Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
1.
Bioact Mater ; 19: 139-154, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35475028

RESUMO

Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor ß1(TGF-ß1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3'-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-ß/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis.

2.
Dalton Trans ; 51(14): 5577-5586, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312739

RESUMO

Rare-earth orthovanadate REVO4 (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Y) films were directly synthesized within 2 hours by sacrificial conversion from electrodeposited layered rare-earth hydroxide (RE2(OH)5NO3·nH2O) films at pH ∼ 10, without subsequent heat treatment. Detailed characterization of the products was achieved by combined X-ray diffraction, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence excitation and photoluminescence. The mechanisms of phase and morphology evolution from Y2(OH)5NO3·nH2O to YVO4 were unveiled through systematic investigations into the influences of the concentration of the anion sources (Na3VO4) and the reaction temperature. The effects of lanthanide contraction on the phase structure and particle morphology of the REVO4 films were also clarified. Additionally, the photoluminescence of RE3+ activators (RE = Eu, Dy, and Eu and Dy) was elaborated with YVO4 as a representative host lattice, and the color-tunable emission and energy transfer from Dy3+ to Eu3+ were also investigated. Electrodeposition combined with a hydrothermal anion exchange technique established in this study led to the rapid synthesis of REVO4 films, and it might have wide implications for the generation of other types of inorganic functional films.

3.
Theranostics ; 12(7): 3456-3473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547769

RESUMO

Rationale: Scarce tumor mutation burden and neoantigens create tremendous obstacles for an effective immunotherapy of colorectal cancer (CRC). Oncolytic peptides rise as a promising therapeutic approach that boosts tumor-specific immune responses by inducing antigenic substances. However, the clinical application of oncolytic peptides has been hindered because of structural instability, proteolytic degradation, and undesired toxicity when administered systemically. Methods: Based on wasp venom peptide, an optimized stapled oncolytic peptide MP9 was developed with rigid α-helix, protease-resistance, and CRC cell cytotoxicity. By incorporating four functional motifs that include D-peptidomimetic inhibitor of PD-L1, matrix metalloproteinase-2 (MMP-2) cleavable spacer, and MP9 with 4-arm PEG, a novel peptide-polymer conjugate (PEG-MP9-aPDL1) was obtained and identified as the most promising systemic delivery vehicle with PD-L1 targeting specificity and favorable pharmacokinetic properties. Results: We demonstrated that PEG-MP9-aPDL1-driven oncolysis induces a panel of immunogenic cell death (ICD)-relevant damage-associated molecular patterns (DAMPs) both in vitro and in vivo, which are key elements for immunotherapy with PD-L1 inhibitor. Further, PEG-MP9-aPDL1 exhibited prominent immunotherapeutic efficacy in a CRC mouse model characterized by tumor infiltration of CD8+ T cells and induction of cytotoxic lymphocytes (CTLs) in the spleens. Conclusion: Our findings suggest that PEG-MP9-aPDL1 is an all-in-one platform for oncolytic immunotherapy and immune checkpoint blockade (ICB).

4.
Front Plant Sci ; 13: 853195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548300

RESUMO

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice and can affect rice production worldwide. Rice plasma membrane (PM) proteins are crucial for rapidly and precisely establishing a defense response in plant immunity when rice and blast fungi interact. However, the plant-immunity-associated vesicle trafficking network mediated by PM proteins is poorly understood. In this study, to explore changes in PM proteins during M. oryzae infection, the PM proteome was analyzed via iTRAQ in the resistant rice landrace Heikezijing. A total of 831 differentially expressed proteins (DEPs) were identified, including 434 upregulated and 397 downregulated DEPs. In functional analyses, DEPs associated with vesicle trafficking were significantly enriched, including the "transport" term in a Gene Ontology enrichment analysis, the endocytosis and phagosome pathways in a Encyclopedia of Genes and Genomes analysis, and vesicle-associated proteins identified via a protein-protein interaction network analysis. OsNPSN13, a novel plant-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 13 protein, was identified as an upregulated DEP, and transgenic plants overexpressing this gene showed enhanced blast resistance, while transgenic knockdown plants were more susceptible than wild-type plants. The changes in abundance and putative functions of 20 DEPs revealed a possible vesicle trafficking network in the M. oryzae-rice interaction. A comparative proteomic analysis of plasma membrane proteins in rice leaves revealed a plant-immunity-associated vesicle trafficking network that is provoked by blast fungi; these results provide new insights into rice resistance responses against rice blast fungi.

5.
BMC Anesthesiol ; 22(1): 135, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501683

RESUMO

STUDY OBJECTIVE: The purpose of the present study was to evaluate the efficacy of levosimendan in patients with acute myocardial infarction related ventricular septal rupture (AMI-VSR) underwent cardiac surgery. DESIGN: Prospective observational cohort study with propensity score analysis. PATIENTS: There were 261 patients with AMI-VSR in our study. After 1:1 propensity matching, 106 patients (53 levosimendan and 53 control) were selected in the matched cohort. INTERVENTIONS: None. MEASUREMENTS: Patients who received levosimendan were assigned to the levosimendan group (n = 164). The patients who were not received were levosimendan assigned to the control group (n = 97). The levosimendan was initiated immediately after cardiopulmonary bypass. Then, it has been maintained during the postoperative 3 days. The poor outcomes were identified as follows: death and postoperative complications (postoperative stroke, low cardiac output syndromeneeded mechanical circulatory support after surgery, acute kidney injury (≥ stage III), postoperative infection or septic shock, new developed atrial fibrillation or ventricular arrhythmias). MAIN RESULTS: Before matching, the control group had more length of ICU stay (6.69 ± 3.90 d vs. 5.20 ± 2.24 d, p < 0.001) and longer mechanical ventilation time (23 h, IQR: 16-53 h vs. 16 h, IQR: 11-23 h, p < 0.001). Other postoperative outcomes have not shown significant differences between two groups. After matching, no significant difference was found between both groups for all postoperative outcomes. The Kaplan-Meier survivul estimate and log-rank test showed that the 90-day survival had no significant differences between two groups before and after matching. CONCLUSION: Our study found that a low-dose infusion of levosimendan in AMI-VSR patients underwent surgical repair did not associated with positively affect to postoperative outcomes.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Infarto do Miocárdio , Piridazinas , Ruptura do Septo Ventricular , Doença Aguda , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cardiotônicos , Feminino , Humanos , Hidrazonas/uso terapêutico , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Complicações Pós-Operatórias , Pontuação de Propensão , Estudos Prospectivos , Piridazinas/uso terapêutico , Simendana , Ruptura do Septo Ventricular/tratamento farmacológico
6.
Small ; : e2200299, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521948

RESUMO

Nanoparticle drug delivery is largely restricted by the low drug loading capacity of nanoparticle carriers. To address this critical challenge and maximize the potential of nanoparticle drug delivery, a 2D ultra-thin layered double hydroxide (LDH) nanosheet with exceptionally high drug loading, excellent colloidal stability, and prolonged blood circulation for cancer treatment is constructed. The nanosheet is synthesized via a biocompatible polymer-assisted bottom-up method and exhibits an ultra-thin 2D sheet-like structure that enables a considerable amount of cargo anchoring sites available for drug loading, leading to an extraordinary 734% (doxorubicin/nanoparticle mass ratio) drug loading capacity. Doxorubicin delivered by the nanosheet remains stable on the nanosheet carrier under the physiological pH condition, while showing sustained release in the tumor microenvironment and the intracellular environment, thus demonstrating on-demand drug release as a result of pH-responsive biodegradation of nanosheets. Using in vitro and in vivo 4T1 breast cancer models, the nanosheet-based ultra-high drug-loading system demonstrates even enhanced therapeutic performance compared to the multilayered LDH-based high drug-loading system, in terms of increased cellular uptake efficiency, prolonged blood circulation, superior therapeutic effect, and reduced systemic toxicity.

7.
Virol Sin ; 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35527224

RESUMO

The Getah virus (GETV), a mosquito-borne RNA virus, is widely distributed in Oceania and Asia. GETV is not the only pathogenic to horses, pigs, cattle, foxes and boars, but it can also cause fever in humans. Since its first reported case in Chinese mainland in 2017, the number of GETV-affected provinces has increased to seventeen till now. Therefore, we performed an epidemiologic investigation of GETV in the Xinjiang region, located in northwestern China, during the period of 2017-2020. ELISA was used to analyze 3299 serum samples collected from thoroughbred horse, local horse, sheep, goat, cattle, and pigs, with thoroughbred horse (74.8%), local horse (67.3%), goat (11.7%), sheep (10.0%), cattle (25.1%) and pigs (51.1%) being positive for anti-GETV antibodies. Interestingly, the neutralizing antibody titer in horses was much higher than in other species. Four samples from horses and pigs were positive for GETV according to RT-PCR. Furthermore, from the serum of a local horse, we isolated GETV which was designated as strain XJ-2019-07, and determined its complete genome sequence. From the phylogenetic relationships, it belongs to the Group III lineage. This is the first evidence of GETV associated to domestic animals in Xinjiang. Overall, GETV is prevalent in Xinjiang and probably has been for several years. Since no vaccine against GETV is available in China, detection and monitoring strategies should be improved in horses and pigs, especially imported and farmed, in order to prevent economic losses.

8.
Mater Horiz ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535754

RESUMO

Highly stretchable, sensitive and room-temperature nitrogen dioxide (NO2) sensors are fabricated by exploiting intrinsically stretchable, transparent and ion-conducting hydrogels and active metals as the novel transducing materials and electrodes, respectively. The NO2 sensor exhibits high sensitivity (60.02% ppm-1), ultralow theoretical limit of detection (6.8 ppb), excellent selectivity, linearity and reversibility at room temperature. Notably, the sensitivity can be maintained even under 50% tensile strain. For the first time, it's found that the metal electrodes significantly impact the sensing performance. Specifically, the sensitivity is boosted from 31.18 to 60.02% ppm-1 by replacing the anodic silver with copper-tin alloy. Importantly, by applying specially designed sensing tests, and microscopic and composition analyses, we have obtained the inherent NO2 sensing mechanism: the anodic metal tends to be oxidized and the NO2 molecules tend to react in the cathode-gel interface. The introduction of glycerol converts the hydrogel into the organohydrogel with remarkably enhanced anti-drying and anti-freezing capacities and toughness, which effectively improved the long-time stability of the sensors. Importantly, we execute sound/light alarms and a wireless smartphone alarm by utilizing a designed circuit board and applet. This work gives an incisive investigation for the preparation, performance improvement, mechanism and application of hydrogel-based NO2 sensors, promoting the evolution of hydrogel ionotronics.

9.
BMJ Open ; 12(5): e056264, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523485

RESUMO

INTRODUCTION: Heart failure (HF) is a growing global public health burden. However, due to the very limited regenerative capacity of mature cardiomyocytes in the adult mammalian heart, conventional treatments can only improve the symptoms of HF but fail to restore cardiac function. Heart transplantation is limited by a severe shortage of donors. Cell-based transplantation for the treatment of HF has become a promising strategy. Human-induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been tested in animal models to assess safety and efficacy. This study aims at evaluating the safety and efficacy of epicardial injection of hiPSC-CMs in patients with advanced HF during coronary artery bypass grafting (CABG) surgery. METHODS: This study is a dose-escalation, placebo-controlled, single-centre phase I/IIa clinical trial. Dose escalation will be guided by a modified 3+3 design for three doses (1×108, 2×108 and 4×108 cells, sequentially). Patients with advanced heart failure will be enrolled and randomly allocated to receive epicardial injection of hiPSC-CMs during CABG surgery or CABG surgery alone, followed by a 12-month follow-up investigation. The primary endpoint is to assess the safety of hiPSC-CMs transplantation, including haemodynamic compromised sustained ventricular arrhythmias and newly formed tumours during 6 months postoperatively. The secondary endpoint is to evaluate the efficacy of epicardial injection of hiPSC-CMs and CABG surgery combination by comparison with CABG surgery alone. ETHICS AND DISSEMINATION: The study protocol has been approved by the Institutional Ethical Committee of Nanjing Drum Tower Hospital (No. SC202000102) and approved by National Health Commission of the PRC (MR-32-21-014649). Findings will be disseminated to the academic community through peer-reviewed publications and presentation at national and international meetings. TRIAL REGISTRATION NUMBER: NCT03763136.


Assuntos
Insuficiência Cardíaca , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Animais , Ponte de Artéria Coronária , Insuficiência Cardíaca/cirurgia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Mamíferos , Miócitos Cardíacos/patologia
11.
PLoS One ; 17(5): e0269050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35604923

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0232383.].

12.
Cancer Cell Int ; 22(1): 190, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578228

RESUMO

Extracellular vesicles secreted by tumor microenvironment (TME) cells are vital players in tumor progression through transferring nucleic acids and proteins. Macrophages are the main immune cells in TME and tumor associated macrophages (TAM) express M2 phenotype, which induce tumor proliferation, angiogenesis, invasion, metastasis and immune elimination, resulting in the subsequent evolution of malignancies. There are a high number of studies confirmed that tumor cells and TAM interact with each other through extracellular vesicles in various cancers, like pancreatic ductal adenocarcinoma, gastric cancer, breast cancer, ovarian cancer, colon cancer, glioblastoma, hepatocellular cancer, and lung cancer. Herein, this review summarizes the current knowledge on mechanisms of communications between tumor cells and TAM via extracellular vesicles, mainly about microRNAs, and targeting these events might represent a novel approach in the clinical implications of this knowledge into successful anti-cancer strategies.

13.
J Asian Nat Prod Res ; : 1-7, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579284

RESUMO

A chemical study of 90% ethanol extract of the barks of Juglans cathayensis resulted in the isolation of three new nortriterpenoids, jugcathenoids A-C (1-3). The structures of the new compounds were elucidated by spectroscopic analysis (NMR, IR, UV, and MS). The isolated nortriterpenoids were tested in vitro for cytotoxic activities against 6 pancreatic cell lines. As a result, compounds 1-3 exhibited some cytotoxic activities against all the tested tumor cell lines with IC50 values less than 50 µM.

14.
Biomed Pharmacother ; 151: 113092, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35550528

RESUMO

Osteoarthritis (OA), a chronic degenerative disease with heterogeneous properties, is difficult to cure due to its complex pathogenesis. Curcumin possesses excellent anti-inflammatory and antioxidant properties and may have potential therapeutic value in OA. In this study, we investigated the action targets of curcumin and identified potential anti-OA targets for curcumin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were performed to evaluate these targets. Furthermore, we established a sodium monoiodoacetate-induced rat knee OA model and IL-1ß induced OA chondrocyte model to verify the effect and mechanism of curcumin against OA. The GO and KEGG analyses screened seven hub genes involved in metabolic processes and the AMPK signaling pathway. Curcumin can significantly attenuate OA characteristics according to Osteoarthritis Research Society International (OARSI) and Mankin scores in OA rats. Additionally, curcumin is notably employed as an activator of mitophagy in maintaining mitochondrial homeostasis (ROS, Ca2+, ATP production, and mitochondrial membrane potential). The expression levels of mitophagy-related proteins were increased not only in articular cartilage but also in chondrocytes with curcumin intervention. Combining validation experiments and network pharmacology, we identified the importance of mitophagy in the curcumin treatment of OA. The chondroprotective effects of curcumin against OA are mediated by the AMPK/PINK1/Parkin pathway, and curcumin may serve as a potential novel drug for OA management.

15.
J Orthop Surg Res ; 17(1): 253, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35509006

RESUMO

BACKGROUND: There is no consensus on anatomic landmarks or reference axes with which to accurately align rotational position of tibial component. Using the tibial tubercle, commonly referring to the Akagi line and the Insall line, for anatomic reference was widely accepted. However, it is unknown about the predictors that may affect the reliability of using the tibial tubercle for aligning tibial component rotation. The aims of our study were (1) to investigate the reproducibility and accuracy of using the tibial tubercle for aligning tibial component rotation and (2) to determine predictors resulting in discrepancies of the tibial component rotation when referring to the tibial tubercle. METHOD: A total of 160 patients with osteoarthritis were recruited before total knee arthroplasty. The angle α formed by the tibial anteroposterior (AP) axis and the Akagi line and the angle ß formed by the tibial AP axis and the Insall line were measured to quantify the discrepancies of the Akagi line and the Insall line. Independent variables, including the tibial tubercle-to-trochlear groove distance (TT-TG), tibial tubercle to posterior cruciate ligament (TT-PCL), and knee rotation angle (KRA), hip-knee-ankle angle (HKA), medial proximal tibial angle (MPTA), and tibial bowing (TB), were measured. Pearson's product moment correlation coefficients and multivariable linear regression analysis were calculated to assess relationships between independent variables and the two defined angles. RESULTS: All defined measurement were available for 140 patients. The Akagi line rotated internally with 1.03° ± 4.25° in regard to the tibial AP axis. The Insall line rotated externally in regard to the tibial AP axis with 7.93° ± 5.36°. Three variables, including TT-TG, TT-PCL, and KRA, tended to be positively correlated with the angle α and the angle ß. In terms of a cutoff of TT-TG = 9 mm, 100% cases and 97% cases for using the Akagi line and Insall line, respectively, were located in the defined safe zone (- 5° to 10°). CONCLUSION: The tibial tubercle (the Akagi line and Insall line) is found to be a useful and promising anatomic landmark for aligning the tibial component rotation. The TT-TG, with a cutoff value of 9 mm, is helpful to choose the Akagi line or Insall line, alternatively.


Assuntos
Artroplastia do Joelho , Ligamento Cruzado Posterior , Artroplastia do Joelho/métodos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamento Cruzado Posterior/cirurgia , Reprodutibilidade dos Testes , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
16.
Virus Res ; 315: 198767, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35421434

RESUMO

Swine could serve as a natural reservoir for a large variety of viruses, including potential zoonotic enteric viruses. The presence of viruses with high genetic similarity between porcine and human strains may result in the emergence of zoonotic or xenozoonotic infections. Furthermore, the globalization and intensification of swine industries exacerbate the transmission and evolution of zoonotic viruses among swine herds and individuals working in swine-related occupations. To effectively prevent the public health risks posed by zoonotic swine enteric viruses, designing, and implementing a comprehensive measure for early diagnosis, prevention, and mitigation, requires interdisciplinary a collaborative ''One Health" approach from veterinarians, environmental and public health professionals, and the swine industry. In this paper, we reviewed the current knowledge of selected potential zoonotic swine enteric viruses and explored swine intensive production and its associated public health risks.

17.
RSC Adv ; 12(3): 1638-1644, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425204

RESUMO

Metal-organic framework (MOF) materials provide a versatile and promising platform for constructing heterogeneous photocatalysts with applications in organic transformations. One of the methods for enhancing MOFs' performance in photocatalysis relies on the elaborate design and functionalization of organic linkers. Here we reported a photoactive thiadiazolopyridine (TDP) moiety functionalized UiO-68 isoreticular Zr(iv)-based MOF (denoted as UiO-68-TDP) that was synthesized by the de novo approach of mixed dicarboxylate struts. Under blue LED irradiation and in an open air atmosphere, MOF UiO-68-TDP exhibited a largely higher photocatalytic activity for the synthesis of tetrahydroquinolines by oxidative annulation reaction between N,N-dimethylanilines and maleimides, in comparison to the benzothiadiazole decorated analogue MOF. Besides, UiO-68-TDP can be reused at least three times without significant loss of its photocatalytic activity and its framework was well maintained after these cycles. Furthermore, the related mechanism involving reactive oxygen species was properly proposed.

18.
Front Pharmacol ; 13: 845034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431938

RESUMO

Ginsenosides from ginseng are used as a therapeutic agent for various diseases. They enhance the immunomodulatory effect in cyclophosphamide (CP)-treated tumor disease. The structural characteristics of steroidal saponins are mainly divided into protopanaxadiol-type saponin (PDS) and protopanaxatriol-type saponin (PTS). At present, few researchers have studied which kind of saponin plays a more important role, thus, we compared the prevention effect of PDS and PTS on myelosuppression mice induced by CP. The components and contents of saponin and monosaccharide were analyzed by using ultra high performance liquid chromatography-charged aerosol detector (UPLC-CAD) and reversed phase-high performance liquid chromatography (RP-HPLC), respectively. Thirty-two mice were randomly divided into four groups, including control, model (CP), CP+PDS, and CP+PTS. The mice were orally administered with PDS or PTS for 28 days and then injected with CP saline solution on 25, 26, 27, and 28 days at a dose of 50 mg × kg-1. After the end of modeling, the whole blood of mice from the ophthalmic venous plexus was collected to detect routine blood tests, inflammatory cytokines, and hematopoiesis-related cytokines. Cell cycle and the apoptosis of bone marrow in the right femur were detected. The spleen and thymus were used to calculate the organ index and histological examination, and splenocytes were used to detect the percentage of CD4+ and CD25+ T cells. In the saponins analysis, PDS mainly included the Rb1, Rc, Rb2, and Rd of protopanaxadiol-type ginsenosides (accounted for 91.64%), and PTS mainly included the Re, Rg1, and Rf of protopanaxatriol-type ginsenosides (accounted for 75.46%). The animal results showed that both PDS and PTS improved the most indicators of myelosuppression mice induced by CP, including increased weight, blood cell numbers, hematopoiesis-related cytokines, and inflammatory cytokines; promoted the cell cycle of bone marrow and inhibited the apoptosis of bone marrow; elevated the spleen and thymus indexes and CD4+ count of splenocytes. The prevention effect of PDS was better than PTS in some indicators, such as red blood cells, hemoglobin, interleukin (IL)-1ß, IL-4, IL-10, tumor necrosis factor-α, CD4+, and thymus index. These results suggest both PDS and PTS can prevent myelosuppression of mice induced by CP. Meanwhile, PDS and its metabolite showed higher bioavailability and bioactivity compared with PTS.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35438270

RESUMO

Background: The incidence of type 1 diabetes mellitus (T1DM) is rapidly increasing worldwide. However, the incidence in Henan Province of China has been unknown for more than two decades. This study aimed to estimate the incidence of T1DM in the 0.5-14.9 years age group in Henan Province of China from 2017 to 2020. Methods: A retrospective analysis of hospital registration data from 18 cities in Henan Province, China, identified 1726 patients (843 males, 883 females) between 0.5-14.9 years of age with newly diagnosed T1DM in Henan Province from January 1st, 2017, to December 31st, 2020, covering more than 19 million children years at risk. Results: The crude incidence of T1DM per 100 000 person years for the 0.5-14.9 years age group in the Henan Province of China was 2.19 (95% confidence interval (CI): 1.99, 2.40), with a peak in the 10-14.9 years age group. The rate ratio of females to males was 1.32 (95% CI: 1.20, 1.45) in the 0.5-14.9 years age group. The incidence rate was higher in females than males in the 5-9.9 years age group (P˂0.01) and the 10-14.9 years age group (P˂0.01). The seasonality of the incidence was different from that in previous reports, with the lowest incidence in the spring. Conclusion: The incidence of T1DM in the 0.5-14.9 years age group in Henan Province of China was still among the lowest reported according to our study.

20.
Vet Sci ; 9(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448674

RESUMO

Swine viruses like porcine sapovirus (SaV), porcine encephalomyocarditis virus (EMCV), porcine rotavirus A (RVA) and porcine astroviruses (AstV) are potentially zoonotic viruses or suspected of potential zoonosis. These viruses have been detected in pigs with or without clinical signs and often occur as coinfections. Despite the potential public health risks, no assay for detecting them all at once has been developed. Hence, in this study, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of SaV, EMCV, RVA and AstV from swine fecal samples. The PCR parameters were optimized using specific primers for each target virus. The assay's sensitivity, specificity, reproducibility, and application to field samples have been evaluated. Using a pool of plasmids containing the respective viral target fragments as a template, the developed mRT-PCR successfully detected 2.5 × 103 copies of each target virus. The assay's specificity was tested using six other swine viruses as a template and did not show any cross-reactivity. A total of 280 field samples were tested with the developed mRT-PCR assay. Positive rates for SaV, EMCV, RVA, and AstV were found to be 24.6% (69/280), 5% (14/280), 4.3% (12/280), and 17.5% (49/280), respectively. Compared to performing separate assays for each virus, this mRT-PCR assay is a simple, rapid, and cost-effective method for detecting mixed or single infections of SaV, EMCV, RVA, and AstV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...