Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Sci Total Environ ; 720: 137655, 2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32146412

RESUMO

The homeostasis imbalance of metals is closely associated with nonalcoholic fatty liver disease (NAFLD). A total of 1594 and 566 Chinese Han men were enrolled in cross-sectional and longitudinal analyses, respectively. We measured the serum concentrations of 22 metals by ICP-MS. The traditional and the LASSO regression methods were used to construct multiple-metals models, respectively. We performed Mendelian randomization (MR) analysis to confirm the causal relationship between NAFLD and metals using three NAFLD-related SNPs as instrumental variable. After adjustment in the six-metal model, only depressed molybdenum and elevated zinc were associated with a higher NAFLD risk, in both cross-sectional and longitudinal analyses. In the twelve-metal model, similar results were still observed. Moreover, dose-response relationships were non-linear for molybdenum and positively linear for zinc with NAFLD risk. In MR analysis, no causal associations were found from NAFLD to molybdenum and zinc. Our results support that serum molybdenum levels were non-linearly associated with NAFLD risk in Chinese men, whereas serum zinc levels showed a positively linear association. Moreover, MR analysis indicated the changes in serum molybdenum and zinc levels might be not caused by NAFLD, further confirmed our findings in cross-sectional and longitudinal analyses.

2.
Cell Oncol (Dordr) ; 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32207044

RESUMO

PURPOSE: The iron-chelating agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) has been found to inhibit cell growth and to induce apoptosis in several human cancers. However, its effects and mechanism of action in glioma are unknown. METHODS: Human glioma cell line LN229 and patient-derived glioma stem cells GSC-42 were applied for both in vitro and in vivo xenograft nude mouse experiments. The anti-tumor effects of Dp44mT were assessed using MTS, EdU, TUNEL, Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation and immunohistochemical assays. RESULTS: We found that Dp44mT can upregulate the expression of the anti-oncogene N-myc downstream-regulated gene (NDRG)2 by directly binding to and activating the RAR-related orphan receptor (ROR)A. In addition, we found that NDRG2 overexpression suppressed inflammation via activation of interleukin (IL)-6/Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling. CONCLUSIONS: Our data indicate that Dp44mT may serve as an effective drug for the treatment of glioma by targeting RORA and enhancing NDRG2-mediated IL-6/JAK2/STAT3 signaling.

3.
J Neuroinflammation ; 17(1): 48, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019570

RESUMO

BACKGROUND: Ischemic stroke is a main cause of mortality. Blood-brain barrier (BBB) breakdown appears to play a critical role in inflammation in patients with ischemic stroke and acceleration of brain injury. The BBB has a protective function and is composed of endothelial cells, pericytes, and astrocytes. In ischemic stroke treatments, regulation of vascular endothelial growth factor (VEGF)-A and vascular endothelial growth factor receptor (VEGFR)-2 is a crucial target despite adverse effects. Our previous study found that loss of C-type lectin family 14 member A (CLEC14A) activated VEGF-A/VEGFR-2 signaling in developmental and tumoral angiogenesis. Here, we evaluate the effects of BBB impairment caused by CLEC14A deficiency in ischemia-reperfusion injury. METHODS: In vitro fluorescein isothiocyanate (FITC)-dextran permeability, transendothelial electrical resistance (TEER) assay, and immunostaining were used to evaluate endothelial integrity. BBB permeability was assessed using Evans blue dye and FITC-dextran injection in Clec14a-/- (CLEC14A-KO) mice and wild-type mice. Middle cerebral artery occlusion surgery and behavioral assessments were performed to evaluate the neurologic damage. The change of tight junctional proteins, adhesion molecules, pro-inflammatory cytokines, and microglial were confirmed by immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction of brain samples. RESULTS: In endothelial cells, knockdown of CLEC14A increased FITC-dextran permeability and decreased transendothelial electrical resistance; the severity of this effect increased with VEGF treatment. Immunofluorescence staining revealed that tight junctional proteins were attenuated in the CLEC14A knockdown endothelial cells. Consistent with the in vitro results, CLEC14A-KO mice that were injected with Evans blue dye had cerebral vascular leakage at postnatal day 8; wild-type mice had no leakage. We used a middle cerebral artery occlusion model and found that CLEC14A-KO mice had severe infarcted brain and neurological deficits with upregulated VEGFR-2 expression. FITC-dextran leakage was present in CLEC14A-KO mice after ischemia-reperfusion, and the numbers of tight junctional molecules were significantly decreased. Loss of CLEC14A increased the pro-inflammatory response through adhesion molecule expression, and glial cells were activated. CONCLUSIONS: These results suggest that activation of VEGFR-2 in CLEC14A-KO mice aggravates ischemic stroke by exacerbating cerebral vascular leakage and increasing neuronal inflammation after ischemia-reperfusion injury.

4.
Gene ; 739: 144497, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32088243

RESUMO

BACKGROUND: Uncoupling protein 1 (UCP1) has been reported to be associated with type 2 diabetes mellitus (T2DM) in different populations, however, little is reported in Chinese population. The present study aimed to explore the association between some polymorphisms of UCP1 with T2DM and the interactions between UCP1 and physical activity/sedentary behavior (PA/SB) lifestyle in Chinese population. METHODS: Three polymorphisms (rs1472268, rs3811790 and rs3811791) were genotyped in 929 T2DM patients and 1044 nondiabetic controls. The data of PA and SB were acquired. Logistic regression and linear regression were conducted to assess the association of UCP1 and T2DM and related traits. RESULTS: The CC genotype of rs3811791 was significantly associated with an increased risk of T2DM [odds ratio (OR) = 1.42, P = 0.042] and a higher level of triglyceride (TG) (ß = 0.048, P = 0.034). This association still existed in the group of SB ≥ 3 h/d (OR = 1.66, P = 0.009) and the group of PA ≥ 150 min/week and SB ≥ 3 h/d (OR = 1.60, P = 0.034). In the group of PA < 150 min/week and SB < 3h/d, CC genotype was associated with a higher level of homeostatic model assessment of insulin resistance (HOMA-IR) index, and in the group of PA < 150 min/week and SB ≥ 3 h/d, CC genotype was associated with increased level of TG and decreased high-density lipoprotein cholesterol (HDL-C). CONCLUSION: This study suggests that rs3811791 of UCP1 may be associated with T2DM and TG. Moreover, we demonstrate that SB interacted with rs3811791 of UCP1 was associated with T2DM, and PA interacted with rs3811791 of UCP1 was associated with the level of HOMA-IR, HDL-C, and TG.

5.
EBioMedicine ; 52: 102651, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32062354

RESUMO

BACKGROUND: Glioma has a poor prognosis, and is the most common primary and lethal primary malignant tumor in the central nervous system. Retinoic acid receptor-related orphan receptor A (RORA) is a member of the ROR subfamily of orphan receptors and plays an anti-tumor role in several cancers. METHODS: A cell viability assay, the Edu assay, neurosphere formation assay, and xenograft experiments were used to detect the proliferative abilities of glioma cell line, glioma stem cells (GSCs). Western blotting, ELISAs, and luciferase reporter assays were used to detect the presence of possible microRNAs. FINDINGS: Our study found for the first time that RORA was expressed at low levels in gliomas, and was associated with a good prognosis. RORA overexpression inhibited the proliferation and tumorigenesis of glioma cell lines and GSCs via inhibiting the TNF-α mediated NF-κB signaling pathway. In addition, microRNA-18a had a promoting effect on gliomas, and was the possible reason for low RORA expression in gliomas. INTERPRETATION: RORA may be a promising therapeutic target in the treatment of gliomas.

6.
Comput Methods Programs Biomed ; 189: 105321, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31986472

RESUMO

BACKGROUND AND OBJECTIVES: Pulse wave is one of the biomedical signals that has been studied over the past years. Accurate recognition of feature points is the basis of verifying the connections between pulse waves and certain diseases. Therefore, the aim of the study is to discuss the use of angle mapping on feature points recognition. METHODS: The mathematical method is based on the application of angle curve with parameter " k " on pulse wave. The data used is collected by PVDF sensor. Approximate curve and mathematical model are used for the discussion of the influence of parameter k and pulse wave amplitude by numerical calculation. The conclusion drawn from the numerical solution is that when k changes to maximize the angle extremum value, the corresponding position of angle extremum point is the feature point position. For the sampling rate f = 455Hz in this paper, k can be taken from 5 to 15. RESULTS: We present the recognition results of unobvious feature points based on the "angle extremum maximum method" and corresponding angle values. The results are compared with traditional methods and the determination of angle threshold value is discussed. CONCLUSIONS: This method can be used for accurate and efficient feature points identification, and it can be better applied to pulse waves with noise or unobvious feature points.

7.
Sci Data ; 7(1): 4, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896769

RESUMO

A comprehensive cellular anatomy of normal human kidney is crucial to address the cellular origins of renal disease and renal cancer. Some kidney diseases may be cell type-specific, especially renal tubular cells. To investigate the classification and transcriptomic information of the human kidney, we rapidly obtained a single-cell suspension of the kidney and conducted single-cell RNA sequencing (scRNA-seq). Here, we present the scRNA-seq data of 23,366 high-quality cells from the kidneys of three human donors. In this dataset, we show 10 clusters of normal human renal cells. Due to the high quality of single-cell transcriptomic information, proximal tubule (PT) cells were classified into three subtypes and collecting ducts cells into two subtypes. Collectively, our data provide a reliable reference for studies on renal cell biology and kidney disease.

8.
Aliment Pharmacol Ther ; 51(2): 271-280, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31660640

RESUMO

BACKGROUND: For patients with UC, flexible maintenance dosing therapy may confer advantages for safety, efficacy, costs and patient preference. Tofacitinib is an oral, small molecule JAK inhibitor for the treatment of UC. AIM: To assess the efficacy and safety of tofacitinib dose de-escalation and escalation in patients with UC. METHODS: We evaluated data (November 2017 data cut-off) from OCTAVE Open, an ongoing, open-label, long-term extension study. The dose de-escalation group comprised 66 tofacitinib induction responders in remission following 52 weeks' tofacitinib 10 mg b.d. maintenance therapy, subsequently de-escalated to 5 mg b.d. in OCTAVE Open. The dose escalation group comprised 57 tofacitinib induction responders who experienced treatment failure while receiving 5 mg b.d. maintenance therapy, subsequently escalated to 10 mg b.d. in OCTAVE Open. RESULTS: After tofacitinib de-escalation, 92.4% (61/66) and 84.1% (53/63) of patients maintained clinical response and 80.3% (53/66) and 74.6% (47/63) maintained remission, at months 2 and 12, respectively. After dose escalation, 57.9% (33/57) and 64.9% (37/57) of patients recaptured clinical response and 35.1% (20/57) and 49.1% (28/57) were in remission, at months 2 and 12, respectively. The incidence rate of herpes zoster with dose escalation (7.6 patients with events/100 patient-years) was numerically higher than in the overall tofacitinib UC programme. CONCLUSIONS: Following tofacitinib de-escalation in patients already in remission on 10 mg b.d., most maintained remission, although 25.4% lost remission, at month 12. For induction responders who dose-escalated following treatment failure on 5 mg b.d. maintenance therapy, 49.1% achieved remission by month 12. (ClinicalTrials.gov number: NCT01470612).

9.
Clin Exp Med ; 20(1): 131-141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31664538

RESUMO

Value of hepatitis C virus (HCV) core antigen (cAg) test has been controversy in patients with low HCV loads for its lower sensitivity. We assessed correlation between HCV-cAg and HCV RNA in serum samples with low viral loads and analyzed the performance of HCV-cAg assay in determining diagnosis and treatment outcomes in chronic hepatitis C patients. Both HCV RNA and HCV-cAg were detected for 2298 serum samples. Correlation analysis was performed between the two tests. Receiver operating characteristics (ROC) curve was used to assess value of HCV-cAg test in determining diagnosis and response outcomes at the different HCV RNA thresholds. The two tests were correlated very well, and moreover, correlation in the low viral load group was higher than that in the high viral load group (r value: 0.901 and 0.517). Positive agreement of HCV-cAg ≥ 3 fmol/L was as high as 97.0% for HCV RNA ≥ 1000 IU/mL, and its negative agreement for HCV RNA < 15 IU/mL was up to 98.9% in all samples. Area under ROCs ranged from 0.939 to 0.992, regardless of HCV RNA thresholds. When lower limit of detection of HCV RNA was 15, 100 or 1000 IU/mL, positive predictive value of HCV-cAg was 96.8%, 98.8% or 92.4%, and its negative predictive value was 87.0%, 89.9% or 98.3%, respectively, on the basis of different cutoff values. High-sensitivity HCV-cAg detection may likely replace HCV RNA to confirm the existence of HCV and to guide the treatment of chronic HCV infection.

10.
Plant J ; 101(2): 265-277, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31529543

RESUMO

To understand sex determination in watermelon (Citrullus lanatus), a spontaneous gynoecious watermelon mutant, XHBGM, was selected from the monoecious wild type XHB. Using map-based cloning, resequencing and fluorescence in situ hybridization analysis, a unique chromosome translocation between chromosome 2 and chromosome 3 was found in XHBGM. Based on the breakpoint location in chromosome 2, a putative C2H2 zinc finger transcription factor gene, ClWIP1 (gene ID Cla008537), an orthologue of the melon gynoecy gene CmWIP1, was disrupted. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system 9 to edit ClWIP1, we obtained gynoecious watermelon lines. Functional studies showed that ClWIP1 is expressed specifically in carpel primordia and is related to the abortion of carpel primordia in early floral development. To identify the cellular and metabolic processes associated with ClWIP1, we compared the shoot apex transcriptomes of two gynoecious mutants and their corresponding wild types. Transcriptome analysis showed that differentially expressed genes related to the ethylene and cytokinin pathways were upregulated in the gynoecious mutants. This study explores the molecular mechanism of sex determination in watermelon and provides a theoretical and technical basis for breeding elite gynoecious watermelon lines.

11.
Cell Tissue Res ; 379(1): 195-206, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31428875

RESUMO

Liver fibrosis results from collagen fiber deposition. Antler stem cells (ASCs) naturally in vivo differentiate into cartilage, which is only made of Col II in collagen component; whereas liver fibrosis is caused by over-abundance of Col I and III. In addition, ASCs can effectively promote regenerative wound healing in which tissue contains very few collagen fibers (Col I). In this study, we investigate the therapeutic effects of ASCs in a rat model of CCl4-induced liver fibrosis. Rats were treated with ASCs for 4 weeks in vivo, then biochemical and histopathological analyses were performed. Furthermore, we established cell co-culture systems of hepatic stellate cells (HSCs) and ASCs and of M1 macrophages and ASCs in vitro. Mesenchymal stem cells (MSCs) were used as a positive control. The results showed that ASC transplantation alleviated liver fibrosis effectively as evidenced by reduced collagen accumulation, decreased fatty degeneration, increased hepatocyte regeneration, decreased inflammation and significantly enhanced liver function; moreover, ASCs decreased the expression of pro-fibrogenic factors including TGF-ß and α-SMA. Additionally, our study showed that ASCs inhibit HSC activation and proliferation by controlling the expression of MMPs, TIMP1, TGF-ß, α-SMA and COL1A2 involved in these processes. Our results suggested that ASCs alleviate liver fibrosis effectively and inhibit HSC activation. Thus, ASCs may serve as a novel stem cell source for the treatment of liver fibrosis in the clinic.

12.
Eur J Pharmacol ; 868: 172858, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31837307

RESUMO

Neuroinflammation is involved in brain aging and neuronal cell death in neurodegenerative diseases such as Alzheimer's disease (AD). Butein has been suggested to have anti-inflammatory, anti-apoptotic, and anti-cancer effects. However, few studies have been done to evaluate whether butein exerts protective effects on neurons, and the potential mechanism for this effect has not been studied. Here, we examined the effect of butein on SH-SY5Y neuroblastoma cells grown with conditioned medium from BV2 microglia cells that had been activated by lipopolysaccharide (LPS) as a neuroinflammation model. We found butein pretreatment significantly increased SH-SY5Y cell viability in a dose-dependent manner by inhibiting the apoptosis normally induced by microglia-conditioned medium. SH-SY5Y cells treated with microglia-conditioned medium showed upregulated ERK signaling pathway-related mRNA expression and protein phosphorylation, which was dose-dependently reversed by butein. Immunocytochemistry and Western blot results showed that BV2-LPS conditioned medium-induced Nuclear factor kappaB (NF-κB) transactivational activity in SH-SY5Y cells, but this was attenuated by butein treatment of the BV2 cells prior to their exposure to LPS. Collectively, our results indicate that butein effectively mitigates inflammatory injury caused by LPS-conditioned medium from microglia, possibly due to reductions in the transactivational activity of NF-κB p65 and ERK signaling pathway activation, and provide evidence for a neuroprotective role of butein through blocking negative consequences of microglial activation.

13.
J Asian Nat Prod Res ; 22(4): 397-403, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30693785

RESUMO

Mannosylxylarinolide (1), a new 3,4-seco-ergostane-type steroidal saponin featuring a ß-d-mannose moiety, was isolated from the culture of the endophytic fungus Xylaria sp. that had been isolated from an ornamental plant of Hoya sp. The gross structure was determined by spectroscopic data, and the absolute configuration of the new 3,4-seco-ergostane-type steroidal saponin (1) was determined by X-ray diffraction analysis.


Assuntos
Saponinas , Xylariales , Ergosterol/análogos & derivados , Manose , Estrutura Molecular
14.
J Pharm Pharmacol ; 72(1): 76-83, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31702064

RESUMO

OBJECTIVES: Metoprolol is regarded as a first-line medicine for the treatment of myocardial infarction (MI). However, the underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of miR-1 in the pharmacological function of metoprolol. METHODS: In vivo MI model was established by left anterior descending coronary artery (LAD) ligation. The effects of metoprolol on infarct size and cardiac dysfunction were determined by triphenyltetrazolium chloride staining and cardiac echocardiography, respectively. In vitro oxidative stress cardiomyocyte model was established by H2 O2 treatment. The effect of metoprolol on the expression of miR-1 and connexin43 (Cx43) was quantified by real-time PCR and western blot, respectively. The intercellular communication was evaluated by lucifer yellow dye diffusion. KEY FINDINGS: Left anterior descending ligation-induced MI injury was markedly attenuated by metoprolol as shown by reduced infarct size and better cardiac function. Metoprolol reversed the up-regulation of miR-1 and down-regulation of Cx43 in MI heart. Moreover, in H2 O2 -stimulated cardiomyocytes, overexpression of miR-1 abolished the effects of metoprolol on Cx43 up-regulation and increased intercellular communication, indicating that miR-1 may be a necessary mediator for the cardiac protective function of metoprolol. CONCLUSIONS: Metoprolol relieves MI injury via suppression miR-1, thus increasing its target protein Cx43 and improving intercellular communication.

15.
Sensors (Basel) ; 20(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861412

RESUMO

During pulse signal collection, width information of pulse waves is essential for the diagnosis of disease. However, currently used measuring instruments can only detect the amplitude while can't acquire the width information. This paper proposed a novel wrist pulse signal acquisition system, which could realize simultaneous measurements of the width and amplitude of dynamic pulse waves under different static forces. A tailor-packaged micro-electro-mechanical system (MEMS) sensor array was employed to collect pulse signals, a conditioning circuit was designed to process the signals, and a customized algorithm was developed to compute the width. Experiments were carried out to validate the accuracy of the sensor array and system effectiveness. The results showed the system could acquire not only the amplitude of pulse wave but also the width of it. The system provided more information about pulse waves, which could help doctors make the diagnosis.

16.
BMC Genomics ; 20(1): 983, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842750

RESUMO

BACKGROUND: Phenomics provides new technologies and platforms as a systematic phenome-genome approach. However, few studies have reported on the systematic mining of shared genetics among clinical biochemical indices based on phenomics methods, especially in China. This study aimed to apply phenomics to systematically explore shared genetics among 29 biochemical indices based on the Fangchenggang Area Male Health and Examination Survey cohort. RESULT: A total of 1999 subjects with 29 biochemical indices and 709,211 single nucleotide polymorphisms (SNPs) were subjected to phenomics analysis. Three bioinformatics methods, namely, Pearson's test, Jaccard's index, and linkage disequilibrium score regression, were used. The results showed that 29 biochemical indices were from a network. IgA, IgG, IgE, IgM, HCY, AFP and B12 were in the central community of 29 biochemical indices. Key genes and loci associated with metabolism traits were further identified, and shared genetics analysis showed that 29 SNPs (P < 10- 4) were associated with three or more traits. After integrating the SNPs related to two or more traits with the GWAS catalogue, 31 SNPs were found to be associated with several diseases (P < 10- 8). Using ALDH2 as an example to preliminarily explore its biological function, we also confirmed that the rs671 (ALDH2) polymorphism affected multiple traits of osteogenesis and adipogenesis differentiation in 3 T3-L1 preadipocytes. CONCLUSION: All these findings indicated a network of shared genetics and 29 biochemical indices, which will help fully understand the genetics participating in biochemical metabolism.

17.
Nat Cell Biol ; 21(11): 1403-1412, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685984

RESUMO

The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.


Assuntos
Neoplasias Encefálicas/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Hialuronoglucosaminidase/genética , Neovascularização Patológica/genética , Microambiente Tumoral/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL1/genética , Quimiocina CCL1/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Exossomos/patologia , Humanos , Hialuronoglucosaminidase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/mortalidade , Neovascularização Patológica/patologia , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Genet ; 51(11): 1616-1623, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676863

RESUMO

Fruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in the Citrullus genus. Population genomic analyses reveal the evolutionary history of Citrullus, suggesting independent evolutions in Citrullus amarus and the lineage containing Citrullus lanatus and Citrullus mucosospermus. Our findings indicate that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement. A non-bitter allele, arising in the progenitor of sweet watermelon, is largely fixed in C. lanatus. Selection for flesh sweetness started in the progenitor of C. lanatus and continues through modern breeding on loci controlling raffinose catabolism and sugar transport. Fruit flesh coloration and sugar accumulation might have co-evolved through shared genetic components including a sugar transporter gene. This study provides valuable genomic resources and sheds light on watermelon speciation and breeding history.


Assuntos
Citrullus/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Evolução Biológica , Citrullus/crescimento & desenvolvimento , Domesticação , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Especiação Genética , Genômica , Fenótipo
19.
Exp Mol Med ; 51(11): 134, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723119

RESUMO

MicroRNAs (miRs) are crucial regulators of vascular endothelial cell (EC) functions, including migration, proliferation, and survival. However, the role of most miRs in ECs remains unknown. Using RNA sequencing analysis, we found that miR-148a/b-3p expression was significantly downregulated during the differentiation of umbilical cord blood mononuclear cells into outgrowing ECs and that decreased miR-148a/b-3p levels were closely related to EC behavior. Overexpression of miR-148a/b-3p in ECs significantly reduced migration, filamentous actin remodeling, and angiogenic sprouting. Intriguingly, the effects of decreased miR-148a/b-3p levels were augmented by treatment with vascular endothelial growth factor (VEGF). Importantly, we found that miR-148a/b-3p directly regulated neuropilin-1 (NRP1) expression by binding to its 3'-untranslated region. In addition, because NRP1 is the coreceptor for VEGF receptor 2 (VEGFR2), overexpression of miR-148a/b-3p inhibited VEGF-induced activation of VEGFR2 and inhibited its downstream pathways, as indicated by changes to phosphorylated focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase. Collectively, our results demonstrate that miR-148a/b-3p is a direct transcriptional regulator of NRP1 that mediates antiangiogenic pathways. These data suggest that miR-148a/b-3p is a therapeutic candidate for overcoming EC dysfunction and angiogenic disorders, including ischemia, retinopathy, and tumor vascularization.

20.
Stem Cell Res Ther ; 10(1): 326, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744537

RESUMO

BACKGROUND: When the deer antler is cast, it leaves a cutaneous wound that can achieve scarless healing due to the presence of antler stem cells (ASCs). This provides an opportunity to study regenerative wound healing. METHODS: In this study, we investigated the therapeutic effects and mechanism of antler stem cell-conditioned medium (ASC-CM) on cutaneous wound healing in rats. In vitro, we investigated the effects of the ASC-CM on proliferation of HUVEC and NIH-3T3 cell lines. In vivo, we evaluated the effects of ASC-CM on cutaneous wound healing using full-thickness skin punch-cut wounds in rats. RESULTS: The results showed that ASC-CM significantly stimulated proliferation of the HUVEC and NIH-3T3 cells in vitro. In vivo, completion of healing of the rat wounds treated with ASC-CM was on day 16 (± 3 days), 9 days (± 2 days) earlier than the control group (DMEM); the area of the wounds treated with ASC-CM was significantly smaller (p < 0.05) than the two control groups. Further molecular characterization showed that the ratios of Col3A1/Col1A2, TGF-ß3/TGF-ß1, MMP1/TIMP1, and MMP3/TIMP1 significantly increased (p < 0.01) in the healed tissue in the ASC-CM group. CONCLUSIONS: In conclusion, ASC-CM effectively accelerated the wound closure rate and enhanced the quality of healing, which might be through transforming wound dermal fibroblasts into the fetal counterparts. Therefore, the ASC-CM may have potential to be developed as a novel cell-free therapeutic for scarless wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA