Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.727
Filtrar
1.
Environ Pollut ; 316(Pt 2): 120589, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336182

RESUMO

Understanding how abiotic and biotic components respond to aquatic ecosystem restoration is pivotal for sustainable development in the face of economic development and global environmental change. However, the post-restoration monitoring and evaluation of aquatic ecosystems across large spatial and temporal scales is underfunded or not well documented, especially outside of Europe and North America. We present a meta-analysis of abiotic and biotic indices to quantify post-restoration (2 months-13 years) effects from reported aquatic restoration projects throughout the China-mainland, incorporating 39 lentic and 36 lotic ecosystems. Decreases in dissolved nutrients (total nitrogen, ammonia nitrogen and total phosphorus) post-restoration were rapid, but tended to slow down after about 9.3 years. Response ratios summarizing biodiversity responses (incorporating phytoplankton, invertebrates, vascular plants, fish and birds) typically lagged behind abiotic changes, suggesting longer timescales are needed for biotic indices to recover. Time since restoration interacted with lentic project size showing that, even with the same proportional efforts of restoration, larger lentic ecosystems responded much more slowly than smaller ones. Spatial heterogeneity, reflecting the effects of different restoration approaches (e.g., sewage interception, polluted sediment dredging, artificial wetlands, etc.), had a significantly stronger effect on biotic than abiotic indices, particularly in rivers compared to standing waters. This reflects the complexity of fluvial ecosystem dynamics and hints at a limitation in the reinstatement of ecological processes in these systems to overcome issues such as dispersal limitations. Overall, the different timelines and processes by which abiotic and biotic indices recover after restoration should be taken into account when defining restoration targets and monitoring programs. Our study illustrates the value of long-term aquatic ecosystem monitoring, especially in China given the scale and magnitude of ongoing restoration investments in the country.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122073, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36399817

RESUMO

By coupling thin-film microextraction (TFME) with surface enhanced Raman scattering (SERS), a facile method was developed for the determination of thiram in the complex matrix (orange juice or grape peel). The substrate of TFME was made by self-assembling silver sol on the silicon wafer to form a three-dimensional (3D) silver nanonetwork structure, without adding any template, which was used for TFME and SERS detection, respectively. The substrate exhibits high reproducibility with a relative standard deviation of about 7.32 % in spot and spot SERS intensity. The SERS signal intensity at a shift of 1384 cm-1 and the thiram concentration showed good linearity in the range of 0.01-5 µg/L and the linear correlation coefficient was 0.9912. The detection limit for thiram was found to be 0.01 µg/L. The TFME-SERS method was applied for the determination of thiram in fruit juice and the results were obtained very well. Therefore, this method is expected to play a role in the detection of trace pollutants.


Assuntos
Análise Espectral Raman , Tiram , Prata , Reprodutibilidade dos Testes , Sucos de Frutas e Vegetais
3.
Chemosphere ; 311(Pt 1): 136968, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283429

RESUMO

The plastic concentration in terrestrial systems is orders of magnitude higher than that found in marine ecosystems, which has raised global concerns about their potential risk to agricultural sustainability. Previous research on the transport of nanoplastics in soil relied heavily on the qualitative prediction of the mean-field extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO), but direct and quantitative measurements of the interfacial forces between single nanoplastics and porous media are lacking. In this study, we conducted multiscale investigations ranging from column transport experiments to single particle measurements. The maximum effluent concentration (C/C0) of amino-modified nanoplastics (PS-NH2) was 0.94, whereas that of the carboxyl-modified nanoplastics (PS-COOH) was only 0.33, indicating PS-NH2 were more mobile than PS-COOH at different ionic strengths (1-50 mM) and pH values (5-9). This phenomenon was mainly attributed to the homogeneous aggregation of PS-COOH. In addition, the transport of PS-NH2 in the quartz sand column was inhibited with the increase of ionic strength and pH, and pH was the major factor governing their mobility. The transport of PS-COOH was inhibited with increasing ionic strength and decreasing pH. Hydrophilicity/hydrophobicity-mediated interactions and particle heterogeneity strongly interfered with interfacial forces, leading to the qualitative prediction of XDLVO, contrary to experimental observations. Through the combination of XDLVO and colloidal atomic force microscopy, accurate and quantitative interfacial forces can provide compelling insight into the fate of nanoparticles in the soil environment.


Assuntos
Ecossistema , Microplásticos , Porosidade , Quartzo , Areia
4.
Bioresour Technol ; 367: 128221, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332865

RESUMO

The effect of static magnetic field (SMF) on the system of photo-fermentation biological hydrogen production remains dimness. The goal of this study was to clarify the correlation between external SMF addition and hydrogen production via photo-fermentation from giant reed. SMF with 20 mT improved the cumulative H2 yield by 26.1% and reduced the lag time of hydrogen production by 56.7% compared with that of without external magnetic field. Moreover, 20 mT of SMF not only enhanced the activity of nitrogenase by 94.52%, but also obtained the maximum energy conversion efficiency of 27.27%. The distribution of volatile fatty acids proved that the concentration of acetic acid and butyric acid were 137% and 81% higher than that of without SMF, respectively. The results would help to trigger the positive interaction between SMF and microorganism and to avoid the possible negative interaction.


Assuntos
Ácidos Graxos Voláteis , Hidrogênio , Fermentação , Campos Magnéticos , Ácido Butírico
5.
Artigo em Inglês | MEDLINE | ID: mdl-36319926

RESUMO

Dibutyl phthalate (DBP) is present in hydraulic fracturing flowback and produced water. Degradation of DBP in aqueous by means of ozonation in ultrasonic cavitation-rotational flow interaction coupled-field (UC-RF coupled-field) was studied. The effect of ozone dosage, ozone intake flow, operating temperature, initial pH, DBP initial concentration, liquid flow rate, and ultrasonic power on the DBP removal was investigated. Results indicated that the DBP degradation rate was strongly influenced by the liquid flow rate and the ultrasonic power over the range investigated. HCO3- and Cl- revealed an inhibitory effect on the DBP removal. SO42- seemed to have no effect on DBP removal. The ozone utilization efficiencies in the UC-RF coupled-field were 2.77 and 1.13 times higher than those in the conventional microporous aeration (CMA) and rotating-flow microbubble aeration (RFMA), respectively. The DBP degradation rate was diminished in the presence of tert-butyl alcohol. Cavitation bubbles are considered as innumerable microreactors. Degradation of DBP by direct ozonation, hydroxyl radical (·OH) oxidation, high pressure, and high-temperature pyrolysis was demonstrated. Finally, a possible degradation pathway of DBP is obtained on the basis of the main reaction intermediates.

6.
J Inflamm Res ; 15: 6105-6112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386577

RESUMO

Purpose: Subchondral insufficiency fracture of the knee (SIFK) is a common cause of knee joint pain that mainly afflicts the elderly. Until now, how a sudden insufficiency fracture of subchondral bone affects the transcriptomic profiles of cartilage in SIFK and OA patients are largely unknown. Methods: Single-cell RNA sequencing (scRNA-seq) was used to identify various cell subsets and evaluate transcriptomic differences in cartilage of SIFK and OA patients. In addition, the above findings were confirmed by histological evaluation and immunohistochemical (IHC) staining. Results: We found that the transcriptomic profiles of cartilage in the SIFK patient was completely different from those of normal and OA patients. Accordingly, several novel cell clusters with activation of hypoxia and endochondral ossification signaling were identified in the SIFK cartilage. Chondrocyte trajectories analysis and IHC staining revealed that transcription factors including TCF4 were found to be highly up-regulated during the occurrence of SIFK, which might drive the reactive formation of cartilage and fibrous tissue and the activation of endochondral ossification. Conclusion: This is the first report to elucidate the transcriptomic alterations and distinct cell type subpopulations in the cartilage of SIFK and OA by the use of scRNA-seq, which provides a new insight in the understanding of the initiation and progression of SIFK.

7.
Nucleic Acids Res ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399508

RESUMO

Understanding the function of non-coding genomic sequence variants represents a challenge for biomedicine. Many diseases are products of gene-by-environment interactions with complex mechanisms. This study addresses these themes by mechanistic characterization of non-coding variants that influence gene expression only after drug or hormone exposure. Using glucocorticoid signaling as a model system, we integrated genomic, transcriptomic, and epigenomic approaches to unravel mechanisms by which variant function could be revealed by hormones or drugs. Specifically, we identified cis-regulatory elements and 3D interactions underlying ligand-dependent associations between variants and gene expression. One-quarter of the glucocorticoid-modulated variants that we identified had already been associated with clinical phenotypes. However, their affected genes were 'unmasked' only after glucocorticoid exposure and often with function relevant to the disease phenotypes. These diseases involved glucocorticoids as risk factors or therapeutic agents and included autoimmunity, metabolic and mood disorders, osteoporosis and cancer. For example, we identified a novel breast cancer risk gene, MAST4, with expression that was repressed by glucocorticoids in cells carrying the risk genotype, repression that correlated with MAST4 expression in breast cancer and treatment outcomes. These observations provide a mechanistic framework for understanding non-coding genetic variant-chemical environment interactions and their role in disease risk and drug response.

8.
Nat Commun ; 13(1): 6854, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369425

RESUMO

During mesenchymal development, the sources of mechanical forces transduced by cells transition over time from predominantly cell-cell interactions to predominantly cell-extracellular matrix (ECM) interactions. Transduction of the associated mechanical signals is critical for development, but how these signals converge to regulate human mesenchymal stem cells (hMSCs) mechanosensing is not fully understood, in part because time-evolving mechanical signals cannot readily be presented in vitro. Here, we established a DNA-driven cell culture platform that could be programmed to present the RGD peptide from fibronectin, mimicking cell-ECM interactions, and the HAVDI peptide from N-cadherin, mimicking cell-cell interactions, through DNA hybridization and toehold-mediated strand displacement reactions. The platform could be programmed to mimic the evolving cell-ECM and cell-cell interactions during mesenchymal development. We applied this platform to reveal that RGD/integrin ligation promoted cofilin phosphorylation, while HAVDI/N-cadherin ligation inhibited cofilin phosphorylation. Cofilin phosphorylation upregulated perinuclear apical actin fibers, which deformed the nucleus and thereby induced YAP nuclear localization in hMSCs, resulting in subsequent osteogenic differentiation. Our programmable culture platform is broadly applicable to the study of dynamic, integrated mechanobiological signals in development, healing, and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Integrinas/metabolismo , Caderinas/metabolismo , Fosforilação , Adesivos/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Matriz Extracelular/metabolismo , DNA/metabolismo
9.
Artigo em Chinês | MEDLINE | ID: mdl-36373645

RESUMO

Coronaviruses are a major source of emerging infectious diseases in recent years.With a variety of family members,wide host spectrum,and diverse mutant strains,coronaviruses have demonstrated unique advantages in evolution.This paper reviews the research progress of coronaviruses from genome characteristics,host animals,distribution of receptorsand gene mutations,summarizes the advantages of coronaviruses in evolution and transmission,aiming to draw attention to the prevention and control of such viruses.

10.
Exp Hematol Oncol ; 11(1): 99, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384979

RESUMO

Neutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.

11.
Plant Physiol ; 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377782

RESUMO

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37-70.94% increase in leaf biomass, a 12.08-21.85% increase in IAA levels, and a 31.33-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the auxin signaling and flavonoid biosynthesis pathways. ChIP-qPCR and EMSA indicated that IbBBX29 targets key genes of auxin signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as MADS-box protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.

12.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365324

RESUMO

Low-temperature stress is an increasing problem for the cultivation of tea (Camellia sinensis), with adverse effects on plant growth and development and subsequent negative impacts on the tea industry. Methyl jasmonate (MeJA), as a plant inducer, can improve the cold-stress tolerance in tea plants. R2R3-MYB transcription factors (TFs) are considered potentially important regulators in the resistance to cold stress in plants. However, the molecular mechanisms, by which MYB TFs via the jasmonic acid pathway respond to cold stress in the tea plant, remain unknown. In this study, physiological and biochemical assays showed that exogenous MeJA application could effectively promote ROS scavenging in the tea plant under cold stress, maintaining the stability of the cell membrane. Sixteen R2R3-MYB TFs genes were identified from the tea plant genome database. Quantitative RT-PCR analysis showed that three CsMYB genes were strongly induced under a combination of MeJA and cold-stress treatment. Subcellular localization assays suggest CsMYB45, CsMYB46, and CsMYB105 localized in the nucleus. Exogenous MeJA treatment enhanced the overexpression of CsMYB45, CsMYB46, and CsMYB105 in E. coli and improved the growth and survival rates of recombinant cells compared to an empty vector under cold stress. Yeast two-hybrid and bimolecular fluorescence complementation experiments confirmed that CsMYB46 and CsMYB105 interacted with CsJAZ3, CsJAZ10, and CsJAZ11 in the nucleus. Taken together, these results highlight that CsMYB45, CsMYB46, and CsMYB105 are not only key components in the cold-stress signal response pathway but also may serve as points of confluence for cold stress and JA signaling pathways. Furthermore, our findings provide new insight into how MYB TFs influence cold tolerance via the jasmonic acid pathway in tea and provide candidate genes for future functional studies and breeding.

13.
FASEB J ; 36(12): e22634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36331537

RESUMO

Testis-specifically expressed genes are important for male reproduction according to their unique expression patterns. However, the functions of most of these genes in reproduction are unclear. Here, we showed that mouse 4930590J08Rik was a testis-specifically expressed gene. 4930590J08Rik knockout mice exhibited a delay in the first wave of spermatogenesis and a reduction of cauda epididymal sperm. Furthermore, knockout spermatozoa exhibited defective acrosome reactions and decreased progressive motility, which led to impaired in vivo fertilization. Transcriptome analysis of testes revealed that most of the differentially expressed genes in knockout testes were associated with metabolic processes. 4930590J08Rik knockout sperm exhibited oxidative phosphorylation deficiency and were highly dependent on increased anaerobic glycolysis to compensate for ATP demands. Taken together, the 4930590J08Rik-disrupted mouse partially mimics the phenotypes of human asthenospermia and oligozoospermia, which provides a new model for further understanding the pathogenesis of idiopathic male infertility.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Camundongos , Animais , Sêmen/metabolismo , Espermatozoides/metabolismo , Fertilidade/genética , Infertilidade Masculina/metabolismo , Testículo/metabolismo , Espermatogênese/genética , Camundongos Knockout , Metabolismo Energético/genética , Motilidade Espermática/genética
14.
Front Plant Sci ; 13: 965069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388596

RESUMO

Small open reading frames (sORFs) can encode functional polypeptides or act as cis-translational regulators in stress responses in eukaryotes. Their number and potential importance have only recently become clear in plants. In this study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded the 83-amino acid polypeptide containing an EGF_CA domain. The expression of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized to the nucleus and cell membrane. Under drought stress, overexpression of IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA, BR and proline and upregulated the genes encoding superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The IbEGF protein was found to interact with IbCOP9-5α, a regulator in the phytohormone signalling pathways. These results suggest that IbEGF interacting with IbCOP9-5α enhances drought tolerance by regulating phytohormone signalling pathways, increasing proline accumulation and further activating reactive oxygen species (ROS) scavenging system in transgenic sweet potato.

15.
J Fungi (Basel) ; 8(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422013

RESUMO

Sclerotinia sclerotiorum is a broad-spectrum necrotrophic phytopathogen that can infect many plant species worldwide. The application of fungicides is a common measure for controlling Sclerotinia sclerotiorum. Due to the risk of developing resistance to fungicides, it is imperative to find ways to be environmentally friendly and even effective. Using bioactive compounds in plants to reduce the amounts of fungicides has become a clean and sustainable strategy of controlling Sclerotinia sclerotiorum. Our study found that selenium in soil mediated the phenylacetic acid-related metabolic pathway in oilseed rape and reduced the incidence rate of Sclerotinia sclerotiorum. The growth-inhibition rates of Sclerotinia sclerotiorum were observed at 25.82%, 19.67%, and 52.61% for treatments of 0.8 mg·L-1 dimethachlon, 0.1 mg·mL-1 phenylacetic acid, and dimethachlon (0.8 mg·L-1) + phenylacetic acid (0.1 mg·mL-1), respectively. Phenylacetic acid reduced the application amount of dimethachlon and enhanced the inhibition effect for Sclerotinia sclerotiorum. Results also suggested that phenylacetic acid severely damaged the morphological structure, changed the electrical conductivity, and reduced the capacity of acid production and oxalic acid secretion of Sclerotinia sclerotiorum mycelium. Further studies revealed that phenylacetic acid increased the gene-expression level of Ssodc1, Ssodc2, CWDE2 and CWDE10 in mycelium while decreasing the expression level of SsGgt1, and phenylacetic acid + dimethachlon reduced the relative expression level of SsBil. These findings verified that phenylacetic acid could partially replace the amount of dimethachlon, as well as enhance the prevention of Sclerotinia sclerotiorum by dimethachlon, which provides evidence for developing an environment-friendly method for Sclerotinia sclerotiorum control.

16.
Int J Nanomedicine ; 17: 5525-5545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438610

RESUMO

Background: Microwave dynamic therapy (MDT) as a novel reactive oxygen species (ROS)-based therapeutic modality has been explored as a promising modality for cancer treatment. However, the intrinsic hypoxic tumor microenvironment (TME) restricted the effectiveness of the MDT. The aim of this study is to develop an oxygen-sufficient nanoplatform with multi-modal imaging capability for enhanced MDT against hypoxic tumors. Methods and Materials: The liquid perfluorocarbon-based nanoplatform PFP@IR780@O2 was constructed by the phospholipid hydration and sonication method. Then, the characteristics, intracellular uptake process, and subcellular localization of PFP@IR780@O2 were verified. Additionally, the abilities of ROS generation, the anti-hypoxia capability, multi-mode imaging capabilities, and MDT efficacy of the nanoplatform were evaluated via in vitro and in vivo experiments. Finally, the in vivo biocompatibility and toxicity were also evaluated. Results: The prepared nanoparticles PFP@IR780@O2 exhibited suitable size, improved stability, elevated dissolved oxygen level, enhanced cellular uptake, and mitochondria targeting capacity. Additionally, PFP@IR780@O2 demonstrated in vitro and in vivo multimodal imaging capabilities involving ultrasound, fluorescence, and photoacoustic imaging. In vivo studies also indicated that nanoparticles were safe and capable of accumulating in the tumor site after intravenous injection. Furthermore, the PFP@IR780@O2 nanoplatform mediated MDT could effectively alleviate the hypoxic TME, and elevate ROS concentration, thereby resulting in significant tumor growth inhibition. Conclusion: Overall, the oxygen-sufficient nanoplatform with multi-bimodal imaging capability demonstrated improved MDT efficiency, indicating a promising strategy for treating hypoxic tumors.


Assuntos
Neoplasias , Oxigênio , Camundongos , Animais , Espécies Reativas de Oxigênio , Micro-Ondas , Camundongos Nus , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Hipóxia/diagnóstico por imagem , Microambiente Tumoral
17.
BMC Oral Health ; 22(1): 510, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397112

RESUMO

BACKGROUND: Laryngeal cancer (LC) is the second frequent malignant head and neck cancer around world, while LC patients' prognosis is unsatisfactory. This study aims to investigate the prognostic value of tumor mutation burden (TMB)-related genes in LC. METHODS: LC data was downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. TMB values of all samples were calculated basing on mutation data. The differentially expressed genes (DEGs) between LC samples with distinct TMB were subjected to univariate and LASSO Cox regression analysis to build Risk Score. Immune cell infiltration analysis was conducted in CIBERSORT. RESULTS: Between high and low TMB LC samples, we identified 210 DEGs. Of which, six optimal genes were included to construct Risk Score, comprising FOXJ1, EPO, FGF5, SPOCK1, KCNF1 and PSG5. High risk LC patients had significantly poorer overall survival than low risk patients. The nomogram model constructed basing on Risk Score and gender showed good performance in predicting LC patients' survival probability. CONCLUSIONS: The prognostic Risk Score model, basing on six TMB-related genes (FOXJ1, EPO, FGF5, SPOCK1, KCNF1 and PSG5), was a reliable prognostic model to separate LC patients with different prognoses.


Assuntos
Neoplasias Laríngeas , Humanos , Prognóstico , Neoplasias Laríngeas/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Fatores de Risco , Proteoglicanas
18.
Microbiol Spectr ; : e0190621, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445086

RESUMO

Gastrointestinal colonization with carbapenem-resistant Enterobacteriaceae (CRE) is always a prerequisite for the development of translocated infections. Here, we sought to screen for fecal carriage of CRE and identify the risk factors for CRE colonization as well as subsequent translocated pneumonia in critically ill patients admitted to the intensive care unit (ICU) of a university hospital in China. We further focused on the intestinal flora composition and fecal metabolic profiles in CRE rectal colonization and translocated infection patients. Animal models of gastrointestinal colonization with a carbapenemase-producing Klebsiella pneumoniae (carbapenem-resistant K. pneumoniae [CRKP]) clinical isolate expressing green fluorescent protein (GFP) were established, and systemic infection was subsequently traced using an in vivo imaging system (IVIS). The intestinal barrier, inflammatory factors, and infiltrating immune cells were further investigated. In this study, we screened 54 patients hospitalized in the ICU with CRE rectal colonization, and 50% of the colonized patients developed CRE-associated pneumonia, in line with the significantly high mortality rate. Upon multivariate analysis, risk factors associated with subsequent pneumonia caused by CRE in patients with fecal colonization included enteral feeding and carbapenem exposure. Furthermore, CRKP colonization and translocated infection influenced the diversity and community composition of the intestinal microbiome. Downregulated propionate and butyrate probably play important and multiangle roles in regulating immune cell infiltration, inflammatory factor expression, and mucus and intestinal epithelial barrier integrity. Although the risk factors and intestinal biomarkers for subsequent infections among CRE-colonized patients were explored, further work is needed to elucidate the complicated mechanisms. IMPORTANCE Carbapenem-resistant Enterobacteriaceae have emerged as a major threat to modern medicine, and the spread of carbapenem-resistant Enterobacteriaceae is a clinical and public health problem. Gastrointestinal colonization by potential pathogens is always a prerequisite for the development of translocated infections, and there is a growing need to assess clinical risk factors and microbiological and intestinal characteristics to prevent the development of clinical infection by carbapenem-resistant Enterobacteriaceae.

19.
Front Vet Sci ; 9: 983482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406068

RESUMO

Canine brucellosis is primarily caused by Brucella canis, but other Brucella species can also cause the disease. Identifying sequences specific to B. canis and establishing PCR assays that can distinguish between B. canis and other Brucella species is essential to determine the etiology of canine brucellosis and the source of infection and to achieve effective control. We analyzed the gaps and SNPs of genomes I and II from B. canis strain RM6/66 and B. melitensis strain 16M using the Mauve genome alignment software, and the specificity of each of these differential regions was analyzed by BLAST. A 132 bp specific sequence was found between the DK60_915 (glycosyl hydrolase 108 family protein) and DK60_917 (aldose 1-epimerase) loci in B. canis chromosome 1. Further comparative analysis revealed that this is a reverse complement sequence between B. canis and other Brucella species. Then, three primers were designed based on the sequence that could detect B. canis with a 310 bp amplification product or other Brucella species with a 413 bp product. The PCR based on these primers had reasonable specificity and a sensitivity of 100 copies of Brucella DNA. The detection results for the blood samples of the aborted dogs showed a favorable accordance with the Bruce-ladder multiplex PCR assay. In conclusion, we found a specific reverse complement sequence between B. canis and other Brucella and developed a PCR method that allows a more comprehensive identification of the pathogen involved in canine brucellosis. These findings provide an effective means for preventing and controlling brucellosis.

20.
Virol J ; 19(1): 197, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434614

RESUMO

Currently, the majority of the global population has been vaccinated with the COVID-19 vaccine, and characterization studies of antibodies in vivo from Omicron breakthrough infection and naive infection populations are urgently needed to provide pivotal clues about accurate diagnosis, treatment, and next-generation vaccine design against SARS-CoV-2 infection. We showed that after infection with Omicron-BA.2, the antibody levels of specific IgM against the Wuhan strain and specific IgG against Omicron were not significantly elevated within 27 days of onset. Interestingly, in this study, the levels of humoral immunity against Omicron-specific IgM were significantly increased after breakthrough infection, suggesting that the detection of Omicron-specific IgM antibodies can be used as a test criterion of Omicron breakthrough infection. In addition, we observed that serums from unvaccinated individuals and the majority of vaccinated infections possessed only low or no neutralizing activity against Omicron at the onset of Omicron breakthrough infections, and at the later stage of Omicron-BA.2 breakthrough infection, levels of neutralization antibody against the Wuhan and Omicron strains were elevated in infected individuals. The findings of this study provide important clues for the diagnosis of Omicron breakthrough infections, antibody characterization studies and vaccine design against COVID-19.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Vacinas contra COVID-19 , Imunoglobulina M
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...