128

RESUMO

BACKGROUND: Both photosynthetic pigments and chloroplasts in plant leaf cells play an important role in deciding on the photosynthetic capacity and efficiency in plants. Systematical investigating the regulatory mechanism of chloroplast development and chlorophyll (Chl) content variation is necessary for clarifying the photosynthesis mechanism for crops. OBJECTIVE: This study aims to explore the critical regulatory mechanism of leaf color mutation in a yellow-green leaf sesame mutant Siyl-1. METHODS: We performed the genetic analysis of the yellow-green leaf color mutation using the F2 population of the mutant Siyl-1. We compared the morphological structure of the chloroplasts, chlorophyll content of the three genotypes of the mutant F2 progeny. We performed the two-dimensional gel electrophoresis (2-DE) and compared the protein expression variation between the mutant progeny and the wild type. RESULTS: Genetic analysis indicated that there were 3 phenotypes of the F2 population of the mutant Siyl-1, i.e., YY type with light-yellow leaf color (lethal); Yy type with yellow-green leaf color, and yy type with normal green leaf color. The yellow-green mutation was controlled by an incompletely dominant nuclear gene, Siyl-1. Compared with the wild genotype, the chloroplast number and the morphological structure in YY and Yy mutant lines varied evidently. The chlorophyll content also significantly decreased (P < 0.05). The 2-DE comparison showed that there were 98 differentially expressed proteins (DEPs) among YY, Yy, and yy lines. All the 98 DEPs were classified into 5 functional groups. Of which 82.7% DEPs proteins belonged to the photosynthesis and energy metabolism group. CONCLUSION: The results revealed the genetic character of yellow-green leaf color mutant Siyl-1. 98 DEPs were found in YY and Yy mutant compared with the wild genotype. The regulation pathway related with the yellow leaf trait mutation in sesame was analyzed for the first time. The findings supplied the basic theoretical and gene basis for leaf color and chloroplast development mechanism in sesame.

6.
Plant Cell Environ ; 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703150

RESUMO

Although the alteration of DNA methylation due to abiotic stresses, such as exposure to the toxic metal cadmium (Cd), has been often observed in plants, little is known about whether such epigenetic changes are linked to the ability of plants to adapt to stress. Herein, we report a close linkage between DNA methylation and the adaptational responses in Arabidopsis plants under Cd stress. Exposure to Cd significantly inhibited the expression of three DNA demethylase genes ROS1/DML2/DML3 (RDD) and elevated DNA methylation at the genome-wide level in Col-0 roots. Furthermore, the profile of DNA methylation in Cd-exposed Col-0 roots was similar to that in the roots of rdd triple mutants, which lack RDD, indicating that Cd-induced DNA methylation is associated with the inhibition of RDD. Interestingly, the elevation in DNA methylation in rdd conferred a higher tolerance against Cd stress and improved cellular Fe nutrition in the root tissues. In addition, lowering the Fe supply abolished improved Cd tolerance due to the lack of RDD in rdd. Together, these data suggest that the inhibition of RDD-mediated DNA demethylation in the roots by Cd would in turn enhance plant tolerance to Cd stress by improving Fe nutrition through a feedback mechanism.

7.
J Transl Med ; 17(1): 363, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703694

RESUMO

BACKGROUND: Growing evidence has demonstrated immune reactivity as a confirmed important carcinogenesis and therapy efficacy for clear cell renal cell carcinoma (ccRCC). Aquaporin 9 (AQP9) is involved in many immune-related signals; however, its role in ccRCC remains to be elucidated. This study investigated AQP9 expression in tumor tissues and defined the prognostic value in ccRCC patients. METHODS: A total of 913 ccRCC patients with available RNA-sequence data from the Cancer Genome Atlas (TCGA) database and Fudan University Shanghai Cancer Center (FUSCC) were consecutively recruited in analyses. Differential transcriptional and proteome expression profiles were obtained and validated using multiple datasets. A partial likelihood test from Cox regression analysis was developed to address the influence of independent factors on progression-free survival (PFS) and overall survival (OS). The Kaplan-Meier method and log-rank test were performed to assess survival. Receiver operating characteristic (ROC) curves were used to describe binary classifier value of AQP9 using area under the curve (AUC) score. Functional enrichment analyses and immune infiltration analysis were used to describe significantly involved hallmark pathways of hub genes. RESULTS: Significantly elevated transcriptional and proteomic AQP9 expressions were found in ccRCC samples. Increased AQP9 mRNA expression was significantly associated with advanced clinicopathological parameters and correlated with shorter PFS and OS in TCGA and FUSCC cohorts (p < 0.001). ROC curves suggested the significant diagnostic and prognostic ability of AQP9 (PFS, AUC = 0.823; OS, AUC = 0.828). Functional annotations indicated that AQP9 is involved in the most significant hallmarks including complement, coagulation, IL6/JAK-STAT3, inflammatory response and TNF-alpha signaling pathways. CONCLUSION: Our study revealed that elevated AQP9 expression was significantly correlated with aggressive progression, poor survival and immune infiltrations in ccRCC patients, and we validated its prognostic value in a real-world cohort. These data suggest that AQP9 may act as an oncogene and a promising prognostic marker in ccRCC.

8.
BMC Genomics ; 20(1): 813, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694534

RESUMO

BACKGROUND: Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. RESULTS: Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. CONCLUSIONS: Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.

9.
J Sci Food Agric ; 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605375

RESUMO

BACKGROUND: Beta-hydroxy-beta-methylbutyrate (HMB) is the metabolite of leucine that plays an important role in muscle protein metabolism. The objective of the present study was to determine effects of in ovo feeding (IOF) of HMB at 7 d of incubation (DOI) via air cell or 18 DOI via amnion on hatchability, muscle growth and performance in prenatal and posthatch broilers. RESULTS: IOF of HMB via air cell at 7 DOI increased hatchability by 4.34% compared with the control (89.67% vs 85.33%). Birds in IOF groups exhibited higher body weight, average daily body weight gain and pectoral muscle percentage. Furthermore, IOF of HMB significantly increased the level of plasma growth hormone, insulin, insulin-like growth factor-1. Chicks hatched from IOF treatment had larger diameters of muscle fibre and higher mitotic activity of satellite cells at early posthatch age. IOF of HMB activated satellite cells by up-regulation mRNA expression of myogenic transcription factors, myogenic differentiation 1 (MyoD) and myogenin. Chicks hatched from air cell injection group had higher pectoral muscle percentage at 5 d posthatch, and increased satellite cell mitotic activity at 7 d posthatch than counterparts from amnion injection group. CONCLUSION: IOF of HMB via amnion at 18 DOI or especially via air cell at 7 DOI could be used as an effective approach to enhance hatchability, productive performance and breast muscle yield in broilers. This article is protected by copyright. All rights reserved.

10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(5): 1402-1408, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31607290

RESUMO

OBJECTIVE: To investigate the mechanism of rapamycin-induced apoptosis of chronic myelogenous leukemia cells. METHODS: The chronic granulocytic leukemia K562 cells were divided into 3 groups: A, B and C group were treated with rapamycin of 10, 15 and 20 nmol/L, repectively for 24 h, while the K562 cells in control group were not treated with rapamycin. The effect of rapamycin on the proliferation of K562 cells was detected by MTT, and the effect of rapamycin on the apoptosis of K562 cells was detected by AnnexinV-FITC/PI double staining. The expression level of EZH2/Hedgehog signaling pathway genes in K562 cells was detected by RT-PCR, and Western blot was used to detect the levels of apoptotic protein and the related signaling pathway proteins in K562 cells. RESULTS: The MTT assay showed that the different concentration of rapamycin had obvious inhibitory effects on the cells, and the survival rate of cells in group C was 37.6%±3.4%, which was significantly lower than that of the other groups (P<0.05). The apoptosis rate of cells in group C was 93.1%±8.1%, which was significantly higher than that of the other groups (P<0.05). By Western blot, it was found that the relative expression levels of Caspase-3 and BAX protein in group C were 0.36 ± 0.04 and 0.39±0.06, respectively, which were significantly higher than those in other groups (P<0.05), and the level of BCL-2 protein was 0.17±0.03, which was significantly lower than that of other groups (P<0.05). By RT-PCR, it was found that the mRNA levels of EZH2 and Hedgehog genes in A, B and C groups were significantly lower than those in the control group (P<0.05), but mRNA level of Ptch1 gene was significantly higher than that of the control (P<0.05). By Western blot, it was found that the expression levels of EZH2 and Hedgehog protein in A, B and C groups were significantly lower than that in the control group (P<0.05), but the level of Ptch1 protein was higher than that of the control (P<0.05). The relative levels of EZH2 and Hedgehog protein in group C were 0.21 ±0.03 and 0.16±0.05 respectively, which were significantly lower than those in other groups (P<0.05), and Ptch1 protein level were 0.46 ±0.06, significantly higher than that of other groups (P<0.05). CONCLUSION: Rapamycin can inhibit the protein expression of EZH2 in leukemic cells, thus interfere with the activation of Hedgehog signaling pathway, promote the expression of apoptotic protein, reduce the level of anti apoptotic protein, and eventually induce apoptosis of leukemia cells.

11.
Sci Rep ; 9(1): 14924, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624370

RESUMO

Climatic characteristics of Hengduan Mountains region were diverse, and Eothenomys miletus was a native species throughout this region. To investigate adaptive strategies of E. miletus to environmental factors in different locations in this region, five locations were selected, including Deqin (DQ), Xianggelila (XGLL), Lijiang (LJ), Jianchuan (JC) and Ailaoshan (ALS). Then, body mass, visceral organ masses, and serum and liver metabolomes of E. miletus from each location were examined. The results showed that body mass was significantly different among these five sites. Liver mass was lower in ALS than in other locations. PLS-DA analysis, metabolite tree maps and heat maps of serum and liver metabolites showed that samples from DQ and XGLL clustered together, as did the samples from LJ, JC and ALS. Serum concentrations of lipid and amino acid metabolites, concentrations of TCA cycle intermediates, lipid metabolites and amino acid metabolites in livers from DQ and XGLL were higher than those from other three regions. However, the concentrations of glycolytic metabolites were lower in DQ and XGLL. All these results indicated that E. miletus adapts to changes in environmental temperature and altitude of this region by adjusting body mass and serum and liver metabolite concentrations.

12.
JCI Insight ; 4(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578307

RESUMO

Alcohol withdrawal (AW) after chronic alcohol exposure produces a series of symptoms, with AW-associated seizures being among the most serious and dangerous. However, the mechanism underlying AW seizures has yet to be established. In our mouse model, a sudden AW produced 2 waves of seizures: the first wave includes a surge of multiple seizures that occurs within hours to days of AW, and the second wave consists of sustained expression of epileptiform spikes and wave discharges (SWDs) during a protracted period of abstinence. We revealed that the structural and functional adaptations in newborn dentate granule cells (DGCs) in the hippocampus underlie the second wave of seizures but not the first wave. While the general morphology of newborn DGCs remained unchanged, AW increased the dendritic spine density of newborn DGCs, suggesting that AW induced synaptic connectivity of newborn DGCs with excitatory afferent neurons and enhanced excitability of newborn DGCs. Indeed, specific activation and suppression of newborn DGCs by the chemogenetic DREADD method increased and decreased the expression of epileptiform SWDs, respectively, during abstinence. Thus, our study unveiled that the pathological plasticity of hippocampal newborn DGCs underlies AW seizures during a protracted period of abstinence, providing critical insight into hippocampal neural circuits as a foundation to understand and treat AW seizures.

13.
Nat Commun ; 10(1): 4894, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653832

RESUMO

Cyber-physical systems embed software into the physical world. They appear in a wide range of applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems have proved resistant to modeling due to their intrinsic complexity arising from the combination of physical and cyber components and the interaction between them. This study proposes a general framework for discovering cyber-physical systems directly from data. The framework involves the identification of physical systems as well as the inference of transition logics. It has been applied successfully to a number of real-world examples. The novel framework seeks to understand the underlying mechanism of cyber-physical systems as well as make predictions concerning their state trajectories based on the discovered models. Such information has been proven essential for the assessment of the performance of cyber-physical systems; it can potentially help debug in the implementation procedure and guide the redesign to achieve the required performance.

14.
Hepatol Res ; 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31661588

RESUMO

AIM: Our previous transcriptome sequencing analysis (RNA-Seq) detected that Retinol dehydrogenase 16 (RDH16) was dramatically downregulated in hepatocellular carcinoma (HCC). RDH16 belongs to the short-chain dehydrogenases/reductases (SDR) super family and its role in HCC remains unknown. This study aims to investigate the expression and function of RDH16 in HCC. METHODS: The mRNA and protein level of RDH16 in HCC samples were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry analyses, respectively. The role of RDH16 acted in HCC was determined by in vitro and in vivo functional studies. RESULTS: Downregulation of RDH16 has been detected in approximately 90% of primary HCCs, which was significantly associated with high serum AFP level, tumor size, microsatellite formation, thrombus, and poor overall survival of HCC patients. Compared with non-tumor tissues, higher density of methylation was identified in HCC samples. In addition, RDH16 increases the level of retinoic acid and blocks the de novo synthesis of fatty acid in HCC cells. Functional study indicates that ectopic expression of RDH16 in HCC cells suppresses cell growth, clonogenicity and cell motility. CONCLUSIONS: RDH16 might be a prognostic biomarker and intervention point for new therapeutic strategies in HCC.

15.
Sensors (Basel) ; 19(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661867

RESUMO

High-precision ultrasound imaging of void defects is critical for the performance and safety assessment of ballastless track structures. The sound propagation velocity of each layer in the ballastless track structure is quite different. However, the traditional concrete Synthetic Aperture Focusing Technique (SAFT) ultrasound imaging method is based on the assumption that the concrete has a single constant shear wave velocity. Thus, it is not a suitable method for the ultrasonic imaging of multilayer structures. In this paper, a Multilayer SAFT high-precision ultrasound imaging method is proposed. It is based on the ray-tracing technique and uses the Fermat principle to find the refraction point that minimizes the delay of the acoustic wave propagation path at the interface of the discrete layers. Then, the acoustic wave propagation path is segmented by the position of the refraction point, and the propagation delay of the ultrasonic wave is obtained segment by segment. Thus, the propagation delay of the ultrasonic wave is obtained one by one, so that the propagation delay of the ultrasonic wave in the multilayer structure can be accurately obtained. Finally, the focused image is obtained according to the SAFT imaging algorithm. The finite element simulation and experimental results show that the Multilayer SAFT imaging method can accurately track the propagation path of the ultrasonic wave in ballastless track structures, as well as accurately calculate the propagation delay of the ultrasonic wave and the lengths of void defects. The high accuracy of the Multilayer SAFT imaging represents a significant improvement compared to traditional SAFT imaging.

16.
Ann N Y Acad Sci ; 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31663616

RESUMO

Aeromonas veronii is an important aquatic zoonotic pathogen in humans and animals. In recent years, extracellular proteins from bacteria have been found to be the major pathogenic factors for aquatic animals. The aim of this study was to systematically analyze the extracellular proteins of nine sources of A. veronii and the effects of hisJ on virulence. We screened only the common proteins from nine different sources of A. veronii by liquid chromatography-tandem mass spectrometry and identified the gene hisJ. We then constructed ΔhisJ (deleted) and C-hisJ (complemented) variants of A. veronii TH0426 to assess the biological function of hisJ. While the ΔhisJ strain did not show altered growth (P > 0.05), we observed that it had reduced colony formation and biofilm formation and reduced adhesion to and invasion of epithelioma papulosum cyprini cells by 2.0-, 1.9-, and 10.8-fold, respectively. Additionally, infection experiments on zebrafish and mouse infection experiments showed that the virulence of the ΔhisJ strain was decreased by 865-fold (P < 0.001) compared with the wild-type strain; virulence of the complemented C-hisJ strain was reduced only 2.8-fold. Furthermore, in the context of hisJ deletion, flagella of A. veronii TH0426 were easily detached and the expression of virulence genes was downregulated. A persistence test (of bacterial colonies in crucian carp) showed that the number of bacteria in the immune organs of the ΔhisJ-infected group was lower than that in the wild-type-infected group. Overall, these results show that hisJ affects flagellar shedding, virulence, biofilm formation, adhesion, and invasion of A. veronii TH0426, and that hisJ is closely associated with virulence and plays a crucial role in its pathogenicity of A. veronii TH0426.

17.
Clin Exp Med ; 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664538

RESUMO

Value of hepatitis C virus (HCV) core antigen (cAg) test has been controversy in patients with low HCV loads for its lower sensitivity. We assessed correlation between HCV-cAg and HCV RNA in serum samples with low viral loads and analyzed the performance of HCV-cAg assay in determining diagnosis and treatment outcomes in chronic hepatitis C patients. Both HCV RNA and HCV-cAg were detected for 2298 serum samples. Correlation analysis was performed between the two tests. Receiver operating characteristics (ROC) curve was used to assess value of HCV-cAg test in determining diagnosis and response outcomes at the different HCV RNA thresholds. The two tests were correlated very well, and moreover, correlation in the low viral load group was higher than that in the high viral load group (r value: 0.901 and 0.517). Positive agreement of HCV-cAg ≥ 3 fmol/L was as high as 97.0% for HCV RNA ≥ 1000 IU/mL, and its negative agreement for HCV RNA < 15 IU/mL was up to 98.9% in all samples. Area under ROCs ranged from 0.939 to 0.992, regardless of HCV RNA thresholds. When lower limit of detection of HCV RNA was 15, 100 or 1000 IU/mL, positive predictive value of HCV-cAg was 96.8%, 98.8% or 92.4%, and its negative predictive value was 87.0%, 89.9% or 98.3%, respectively, on the basis of different cutoff values. High-sensitivity HCV-cAg detection may likely replace HCV RNA to confirm the existence of HCV and to guide the treatment of chronic HCV infection.

19.
Clin Interv Aging ; 14: 1579-1587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564840

RESUMO

Background: Aging leads to structural and functional changes in the vasculature characterized by arterial endothelial dysfunction and stiffening of large elastic arteries and is a predominant risk factor for cardiovascular disease, the leading cause of morbidity and mortality in modern societies. Although exercise reduces the risk of many age-related diseases, including cardiovascular disease, the mechanisms underlying the beneficial effects of exercise on age-related endothelial function fully elucidated. Purpose: The present study explored the effects of exercise on the impaired endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilation in aged arteries and on the involvement of the transient receptor potential vanilloid 4 (TRPV4) channel and the small-conductance calcium-activated potassium (KCa2.3) channel signaling in this process. Methods: Male Sprague-Dawley rats aged 19-21 months were randomly assigned to a sedentary group or to an exercise group. Two-month-old rats were used as young controls. Results: We found that TRPV4 and KCa2.3 isolated from primary cultured rat aortic endothelial cells pulled each other down in co-immunoprecipitation assays, indicating that the two channels could physically interact. Using ex vivo functional arterial tension assays, we found that EDHF-mediated relaxation induced by acetylcholine or by the TRPV4 activator GSK1016790A was markedly decreased in aged rats compared with that in young rats and was significantly inhibited by TRPV4 or KCa2.3 blockers in both young and aged rats. However, exercise restored both the age-related and the TRPV4-mediated and KCa2.3-mediated EDHF responses. Conclusion: These results suggest an important role for the TRPV4-KCa2.3 signaling undergirding the beneficial effect of exercise to ameliorate age-related arterial dysfunction.

20.
Medicine (Baltimore) ; 98(39): e17198, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31574828

RESUMO

BACKGROUND: The aim of our study was to assess the value of serum human epididymis protein 4 (HE4) to diagnose lung cancer and provide reliable scientific conclusions to guide clinical practice. METHODS: A systematic search of the PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature, and WANFANG databases was conducted to identify all studies examining serum HE4 in the diagnosis of lung cancer published up to June, 2017. The Quality Assessment of Diagnostic Accuracy Studies tool was used to evaluate the methodological quality of each trial. The meta-analysis was performed using STATA software and Review Manager 5.3. RESULTS: There were 21 studies involving 1883 cases and 1696 controls included in our meta-analysis. The pooled sensitivity and specificity of HE4 for diagnosing lung cancer were 0.73 (95% confidence interval [CI] 0.68-0.78) and 0.86 (95% CI 0.81-0.91), respectively. The positive likelihood ratio and negative likelihood ratio were 5.4 (95% CI 3.8-7.5) and 0.31 (95% CI 0.26-0.37), respectively. The diagnostic odds ratio was 17 (95% CI 12-26). The area under the curve of the summary receiver-operating characteristic curve was 0.86 (95% CI 0.83-0.89). Race, assay method, type of cancer, sample size, and publication date might be sources of heterogeneity in our meta-analysis. Subgroup analyses showed that the sensitivity in Caucasians was higher than that in Asians (0.81, 95% CI 0.71-0.91; and 0.71, 95% CI 0.66-0.77, respectively), but the specificity in Asians was better than that in Caucasians (0.87, 95% CI 0.81-0.92; and 0.85, 95% CI 0.73-0.97, respectively). The chemiluminescent microparticle immunoassay had the highest sensitivity, with 0.79 (95% CI 0.73-0.97), and the enzyme-linked immunosorbent assay had the highest specificity, with 0.87 (95% CI 0.79-0.94). HE4 had high diagnostic efficacy when screening for small cell lung cancer with the highest specificity (0.90, 95% CI 0.77-1.00). CONCLUSIONS: HE4 is a relatively promising and effective biomarker for the diagnosis of lung cancer. Furthermore, given the limitations of our study, additional large-scale and well-designed studies are needed in the future.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Proteínas/análise , Biomarcadores Tumorais/sangue , Humanos , Razão de Chances , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA