Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33524966

RESUMO

A dual-functional nanosysterm is developed by means of Chlorin e6 (Ce6) as photosensitizer and 1,3-Diphenylisobenzofuran (DPBF) as fluorescent 1O2 sensing probe. Under 660 nm laser irradiation, Ce6 exhibites efficient singlet oxygen generation, and the production of 1O2 is assessed by the ratiometric fluorescence of PFO and DPBF under one-photon and two-photon excitation mode. The nanoparticles with excellent biocompatibility can be internalized into Hela cells and applied for tumor treatment. For intracellular PDT, the nanoparticles perform a high phototoxicity, while the PDT proccess can be evaluated in real time by monitoring fluorescent signals of DPBF. This theranostic nanosysterm provides a facile strategy to fabricate 1O2-feedback PDT, which can realize accurate and efficient photodynamic therapy based on singlet oxygen detection.

2.
JCO Clin Cancer Inform ; 5: 221-230, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33625877

RESUMO

PURPOSE: Cancer classification is foundational for patient care and oncology research. Systems such as International Classification of Diseases for Oncology (ICD-O), Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT), and National Cancer Institute Thesaurus (NCIt) provide large sets of cancer classification terminologies but they lack a dynamic modernized cancer classification platform that addresses the fast-evolving needs in clinical reporting of genomic sequencing results and associated oncology research. METHODS: To meet these needs, we have developed OncoTree, an open-source cancer classification system. It is maintained by a cross-institutional committee of oncologists, pathologists, scientists, and engineers, accessible via an open-source Web user interface and an application programming interface. RESULTS: OncoTree currently includes 868 tumor types across 32 organ sites. OncoTree has been adopted as the tumor classification system for American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE), a large genomic and clinical data-sharing consortium, and for clinical molecular testing efforts at Memorial Sloan Kettering Cancer Center and Dana-Farber Cancer Institute. It is also used by precision oncology tools such as OncoKB and cBioPortal for Cancer Genomics. CONCLUSION: OncoTree is a dynamic and flexible community-driven cancer classification platform encompassing rare and common cancers that provides clinically relevant and appropriately granular cancer classification for clinical decision support systems and oncology research.

3.
FEBS Open Bio ; 2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33455075

RESUMO

Multiple clinical trials have shown that monoclonal antibodies (mAbs) against programmed death-ligand 1 (PD-1/PD-L1) can benefit patients with lung cancer by increasing their progression-free survival and overall survival. However, a significant proportion of patients do not respond to anti-PD-1/PD-L1 mAbs. In the present study, we investigated whether galectin (Gal)-3 inhibitors can enhance the antitumor effect of PD-L1 blockade. Using the NSCLC-derived cell line A549, we examined the expression of Gal-3 in lung cancer cells under hypoxic conditions and investigated the regulatory effect of Gal-3 on PD-L1 expression, which is mediated by the STAT3 pathway. We also explored whether Gal-3 inhibition can facilitate the cytotoxic effect of T cells induced by PD-L1 blockade. The effects of combined use of a Gal-3 inhibitor and PD-L1 blockade on tumor growth and T-cell function were also investigated, and we found that hypoxia increased the expression and secretion of Gal-3 by lung cancer cells. Gal-3 increased PD-L1 expression via the upregulation of STAT3 phosphorylation, and administration of a Gal-3 inhibitor enhanced the effect of PD-L1 blockade on the cytotoxic activity of T cells against cancer cells in vitro. In a mouse xenograft model, the combination of a Gal-3 inhibitor and PD-L1 blockade synergistically suppressed tumor growth. Furthermore, the administration of a Gal-3 inhibitor enhanced T-cell infiltration and granzyme B release in tumors. Collectively, our results show that Gal-3 increases PD-L1 expression in lung cancer cells and that the administration of a Gal-3 inhibitor as an adjuvant enhanced the antitumor activity of PD-L1 blockade.

4.
Opt Express ; 29(1): 145-157, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33362105

RESUMO

Image-guided and robotic surgery based on endoscopic imaging technologies can enhance cancer treatment by ideally removing all cancerous tissue and avoiding iatrogenic damage to healthy tissue. Surgeons evaluate the tumor margins at the cost of impeding surgical workflow or working with dimmed surgical illumination, since current endoscopic imaging systems cannot simultaneous and real-time color and near-infrared (NIR) fluorescence imaging under normal surgical illumination. To overcome this problem, a bio-inspired multimodal 3D endoscope combining the excellent characteristics of human eyes and compound eyes of mantis shrimp is proposed. This 3D endoscope, which achieves simultaneous and real-time imaging of three-dimensional stereoscopic, color, and NIR fluorescence, consists of three parts: a broad-band binocular optical system like as human eye, an optical relay system, and a multiband sensor inspired by the mantis shrimp's compound eye. By introducing an optical relay system, the two sub-images after the broad-band binocular optical system can be projected onto one and the same multiband sensor. A series of experiments demonstrate that this bio-inspired multimodal 3D endoscope not only provides surgeons with real-time feedback on the location of tumor tissue and lymph nodes but also creates an immersive experience for surgeons without impeding surgical workflow. Its excellent characteristics and good scalability can promote the further development and application of image-guided and robotic surgery.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33300662

RESUMO

pH monitoring in tumor lesions provide abundant physiological information. However, currently developed pH sensors only achieve sensitive detection in the settled response region around the pH transition point (pHt). To realize tumor pH monitoring with high sensitivity in wider response region, we herein design a serial of pHt adjustable sensors (pTAS) through simply regulating the component ratio of second near-infrared (NIR-II) emission aza-BODIPY (NAB) donor and pH sensitive rhodamine-based pre-acceptor (NRh) in Förster resonance energy transfer (FRET) system. Combining the pH response regions of pTAS, a twofold widened pH detection range (6.11-7.22) is obtained compared to the pHt settled sensor (6.38-6.94). With pHt adjustable feature, in vivo tumor pH increase and decrease process could be dynamically visualized through dual-channel ratiometric bioimaging in NIR-II window with coefficient of variation under 1% compared to the standard pH meter.

6.
J Bone Miner Res ; 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33316109

RESUMO

Fibroblast growth factor 9 (Fgf9) is a well-known factor that regulates bone development; however, its function in bone homeostasis is still unknown. Previously, we identified a point mutation in the FGF9 gene (p.Ser99Asn, S99N) and generated an isogeneic knock-in mouse model, which revealed that this loss-of-function mutation impaired early joint formation and was responsible for human multiple synostosis syndrome 3 (SYNS3). Moreover, newborn and adult S99N mutant mice exhibited significantly increased bone mass, suggesting that Fgf9 also participated in bone homeostasis. Histomorphology, tomography, and serological analysis of homozygous newborns and heterozygous adults showed that the Fgf9S99N mutation immensely increased bone mass and bone formation in perinatal and adult bones and decreased osteoclastogenesis in adult bone. An in vitro differentiation assay further revealed that the S99N mutation enhanced bone formation by promoting osteogenesis and mineralization of bone marrow mesenchymal stem cells (BMSCs) and attenuating osteoclastogenesis of bone marrow monocytes (BMMs). Considering the loss-of-function effect of the S99N mutation, we hypothesized that Fgf9 itself inhibits osteogenesis and promotes osteoclastogenesis. An in vitro differentiation assay revealed that Fgf9 prominently inhibited BMSC osteogenic differentiation and mineralization and showed for the first time that Fgf9 promoted osteoclastogenesis by enhancing preosteoclast aggregation and cell-cell fusion. Furthermore, specific inhibitors and in vitro differentiation assays were used and showed that Fgf9 inhibited BMSC osteogenesis mainly via the MEK/ERK pathway and partially via the PI3K/AKT pathway. Fgf9 also promoted osteoclastogenesis as a potential costimulatory factor with macrophage colony-stimating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by coactivating the MAPK and PI3K/AKT signaling pathways. Taken together, our study demonstrated that Fgf9 is a negative regulator of bone homeostasis by regulating osteogenesis and osteoclastogenesis and provides a potential therapeutic target for bone degenerative diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).

7.
Artigo em Inglês | MEDLINE | ID: mdl-33373075

RESUMO

Luminescent materials with engineered optical properties have been developed for multiplexed labeling detection, where encoding capacity plays a pivotal role in the efficiency. However, multi-dimensional optical identities are usually not independent which essentially hinder the practical encoding numbers to access theoretical capacity. In this work, we carefully studied the sensitizer gradient doping structure in near-infrared (NIR) excitable upconversion nanoparticles (UCNPs) and managed to achieve independent emission intensity and lifetime tuning. With the orthogonally tunability, it breaks the constraint of intensity (k) and lifetime (n) correlation and expands the practical encoding number to theoretical value as (k+1)n -1 in binary encoding. This method can also be combined with previous lifetime engineering as well to realize high level multiplexing.

8.
Nanoscale ; 12(43): 22173-22184, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135699

RESUMO

Metastasis is the main cause of treatment failure in breast cancer, and integrated phototheranostics is a promising strategy to achieve both precision theranostics and metastasis inhibition. In this work, a multifunctional phototheranostic nanoprobe composed of chlorin e6 (Ce6)-conjugated and polydopamine (PDA)-coated gold nanostars (AuNSs) was synthesized for simultaneous photoacoustic (PA) imaging, photothermal therapy (PTT) and photodynamic therapy (PDT). Under the irradiation of near infrared laser, AuNSs@PDA showed enhanced photothermal conversion and amplified PA imaging performance, compared with single AuNSs. By the covalent conjugation of Ce6, the AuNSs@PDA-Ce6 nanoprobe showed robust stability and excellent singlet oxygen (1O2) generation ability. Under the combination of PTT/PDT, the AuNSs@PDA-Ce6 nanoprobes significantly reduced the growth of 4T1 tumors and suppressed their lung metastasis. All the results demonstrated the considerable potential of AuNSs@PDA-Ce6 phototheranostic nanoprobes for precision theranostics and metastasis inhibition of breast cancer.

9.
Opt Express ; 28(23): 35061-35073, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182960

RESUMO

A novel security-enhanced scheme combining improved deoxyribonucleic acid (DNA) encoding encryption at the bit-level with matrix scrambling at the symbol-level is proposed in OFDM-PON for the first time in this paper. In our proposed scheme, firstly each subcarrier is encrypted by improved DNA encoding encryption, which includes the functioning of key base series and the cross interchange. And the selected encoding rules, decoding rules, key base series, operating principles and the positions of cross interchange are dynamically changing, which enhances the robustness against malicious attacks by illegal attackers. Then during the matrix scrambling process, the non-equal-length quadrature amplitude modulation (QAM) matrix is divided into several squares of equal length according to an optimum method. At the same time, the times of matrix scrambling can be determined randomly. With the multi-fold encryption of the proposed scheme, the achieved key space can reach up to 10154, which can sufficiently ensure the physical layer security. Experimental verification of the proposed security-enhanced strategy was demonstrated in an 8 Gb/s 16QAM orthogonal frequency division multiplexing passive optical network (OFDM-PON) system over 25-km standard single-mode fiber (SSMF). The experimental results prove that the two-level coordinated encryption at the bit-level and symbol-level using chaos and encryption can effectively protect data from violent attacks, differential attacks, etc.

10.
Huan Jing Ke Xue ; 41(11): 4924-4935, 2020 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124236

RESUMO

Groundwater is an important source of water supply in the Leizhou Peninsula. In August 2018, five surface water samples, 18 shallow pore water samples, 14 middle-deep pore water samples, and 27 pore fissure water samples were collected in the Lingbei area, the northern part of the Leizhou Peninsula. Major ion concentrations, as well as H, O isotope composition (of δ18O and δ2H) were analyzed. The results show that groundwater pH values, total hardness, concentrations of K+, TDS, Cl-, and SO42- are low, while H2SiO3(aq) and NO3- concentrations are relatively high. For pores and fissures water, hydrochemical types are mainly Mg-Ca-HCO3, Mg-Ca-HCO3-Cl, and Cl- loadings are significantly increased along the flow path. Ca-Cl, Na-Ca-HCO3-Cl, and Na-Ca-Mg-HCO3-Cl types predominate in shallow pore water. For middle-deep pore water, the types are primarily Mg-Ca-HCO3, Na-Ca-Mg-HCO3, K-Na-HCO3-SO4, and concentrations of K+, Na+, Cl-, and SO42- are modestly increased along the flow path. We find that the groundwater is of meteoric origin, groundwater Cl- and Na+ originate from marine atmospheric precipitation, Mg+, Ca2+, and HCO3- are mainly derived from silicate weathering, and NO3- principally arises from chemical fertilizer. Shallow pore water and fissure pore water are affected by evaporation concentration, whereas cation exchange is important for middle-deep pore water. The milligram equivalent ratio of nitrate in groundwater reaches 28.3%. After taking into account the nitrate, 50.85% of the sampling water is NO3 type, and displays a pollution trend. Our results contribute to the sustainable utilization of groundwater in the study area and other similar areas.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Nitratos , Poluentes Químicos da Água/análise , Abastecimento de Água
11.
Artigo em Inglês | MEDLINE | ID: mdl-32969119

RESUMO

Organic dyes, emitting in the second near-infrared (NIR-II, 900-1700 nm) window, with high molar extinction coefficient (MEC) and quantum yield (QY) in aqueous is essential for in vivo bioimaging and biosensing. In this work, we developed a dibodipy based J-aggregated aggregation induced emission (AIE) molecule THPP to meet this aim. THPP exhibits a high MEC of dibodipy structure and has intensified absorption and emission in J-aggregated state, which significantly enhanced the fluorescence intensity (~55 folds) and extends the maximal absorption/emission wavelengths to 970/1010 nm in NIR-II region. Based on the bright THPP , imaging with high frame rate (34 frames per second) in a deep 'valid penetration depth' up to 6 mm can be achieved. This enabled simultaneously and dynamically imaging of vasculatures and deeply located visceral. Besides, we succeeded in monitoring the respiratory rate of acute-lung-injury mice and tracing the collateral circulation process with a high frame rate.

12.
Acta Neurol Belg ; 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638269

RESUMO

Prior studies had reported monocyte to high-density lipoprotein cholesterol ratio (MHR) as a new inflammation marker and stroke-associated pneumonia (SAP) is common after stroke. We investigated the predictive value of MHR for SAP in patients with acute ischemic stroke (AIS). A total of 803 AIS patients within 72 h after stroke were enrolled from April 2012 to January 2016 in Zhangjiagang TCM Hospital affiliated to the Nanjing University of Chinese Medicine. MHR measurement within 24 h of hospital admission was divided into quartiles: Q1 (< 0.21), Q2 (0.21-0.30), Q3 (0.30-0.45), and Q4 (≥ 0.45). Monocyte count was also divided into categories. Clinical outcomes were post-stroke SAP and 3-month mortality. 121 patients (15.1%) experienced SAP during hospitalization, and 109 patients (13.6%) died from all causes within 3 months after AIS. Compared to the lowest quartile, having admission MHR level in the highest quartile was associated with SAP [adjusted odds ratio (aOR) 2.79, 95% confidence interval (CI) 1.44-5.42; P trend = 0.003]. Compared with the lowest category of monocyte, the highest category was associated with a 2.60-fold increase in the odds of SAP (aOR 2.60, 95% CI 1.28-5.30; P trend = 0.005). However, there was no significant association between MHR (P trend = 0.514) and monocyte count (P trend = 0.684) and all-cause mortality at 3 months. We demonstrated that both higher MHR and higher monocyte count at admission predicted SAP in patients with AIS.

13.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498418

RESUMO

Flows of two immiscible liquids through inclined pipes are often encountered in industrial processes. The interfacial characteristics in inclined pipes are of significance for understanding the mechanism of flow pattern transition and modeling the flow parameters. This paper developed a novel experimental technique to access the interface characteristics of liquid-liquid flows, during which optical and electrical methods were successfully combined by matching the refractive index and conductivity of the flows. A planar laser-induced fluorescence (PLIF) system was set up with a continuous laser and high-speed camera. Organic and aqueous phases were chosen to match refractive indices. The liquid-liquid interface in the middle of the pipe could be clearly visualized by the PLIF system. Meanwhile, two conductance parallel-wire array probes (CPAPs) were designed to reconstruct the liquid-liquid interfaces at upward and downward pipe cross-sections. The performances of the CPAP were validated using the PLIF results and employed to investigate the liquid-liquid interfacial structures. The interfacial shape and its instability were uncovered using the reconstructed interfaces by the CPAPs.

14.
Adv Mater ; 32(28): e2001172, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32490572

RESUMO

Deep tissue imaging in the second near-infrared (NIR-II) window holds great promise for widespread fundamental research. However, inhomogeneous signal attenuation due to tissue absorption and scattering hampers its application for accurate in vivo biosensing. Here, lifetime-based in situ hepatocellular carcinoma (HCC) detection in NIR-II region is presented using a tumor-microenvironment (peroxynitrite, ONOO- )-responsive lanthanide-cyanine Förster resonance energy transfer (FRET) nanosensor. A specially designed ONOO- -responsive NIR-II dye, MY-1057, is synthesized as the FRET acceptor. Robust lifetime sensing is demonstrated to be independent of tissue penetration depth. Tumor lesions are accurately distinguished from normal tissue due to the recovery lifetime. Magnetic resonance imaging and liver dissection results illustrate the reliability of lifetime-based detection in single and multiple HCC models. Moreover, the ONOO- amount can be calculated according to the standard curve.

15.
Nat Commun ; 11(1): 3102, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555157

RESUMO

Real-time monitoring of vessel dysfunction is of great significance in preclinical research. Optical bioimaging in the second near-infrared (NIR-II) window provides advantages including high resolution and fast feedback. However, the reported molecular dyes are hampered by limited blood circulation time (~ 5-60 min) and short absorption and emission wavelength, which impede the accurate long-term monitoring. Here, we report a NIR-II molecule (LZ-1105) with absorption and emission beyond 1000 nm. Thanks to the long blood circulation time (half-life of 3.2 h), the fluorophore is used for continuous real-time monitoring of dynamic vascular processes, including ischemic reperfusion in hindlimbs, thrombolysis in carotid artery and opening and recovery of the blood brain barrier (BBB). LZ-1105 provides an approach for researchers to assess vessel dysfunction due to the long excitation and emission wavelength and long-term blood circulation properties.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Corantes Fluorescentes , Membro Posterior/diagnóstico por imagem , Traumatismo por Reperfusão/diagnóstico por imagem , Trombose/diagnóstico por imagem , Doenças Vasculares/diagnóstico por imagem , Animais , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Nus
16.
Sci Rep ; 10(1): 8187, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424344

RESUMO

Insulin is a protein hormone that controls the metabolism of sugar, fat and protein via signal transduction in cells, influencing growth and developmental processes such as reproduction and ageing. From nematodes to fruit flies, rodents and other animals, glucose signalling mechanisms are highly conserved. Reproductive termites (queens and kings) exhibit an extraordinarily long lifespan relative to non-reproductive individuals such as workers, despite being generated from the same genome, thus providing a unique model for the investigation of longevity. The key reason for this molecular mechanism, however, remains unclear. To clarify the molecular mechanism underlying this phenomenon, we sequenced the transcriptomes of the primary kings (PKs), primary queens (PQs), male (WMs) and female (WFs) workers of the lower subterranean termite Reticulitermes chinensis. We performed RNA sequencing and identified 33 insulin signalling pathway-related genes in R. chinensis. RT-qPCR analyses revealed that EIF4E and RPS6 genes were highly expressed in WMs and WFs workers, while mTOR expression was lower in PKs and PQs than in WMs and WFs. PQs and PKs exhibited lower expression of akt2-a than female workers. As the highly conserved insulin signalling pathway can significantly prolong the healthspan and lifespan, so we infer that the insulin signalling pathway regulates ageing in the subterranean termite R. chinensis. Further studies are recommended to reveal the biological function of insulin signalling pathway-related genes in the survival of termites to provide new insights into biomolecular homeostasis maintenance and its relationship to remarkable longevity.


Assuntos
Envelhecimento , Insulina/metabolismo , Isópteros , Transdução de Sinais/genética , Transcriptoma , Animais , Anotação de Sequência Molecular
17.
Ultrason Sonochem ; 67: 105135, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32330688

RESUMO

In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the ß-sheet and ß-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 µm (untreated) to about 26 µm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.

18.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244774

RESUMO

Embedded encryption devices and smart sensors are vulnerable to physical attacks. Due to the continuous shrinking of chip size, laser injection, particle radiation and electromagnetic transient injection are possible methods that introduce transient multiple faults. In the fault analysis stage, the adversary is unclear about the actual number of faults injected. Typically, the single-nibble fault analysis encounters difficulties. Therefore, in this paper, we propose novel ciphertext-only impossible differentials that can analyze the number of random faults to six nibbles. We use the impossible differentials to exclude the secret key that definitely does not exist, and then gradually obtain the unique secret key through inverse difference equations. Using software simulation, we conducted 32,000 random multiple fault attacks on Midori. The experiments were carried out to verify the theoretical model of multiple fault attacks. We obtain the relationship between fault injection and information content. To reduce the number of fault attacks, we further optimized the fault attack method. The secret key can be obtained at least 11 times. The proposed ciphertext-only impossible differential analysis provides an effective method for random multiple faults analysis, which would be helpful for improving the security of block ciphers.

19.
Opt Express ; 28(2): 2238-2250, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121918

RESUMO

Optical independent sideband (ISB) signals can be generated by exploiting one external In-phase/Quadrature (I/Q) modulator. Our theoretical analysis shows crosstalk between the two ISB (right and left side) signals can attribute to two main imperfections: amplitude difference and phase unmatched in I/Q data. To reduce the impact of crosstalk between the two ISB signals, we propose three schemes. The first is precise phase match of the I and Q data. The second has been made possible by setting different frequencies for the left sideband (LSB) and the right sideband (RSB) signals, and the last is achieved by adding Multiple-Input Multiple-Output (MIMO) equalization digital signal processing (DSP) at the receiver side. Our experimental results have shown that these schemes can improve the performance of ISB signals. In our experimental system we designed dual ISB system with different modulation formats in two sidebands. Precise phase match can bring a ∼2.2dB improvement at BER of 1×10-2 and a ∼4.3dB improvement at BER of 1×10-3 for 16-ary quadrature-amplitude-modulation (16QAM) and quadrature-phase-shift-keying (QPSK) signals, respectively, in 4Gbaud with carrier frequency of 36GHz system. The BER of 4Gbaud 16QAM ISB signal at 30GHz and 4Gbaud QPSK ISB signal at 38GHz can reach hard-decision forward-error-correction (HD-FEC) when the input power is larger than -5.5 and -7.4dBm respectively in different frequencies system. For 4Gbaud with carrier frequency of 36GHz system, the BER of 16QAM signal and QPSK signal reduce ∼2.1 and ∼2.2dB at HD-FEC after using MIMO. In addition, MIMO can further improve the performance of the matched phase system or the system with different frequencies.

20.
ACS Appl Mater Interfaces ; 12(13): 14866-14875, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153178

RESUMO

Light-responsive nanoprobes were suffering from the threat of high-dose laser irradiation, and it was important for constructing new nanoprobes for safe and efficient phototheranostics. Here, polydopamine (PDA)-coated gold nanobipyramids (AuNBPs@PDA) were synthesized for amplified photoacoustic (PA) signal and enhanced photothermal conversion with low-dose laser irradiation and then doxorubicin (DOX)-loaded AuNBPs@PDA-DOX nanoprobes were constructed for PA imaging-guided synergistic photothermal therapy (PTT) and chemotherapy. The AuNBPs@PDA nanoparticles possessed higher photothermal conversion efficiency (42.07%) and stronger PA signal than those of AuNBP nanoparticles, and the AuNBPs@PDA-DOX nanoprobes showed dual-responsive DOX release of pH and photothermal stimulation. With low-dose laser irradiation (1.0 W/cm2) and low-concentration AuNBPs@PDA-DOX (60 µg/mL), the 4T1 cell viability was reduced to about 5%, owing to the combination of PTT and chemotherapy, compared with 42.3% of single chemotherapy and 25.3% of single PTT. Moreover, by modeling 4T1 tumor-bearing nude mice, in vivo PA imaging was achieved and the tumors were completely inhibited, demonstrating the excellent synergistic effect of PTT/chemotherapy. Therefore, the developed AuNBPs@PDA-DOX nanoprobes can be used for phototheranostics and synergistic chemotherapy, achieving low-dose laser irradiation and high-efficient visualized theranostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA