RESUMO
OBJECTIVE: The aim of this study was to develop a cone beam computed tomography (CBCT) radiomics-based model that differentiates between conventional and unicystic ameloblastoma (AB). METHODS: In this retrospective study, CBCT images were collected from 100 patients who had ABs that were diagnosed histopathologically as conventional or unicystic AB after surgical treatment. The patients were randomly divided into training (70) and validation (30) cohorts. Radiomics features were extracted from the images, and the optimal features were incorporated into 5 models: Logistic Regression, Support Vector Machine, Linear Discriminant Analysis, Random Forest, and XGBoost for prediction of tumor type. Model performance was evaluated using the area under the curve (AUC) from receiver operating characteristic analysis, sensitivity, specificity, accuracy, calibration curves, and decision curve analysis (DCA). RESULTS: The 20 optimal radiomics features were incorporated into the Logistic Regression (LR) model, which exhibited the best overall performance with AUC = 0.936 (95% confidence interval [CI] = 0.877-0.996) for the training cohort and AUC = 0.929 (95% CI = 0.832-1.000) for the validation cohort. The nomogram combined the clinical features and the radiomics signature and resulted in the best predictive performance. CONCLUSIONS: The LR model demonstrated the ability of radiomics and the nomogram to distinguish between the 2 types of AB and may have the potential to replace biopsies under noninvasive conditions.
RESUMO
Importance: While there is a general consensus that functional connectome pathology is a key mechanism underlying psychosis spectrum disorders, the literature is plagued with inconsistencies and translation into clinical practice is non-existent. This is perhaps because group-level findings may not be accurate reflections of pathology at the individual patient level. Objective: To characterize inter-individual heterogeneity in functional networks and investigate if normative values can be leveraged to identify biologically less heterogeneous subgroups of patients. Design Setting and Participants: We used data collected in a case-control study conducted at the University of Alabama at Birmingham (UAB). We recruited antipsychotic medication-naïve first-episode psychosis patients from UAB outpatient, inpatient, and emergency room settings. Main Outcomes and Measures: Individual-level patterns of deviations from a normative reference range in resting-state functional networks using the Yeo-17 atlas for parcellations. Results: Statistical analyses included 108 medication-naïve first-episode psychosis patients. We found that there is a high level of inter-individual heterogeneity in resting-state network connectivity deviations from the normative reference range. Interestingly 48% of patients did not have any functional connectivity deviations, and no more than 11.1% of patients shared functional deviations between the same regions of interest. In a post hoc analysis, we grouped patients based on deviations into four theoretically possible groups. We discovered that all four groups do exist in our experimental data and showed that subgroups based on deviation profiles were significantly less heterogeneous compared to the overall group (positive deviation group: z= -2.88, p = 0.002; negative deviation group: z= -3.36, p<0.001). Conclusions and Relevance: Our findings experimentally demonstrate that there is a high level of inter-individual heterogeneity in resting-state network pathology in first-episode psychosis patients which support the idea that group-level findings are not accurate reflections of pathology at the individual level. We also demonstrated that normative functional connectivity deviations may have utility for identifying biologically less heterogeneous subgroups of patients, even though they are not distinguishable clinically. Our findings constitute a significant step towards making precision psychiatry a reality, where patients are selected for treatments based on their individual biological characteristics. KEY POINTS: Question: How heterogeneous is individual-level resting-state functional network pathology in patients suffering from a first psychotic episode? Can normative reference values in functional network connectivity be leveraged to identify biologically more homogenous subgroups of patients?Findings: We report that functional network pathology is highly heterogeneous, with no more than 11% of patients sharing functional deviations between the same regions of interest.Meaning: Normative modeling is a tool that can map individual neurobiological differences and enables the classification of a clinically heterogenous patient group into subgroups that are neurobiologically less heterogenous.
RESUMO
Seminal fluid extracellular vesicles (SFEVs) have previously been shown to interact with spermatozoa and influence their fertilisation capacity. Here, we sought to extend these studies by exploring the functional consequences of SFEV interactions with human spermatozoa. SFEVs were isolated from seminal fluid of normozoospermic donors prior to assessing the kinetics of sperm-SFEV binding in vitro, as well as the effects of these interactions on sperm capacitation, acrosomal exocytosis and motility profile. Biotin-labelled SFEV proteins were transferred primarily to the flagellum of spermatozoa within minutes of co-incubation, although additional foci of SFEV biotinylated proteins also labelled the mid-piece and head domain. Functional analyses of high-quality spermatozoa collected following liquification revealed that SFEVs did not influence sperm motility during incubation at pH 5, yet SFEVs induced subtle increases in total and progressive motility in sperm incubated with SFEVs at pH 7. Additional investigation of sperm motility kinematic parameters revealed that SFEVs significantly decreased beat cross frequency and increased distance straight line, linearity, straightness, straight line velocity, and wobble. SFEVs did not influence sperm capacitation status, or the ability of sperm to undergo acrosomal exocytosis. Functional assessment of both high- and low-quality spermatozoa collected prior to liquification showed limited SFEV influence, with these vesicles inducing only subtle decreases in beat cross frequency in spermatozoa of both groups. These findings raise the prospect that, aside from subtle effects on sperm motility, the encapsulated SFEV cargo may be destined for physiological targets other than the male germline, notably the female reproductive tract.
RESUMO
Objectives: Patients undergoing a prior failed attempt of chronic total occlusion-percutaneous coronary intervention (CTO-PCI) represent a challenging subgroup across all patients undergoing CTO-PCI. There are limited data on the effects of a prior failed attempt on the outcomes of subsequent CTO-PCI. We aimed to compare the procedural results and 24-month outcomes of prior-failed-attempt CTO-PCI with those of initial-attempt CTO-PCI. Methods: Patients who underwent attempted CTO-PCI between January 2017 and December 2019 were prospectively enrolled. We analyzed the procedural results and 24-month major adverse cardiac events (MACE) between patients who underwent prior-failed-attempt and initial-attempt CTO-PCI. MACE was defined as a composite of cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization (TVR) during follow-up. Results: In total, 484 patients who underwent CTO-PCI (prior-failed-attempt, n = 49; initial-attempt, n = 435) were enrolled during the study period. After propensity score matching (1:3), 147 patients were included in the initial-attempt group. The proportion of the Japanese-CTO (J-CTO) score ≥2 was higher in the patients who underwent prior failed attempt than in those who underwent initial attempt (77.5% vs. 38.8%, p < 0.001). The retrograde approach was more often adopted in the prior-failed-attempt group than in the initial-attempt group (32.7% vs. 3.4%, [P< 0.001). Successful CTO revascularization rates were significantly lower in the prior-failed attempt-group than in the initial attempt group (53.1% vs. 83.3%, P < 0.001). The multivariate analysis revealed that J-CTO score ≥2 [odds ratio (OR), 0.359; 95% confidence interval (CI), 0.159-0.812; P = 0.014], intravascular ultrasound procedure (OR, 4.640; 95% CI, 1.380-15.603; P = 0.013), and prior failed attempt (OR, 0.285; 95% CI, 0.125-0.648; P = 0.003) were the independent predictors for successful CTO revascularization. There were no significant differences in major procedural complications (2.0% vs. 0.7%, p = 0.438) and MACE rates (4.1% vs. 8.8%, p = 0.438) between the groups, mainly due to the TVR rate (4.1% vs. 8.2%, P = 0.522). Conclusions: Compared with initial-attempt CTO-PCI, prior-failed-attempt CTO-PCI deserves more attention, since it is associated with a lower successful CTO revascularization rate. Prior failed attempt, J-CTO score ≥2, and IVUS procedure are the determining factors for predicting successful CTO revascularization. There are no significantly different unfavorable outcomes between patients who undergo prior-failed-attempt and initial-attempt CTO-PCI.
RESUMO
In the past decade, China has motivated proactive emission control measures that have successfully reduced emissions of many air pollutants. For atmospheric mercury, which is a globally transported neurotoxin, much less is known about the long-term changes in its concentrations and anthropogenic emissions in China. In this study, over a decade of continuous observations at four Chinese sites show that gaseous elemental mercury (GEM) concentrations continuously increased until the early 2010s, followed by significant declines at rates of 1.8%-6.1% yr-1 until 2022. The GEM decline from 2013 to 2022 (by 38.6% ± 12.7%) coincided with the decreasing concentrations of criteria air pollutants in China and were larger than those observed elsewhere in the northern hemisphere (5.7%-14.2%). The co-benefits of emission control measures contributed to the reduced anthropogenic Hg emissions and led to the GEM decline in China. We estimated that anthropogenic GEM emissions in China were reduced by 38%-50% (116-151 tons) from 2013 to 2022 using the machine-learning and relationship models.
RESUMO
Skin-electronic interfaces have broad applications in fields such as diagnostics, therapy, health monitoring, and smart wearables. However, they face various challenges in practical use. For instance, in wet environments, the cohesion of the material may be compromised, and under dynamic conditions, maintaining conformal adhesion becomes difficult, leading to reduced sensitivity and fidelity of electrical signal transmission. The key scientific issue lies in forming a stable and tight mechanical-electronic coupling at the tissue-electronic interface. Here, inspired by octopus sucker structures and snail mucus, we propose a strategy for hydrogel skin-electronic interfaces based on multi-coupled bioinspired adhesion and introduce an ultrasound (US)-mediated interfacial toughness enhancement mechanism. Ultimately, using digital light processing micro-nano additive manufacturing technology (DLP 3D), we have developed a multifunctional, diagnostic-therapeutic integrated patch (PAMS). This patch exhibits moderate water swelling properties, a maximum deformation of up to 460 %, high sensitivity (GF=4.73), and tough and controllable bioadhesion (shear strength increased by 109.29 %). Apart from outstanding mechanical and electronic properties, the patch also demonstrates good biocompatibility, anti-bacterial properties, photothermal properties, and resistance to freezing at -20°C. Experimental results show that this skin-electronic interface can sensitively monitor temperature, motion, and electrocardiogram signals. Utilizing a rat frostbite model, we have demonstrated that this skin-electronic interface can effectively accelerate the wound healing process as a wound patch. This research offers a promising strategy for improving the performance of bioelectronic devices and personalized diagnostics and therapeutics in the future. STATEMENT OF SIGNIFICANCE: Establishing stable and tight mechanical-electronic coupling at the tissue-electronic interface is essential for the diverse applications of bioelectronic devices. This study aims to develop a multifunctional, diagnostic-therapeutic integrated hydrogel skin-electronic interface patch with enhanced interfacial toughness. The patch is based on a multi-coupled bioinspired adhesive-enhanced mechanism, allowing for personalized 3D printing customization. It can be used as a high-performance diagnostic-therapeutic sensor and effectively promote frostbite wound healing. We anticipate that this research will provide new insights for constructing the next generation of multifunctional integrated high-performance bioelectronic interfaces.
RESUMO
Chronic diabetic wounds struggle to heal due to drug-resistant bacterial infections, oxidative stress microenvironment, and immune dysfunction. At present, the disease has become a huge clinical challenge. Multifunctional hydrogels with antibacterial, antioxidant, and anti-inflammatory properties are becoming an emerging trend in the treatment of chronic wounds. However, matching different bioactive functions with the wound healing process to sequentially exert antibacterial, antioxidant, anti-inflammatory, and immunomodulatory functions remains a significant challenge. In this research, a hydrogel dressing with bactericidal and anti-inflammatory properties was synthesized by crafting a pH/ROS-responsive scaffold from phenylboronic acid-grafted hyaluronic acid (HA-PBA) and 4-arm-PEG-dopamine (4A-PEG-Dopa), employing dynamic borate ester bonds. This structure was then infused with the antimicrobial peptide (AMP) and ROS-sensitive micelle mPEG-TK-PLGA loaded with quercetin (QC). This dressing embodied a dual-barrier drug delivery mechanism, engineered for the prolonged and consistent liberation of QC. In the experiment, the hydrogel dissociated within the acidic microenvironment of diabetic wounds, thereby liberating the encapsulated micelles and AMP. Upon further dissociation, the micelles release QC due to the ROS-abundant microenvironment, which could relieve oxidative stress and encourage M2 polarization of macrophage via the Akt/STAT6 signaling pathway. Therefore, this smart delivery system, developed through our innovative approach, holds promise for treating chronic infectious diabetic wounds.
RESUMO
Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach. The hydrogel, crosslinked by calcium ions with sodium alginate, encapsulates a blood clot rich in dendritic cells (DCs) chemoattractants and melanoma cell-derived nanovesicles (NVs), functioning as a potent immunostimulant. This in situ recruitment strategy overcomes the limitations of subcutaneous tumor vaccine injections and more effectively achieves antitumor immunity. Additionally, the hydrogel incorporates Chlorella extracts, enhancing its antimicrobial properties to prevent wound infections and promote healing. One of the key findings of our research is the dual functionality of Chlorella extracts; they not only expedite the healing process of infected wounds but also increase the hydrogel's ability to stimulate an antitumor immune response. Given the patient-specific nature of the blood clot and NVs, our hydrogel system offers customizable solutions for individual postoperative requirements. This personalized approach is highlighted by our study, which demonstrates the synergistic impact of the composite hydrogel on preventing melanoma recurrence and hastening wound healing, potentially transforming postsurgical melanoma management.
RESUMO
Improving the efficiency of tin-based perovskite solar cells (TPSCs) is significantly hindered by energy level mismatch and weak interactions at the interface between the tin-based perovskite and fullerene-based electron transport layers (ETLs). In this study, four well-defined multidentate fullerene molecules with 3, 4, 5, and 6 diethylmalonate groups, labeled as FM3, FM4, FM5, and FM6 are synthesized, and employed as interfacial layers in TPSCs. It is observed that increasing the number of functional groups in these fullerenes leads to shallower lowest unoccupied molecular orbital (LUMO) energy levels and enhance interfacial chemical interactions. Notably, FM5 exhibits a suitable energy level and robust interaction with the perovskite, effectively enhancing electron extraction and defect passivation. Additionally, the unique molecular structure of FM5 allows the exposed carbon cage to be tightly stacked with the upper fullerene cage after interaction with the perovskite, facilitating efficient charge transfer and protecting the perovskite from moisture and oxygen damage. As a result, the FM5-based device achieves a champion efficiency of 15.05%, significantly surpassing that of the PCBM-based (11.77%), FM3-based (13.54%), FM4-based (14.34%), and FM6-based (13.75%) devices. Moreover, the FM5-based unencapsulated device exhibits excellent stability, maintaining over 90% of its initial efficiency even after 300 h of air exposure.
RESUMO
Mandarin Chinese is typologically unusual among the world's languages in having flexible word order despite a near absence of inflectional morphology. These features of Mandarin challenge conventional linguistic notions such as subject and object and the divide between syntax and semantics. In the present study, we tested monolingual processing of argument structure in Mandarin verb-final sentences, where word order alone is not a reliable cue. We collected participants' responses to a forced agent-assignment task while measuring their electroencephalography data to capture real-time processing throughout each sentence. We found that sentence interpretation was not informed by word order in the absence of other cues, and while the coverbs BA and BEI were strong signals for agent selection, comprehension was a result of multiple cues. These results challenge previous reports of a linear ranking of cue strength. Event-related potentials showed that BA and BEI impacted participants' processing even before the verb was read and that role reversal anomalies elicited an N400 effect without a subsequent semantic P600. This study demonstrates that Mandarin sentence comprehension requires online interaction among cues in a language-specific manner, consistent with models that predict crosslinguistic differences in core sentence processing mechanisms.
Assuntos
Compreensão , Eletroencefalografia , Potenciais Evocados , Idioma , Semântica , Humanos , Feminino , Masculino , Potenciais Evocados/fisiologia , Adulto Jovem , Compreensão/fisiologia , Adulto , Sinais (Psicologia)RESUMO
AIMS: The purpose of our study was to determine resident radiologists' accuracy in diagnosing carotid atherosclerotic plaque and to assess any factors leading to incorrect findings. MATERIALS AND METHODS: The results of preliminary carotid scanning performed by radiology residents from December 1, 2021, to August 1, 2022, were retrospectively reviewed. These scans received an instant review by experts. The discrepancy rates of the resident radiologists were evaluated using expert diagnoses. Then, the plaque detection rate of the resident radiologists was investigated for different plaque characteristics. The causes of incorrect stenosis diagnoses were analyzed. RESULTS: In the investigation of carotid plaque detection, a total of 274 carotid scans from 137 patients were evaluated in our hospital. The overall agreement rate of plaque detection was 90.9%. Echolucent plaques, plaques in the lateral or near wall, and plaques in the carotid bulbs were more likely to be misdiagnosed by resident radiologists. A total of 325 plaques were included in the investigation of carotid artery stenosis classification. The overall agreement rate of stenosis evaluation was 67.7%. The misclassification of moderate stenosis was greater than that of mild and severe stenosis (p=0.0003). The sensitivity was as low as 55.56%. Nonstandard sonographic techniques and incorrect application of interpretive criteria were two main causes. CONCLUSIONS: Resident radiologists could accurately and efficiently detect carotid plaques. Scanning by resident radiologists can expand access to ultrasound services. Only the diagnosis of moderate stenosis by resident radiologists was not satisfactory and may require a specialized review from experienced radiologists.
RESUMO
Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.
RESUMO
Arsenic is a toxic metal-like element widely used in the pesticide, preservative and semiconductor industries. However, accumulation of arsenic through the food chain can cause serious damage to animal and human health. However, the toxic mechanism of arsenic-induced hepatotoxicity in chickens is not clear, and the present study aimed to investigate the potential role of cGAS-STING and NF-κB pathways on inflammatory injury in chicken liver. In this study, 75 white-feathered broilers were divided into a control group, a low-dose arsenic group (4 mg/kg) and a high-dose arsenic group (8 mg/kg) to investigate the toxic effects of arsenic on chicken liver. In this study, we found that pathological changes such as inflammatory cell infiltration and vesicular degeneration occurred in the liver when exposed to ATO. Crucially, exposure to ATO triggered the cGAS-STING pathway and markedly raised the levels of mRNA and protein expression of cGAS, STING, TBK1, and IRF7. The type I interferon response was also triggered. Simultaneously, STING induced the activation of the conventional NF-κB signaling pathway and stimulated the expression of genes associated with inflammation, such as IL-6, TNF-α and IL-1ß. In summary, the induction of inflammatory responses via cGAS-STING and NF-κB signaling pathways under high ATO exposure provides new ideas for further studies on the toxicological mechanisms of arsenic.
RESUMO
Lattice oxygen in metal oxides plays an important role in the reaction of diesel oxidation catalysts, but the atomic-level understanding of structural evolution during the catalytic process remains elusive. Here, we develop a Mn2O3/SmMn2O5 catalyst using a non-stoichiometric exsolution method to explore the roles of lattice oxygen in NO oxidation. The enhanced covalency of Mn-O bond and increased electron density at Mn3+ sites, induced by the interface between exsolved Mn2O3 and mullite, lead to the formation of highly active lattice oxygen adjacent to Mn3+ sites. Near-ambient pressure X-ray photoelectron and absorption spectroscopies show that the activated lattice oxygen enables reversible changes in Mn valence states and Mn-O bond covalency during redox cycles, reducing energy barriers for NO oxidation and promoting NO2 desorption via the cooperative Mars-van Krevelen mechanism. Therefore, the Mn2O3/SmMn2O5 exhibits higher NO oxidation activity and better resistance to hydrothermal aging compared to a commercial Pt/Al2O3 catalyst.
RESUMO
The emergence of lysosome-targeting chimeras (LYTACs), which represents a promising strategy for membrane protein degradation based on lysosomal pathways, has attracted much attention in disease intervention and treatment. However, the expression level of commonly used lysosome-targeting receptors (LTRs) varies in different cell lines, thus limiting the broad applications of LYTACs. To overcome this difficulty, we herein report the development of integrin α3ß1 (ITGA3B1)-facilitated bispecific aptamer chimeras (ITGBACs) as a platform for the degradation of membrane proteins. ITGBACs consist of two aptamers, one targeting ITGA3B1 and another binding to the membrane-associated protein of interest (POI), effectively transporting the POI into lysosomes for degradation. Our findings demonstrate that ITGBACs effectively eliminate pathological membrane proteins, such as CD71 and PTK7, inducing significant cell-cycle arrest and apoptosis and markedly inhibiting tumor growth in tumor-bearing mice models. Therefore, this work provides a novel and versatile membrane protein degradation platform, offering a promising targeted therapy based on tumor-specific LTRs.
RESUMO
On December 15, 2023, the FDA granted traditional approval to enfortumab vedotin-ejfv plus pembrolizumab (EV + Pembro) for patients with locally advanced or metastatic urothelial carcinoma (la/mUC). Substantial evidence of effectiveness was obtained from EV-302/KEYNOTE-A39 (NCT04223856), an open-label, randomized, trial evaluating EV + Pembro versus cisplatin or carboplatin plus gemcitabine (Plat + Gem) in patients with previously untreated la/mUC. A total of 886 patients were randomized (1:1) to receive EV 1.25 mg/kg intravenously on days 1 and 8 of each 21-day cycle until disease progression or unacceptable toxicity plus pembrolizumab 200 mg intravenously on day 1 of each 21-day cycle for up to 35 cycles, or Plat + Gem for up to 6 cycles. Dual primary endpoints were progression-free survival (PFS) determined by blinded independent central review and overall survival (OS). Median PFS was 12.5 months (95% CI: 10.4, 16.6) in the EV + Pembro arm and 6.3 months (95% CI: 6.2, 6.5) in the Plat + Gem arm (HR 0.450 [95% CI: 0.377, 0.538]; p-value < 0.0001). Median OS was 31.5 months (95% CI: 25.4, NE) in the EV + Pembro arm and 16.1 months (95% CI: 13.9, 18.3) in the Plat + Gem arm (HR 0.468 [95% CI: 0.376, 0.582]; p-value < 0.0001). The safety profile of EV + pembrolizumab was similar to that observed in EV-103/KEYNOTE-869 in cisplatin-ineligible patients with la/mUC. This article summarizes the data and the FDA thought process supporting traditional approval of EV + pembrolizumab, as well as additional exploratory analyses conducted by FDA.
RESUMO
BACKGROUND: Dysfunction of the glymphatic system in the brain in different stages of altered glucose metabolism and its influencing factors are not well characterized. AIM: To investigate the function of the glymphatic system and its clinical correlates in patients with different glucose metabolism states, the present study employed diffusion tensor imaging along the perivascular space (DTI-ALPS) index. METHODS: Sample size was calculated using the pwr package in R software. This cross-sectional study enrolled 22 patients with normal glucose metabolism (NGM), 20 patients with prediabetes, and 22 patients with type 2 diabetes mellitus (T2DM). A 3.0T magnetic resonance imaging was used to evaluate the function of the glymphatic system. The mini-mental state examination (MMSE) was used to assess general cognitive function. The DTI-ALPS index of bilateral basal ganglia and the mean DTI-ALPS index was calculated. Further, the correlation between DTI-ALPS and clinical features was assessed. RESULTS: The left-side, right-side, and mean DTI-ALPS index in the T2DM group were significantly lower than that in the NGM group. The right-side DTI-ALPS and mean DTI-ALPS index in the T2DM group were significantly lower than those in the prediabetes group. DTI-ALPS index lateralization was not observed. The MMSE score in the T2DM group was significantly lower than that in the NGM and prediabetes group. After controlling for sex, the left-side DTI-ALPS and mean DTI-ALPS index in the prediabetes group were positively correlated with 2-hour postprandial blood glucose level; the left-side DTI-ALPS index was negatively correlated with total cholesterol and low-density lipoprotein level. The right-side DTI-ALPS and mean DTI-ALPS index were negatively correlated with the glycosylated hemoglobin level and waist-to-hip ratio in the prediabetes group. The left-side, right-side, and mean DTI-ALPS index in the T2DM group were positively correlated with height. The left-side and mean DTI-ALPS index in the T2DM group were negatively correlated with high-density lipoprotein levels. CONCLUSION: Cerebral glymphatic system dysfunction may mainly occur in the T2DM stage. Various clinical variables were found to affect the DTI-ALPS index in different glucose metabolism states. This study enhances our understanding of the pathophysiology of diabetic brain damage and provides some potential biological evidence for its early diagnosis.
RESUMO
BACKGROUND: Fifteen-and-a-Half Syndrome is an uncommon clinical presentation characterized by the coexistence of one-and-a-half syndrome and bilateral facial palsy. In this study, we provide a comprehensive description of symptom evolution and imaging changes in a patient with Fifteen-and-a-Half Syndrome. CASE PRESENTATION: A 54-year-old male presented with sudden onset of one-and-a-half syndrome, which gradually progressed to fifteen-and-a-half syndrome. The final diagnosis was confirmed to be pontine infarction which occurred at the midline of the pontine tegmentum. CONCLUSION: This case highlights the diverse and progressive early clinical manifestations associated with Fifteen-and-a-half Syndrome. Currently, all reported cases of this syndrome are linked to brainstem infarction; however, early differential diagnosis is crucial to ensure prompt initiation of appropriate treatment for affected patients.
Assuntos
Infartos do Tronco Encefálico , Paralisia Facial , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia Facial/diagnóstico , Paralisia Facial/diagnóstico por imagem , Paralisia Facial/etiologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Infartos do Tronco Encefálico/complicações , Infartos do Tronco Encefálico/diagnóstico , Síndrome , Imageamento por Ressonância Magnética/métodos , Tegmento Pontino/diagnóstico por imagemRESUMO
Body weight, body mass index (BMI), Nutrition Risk Screening 2002 (NRS2002), and prognostic nutritional index (PNI) are among vital nutrition status indices employed during cancer treatment. These have also been associated with levels of blood chemistry panels (BCPs), which are touted as significant indicators of disease prognosis. However, it remains unclear which nutrition status index better predicts future trends in specific BCPs. Using the records of 407 cancer patients, we retrospectively examined the potential of nutritional status indices at baseline for predicting changes in specific BCPs over a 6-week period. Generally, both serum biochemical parameters and nutrition status indices fluctuated over the study period among study participants. PNI was often linearly associated with blood cell counts (white blood cells [WBCs] and hemoglobin) compared with anthropometric-based nutrition status indices. Increase in body weight was protective against having abnormal lymphocyte levels at 6 weeks (odds ratio [OR]: 0.960-0.974; CI: 0.935-0.997; P < 0.05), while increase in baseline PNI was associated with 0.865-0.941 and 0.675-0.915 odds of having future abnormal WBC and lymphocyte levels, respectively. Increases in PNI were also protective against having future abnormal albumin levels (OR: 0.734-0.886) and 8.5-12.5% decreases in the odds of having an abnormal C-reactive protein level in subsequent visits. Changes in NRS2002 tended to be associated with the odds of having future abnormal blood glucose levels. In conclusion, the serum biochemistry-derived nutrition status index, PNI, is a more consistent measure as an early indicator to track the trends of future changes in the BCPs of cancer patients. This implies that PNI could be targeted as an early-warning measure with relevant preventive interventions for patients at risk of malnutrition.
RESUMO
The efficacy of immune checkpoint inhibitors (ICI) in the treatment of hepatocellular carcinoma (HCC) remains limited, highlighting the need for further investigation into the underlying mechanisms. Accumulating evidence indicates that tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) are implicated in immune evasion and treatment resistance. This study aimed to explore the contribution of TAMs in the HCC TME. Our findings reveal the critical involvement of CX3C motif chemokine receptor 1 (CX3CR1)-positive TAMs in inducing T cell exhaustion through interleukin-27 (IL-27) secretion, providing valuable insights into the mechanisms underlying the suboptimal efficacy of anti-PD-1 therapy in HCC. Moreover, we identified prostaglandin E2 (PGE2), released by immune-attacked tumor cells, as a key regulator of CX3CR1+ TAM phenotype transition. To augment the therapeutic response to current anti-PD-1 therapy, we propose an innovative treatment strategy that incorporates targeting CX3CR1+ TAMs in addition to anti-PD-1 therapy. In conclusion, our study contributes to the understanding of TAMs' role in cancer immunotherapy and highlights potential clinical implications for HCC treatment. The combination of targeting CX3CR1+ TAMs with anti-PD-1 therapy holds promise for enhancing the efficacy of immunotherapeutic interventions in HCC patients.