Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 863: 172701, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31568784

RESUMO

Myocardial ischemia/reperfusion (IR) injury is caused by the restoration of the coronary blood flow following an ischemic episode. Accumulating evidence suggests that galectin-3, a ß-galactoside-binding lectin, acts as a biomarker in heart disease. However, it remains unclear whether manipulating galectin-3 affects the susceptibility of the heart to IR injury. In this study, RNA sequencing (RNA-seq) analysis identified that Lgals3 (galecin-3) plays an indispensable role in IR-induced cardiac damage. Immunostaining and immunoblot assays confirmed that the expression of galectin-3 was markedly increased in myocardial IR injury both in vivo and in vitro. Echocardiographic analysis showed that cardiac dysfunction in experimental IR injury was significantly attenuated by galectin-3 inhibitors including pectin (1%, i.p.) from citrus and binding peptide G3-C12 (5.0 mg/kg, i.p.). Galectin-3 inhibitor-treated mice exhibited smaller infarct sizes and decreased tissue injury. Furthermore, TUNEL staining showed that galectin-3 inhibition suppressed IR-mediated cardiomyocyte apoptosis. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) levels were well-preserved and IR-induced changes of mitochondrial cyto c, cytosol cyto c, caspase-9, caspase-3, Bcl-2 and Bax in the galectin-3 inhibitor-treated groups were observed. Our findings indicate that the pathological upregulation of galectin-3 contributes to IR-induced cardiac dysfunction and that galectin-3 inhibition ameliorates myocardial injury, highlighting its therapeutic potential.

2.
Toxicol Appl Pharmacol ; 369: 60-72, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30831131

RESUMO

Hypoxic pulmonary vasoconstriction (HPV) can be modulated by Rho/Rho kinase signaling, which can alter HPV vascular function via regulating myosin light chain phosphorylation, in a manner generally believed to be Ca2+-independent. We hypothesized that the RhoA/ROCK signaling pathway also can regulate HPV vascular function via a Ca2+-dependent mechanism, signaling through the functional transient receptor potential canonical (TRPC) channels. In this study, male BALB/c mice were exposed to normoxic or 10% oxygen (hypoxic) conditions for six weeks, after which systolic pressure and right ventricular hypertrophy were assessed. Transient intracellular calcium was monitored using a fluorescence imaging system. Muscle tension was measured with a contractile force recording system, and protein expression was assessed by immunoblotting. We found that the expressions of RhoA and ROCK were increased in mouse pulmonary arteries (PAs) under conditions of chronic hypoxia. Inhibition of the RhoA/ROCK signaling pathway prevented the development of hypoxic pulmonary hypertension (HPH), as evidenced by significantly reduced PA remodeling and pulmonary vasoconstriction. Immunoblotting results revealed that inhibition of the RhoA/ROCK signaling pathway significantly decreased the expression of HIF-1α. Knockdown of HIF-1α down-regulated the expression and function of the TRPC1 and TRPC6 channels in PASMCs under conditions of hypoxia. Contraction of the PAs and a Ca2+ influx into PASMCs through either receptor- or store-operated Ca2+ channels were also increased after hypoxia. However, RhoA/ROCK inhibitors markedly attenuated these changes. These results indicate that inhibition of the RhoA/ROCK signaling pathway ameliorates HPH via HIF-1α-dependent functional TRPCs.

3.
Toxicol Appl Pharmacol ; 368: 26-36, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776389

RESUMO

Cardiac dysfunction is a vital complication during endotoxemia (ETM). Accumulating evidence suggests that enhanced glycolytic metabolism promotes inflammatory and myocardial diseases. In this study, we performed deep mRNA sequencing analysis on the hearts of control and lipopolysaccharide (LPS)-challenged mice (40 mg/kg, i.p.) and identified that the glycolytic enzyme, 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase 3 (PFKFB3) might play an indispensable role in ETM-induced cardiac damage. Quantitative real-time PCR validated the transcriptional upregulation of PFKFB3 in the myocardium of LPS-challenged mice and immunoblotting and immunostaining assays confirmed that LPS stimulation markedly increased the expression of PFKFB3 at the protein level both in vivo and in vitro. The potent antagonist 3-(3pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) was used to block PFKFB3 activity in vivo (50 mg/kg, i.p.) and in vitro (10 µM). Echocardiographic analysis and TUNEL staining showed that 3PO significantly alleviated LPS-induced cardiac dysfunction and apoptotic injury in vivo. 3PO also suppressed the LPS-induced secretion of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6 and lactate in the serum, in addition to lactate in the myocardium. PFKFB3 inhibition also diminished the nuclear translocation and phosphorylation of transcription factor nuclear factor-κB (NF-κB) in both adult cardiomyocytes and HL-1 cells. Furthermore, immunoblotting analysis showed that 3PO inhibited LPS-induced apoptotic induction in cardiomyocytes. Taken together, these findings demonstrate that PFKFB3 participates in LPS-induced cardiac dysfunction via mediating inflammatory and apoptotic signaling pathway.

4.
Mol Neurobiol ; 53(2): 932-943, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561437

RESUMO

Neuronal apoptosis and oxidative stress are involved in most of the neurodegenerative diseases, promoting neuron survival is critical for therapy. Silibinin (SLB), which is derived from the seeds of Silybinisus laborinum L., has been widely used as an antioxidant. Here we tested the neuroprotective effects of SLB and the involved molecular mechanisms. We demonstrated that SLB promoted neuron viability upon hydrogen peroxide (H2O2) challenge and reduced hypoxia/ischemia injury in the middle cerebral artery occlusion (MCAO) mouse model. SLB reversed the decreased level of procaspase-3 and balanced Bcl-2 and Bax expression upon H2O2 insult to inhibit cell apoptosis. Furthermore, SLB suppressed the activation of autophagy by decreasing microtubule-associated protein 1 light chain 3 (LC3-II) and Beclin-1 levels under oxidative stress accordingly. SLB phosphorylated protein kinase B (Akt-1) at Ser473 in a time- and dose-dependent manner. The inhibitor for phosphoinositide-3-kinase (PI3K) wortmannin abrogated SLB-induced phosphorylation of Akt-1 and mTOR, decreased the suppression of autophagy, and therefore abolished SLB-mediated neuroprotection. All the data suggested that SLB protected neurons by inhibiting both the mitochondrial and autophagic cell death pathways. This study opens new avenues for the use of SLB in treatment of central nervous system (CNS) diseases in which oxidative stress plays a major role in disease pathogenesis. Given that it occurs naturally with low toxicity and pleiotropic effects that benefit the nervous system, SLB acts potentially as a novel therapy for ischemic injury.


Assuntos
Autofagia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/patologia , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Silimarina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Peróxido de Hidrogênio/toxicidade , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Silibina , Silimarina/química , Silimarina/farmacologia
5.
Brain Res ; 1624: 78-85, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26210618

RESUMO

3-O-demethylswertipunicoside (3-ODS) has been reported to protect dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP(+)) in PC12 cells. Here, we investigate the neuroprotective effects in vivo and antioxidant activities in vitro of 3-ODS. In the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD), 3-ODS dose-dependently improved motor coordination (as shown by rotarod test), increased the contents of dopamine (DA) and its metabolites in the striatum, and increased the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN). In addition, 3-ODS also increased the spine density in hippocampal CA1 neurons. In antioxidant assays, 3-ODS showed a strong capacity in scavenging hydroxyl radical, superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical in a concentration-dependent manner. Taken together, we conclude that 3-ODS attenuates the PD-related motor deficits mainly through its neuroprotective effects, growth-promoting effects on spine density, and its antioxidant activities.


Assuntos
Glucosídeos/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Xantonas/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Compostos de Bifenilo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Glucosídeos/química , Hipocampo/efeitos dos fármacos , Radical Hidroxila/metabolismo , Técnicas In Vitro , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Picratos/metabolismo , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/patologia , Superóxidos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Xantonas/química
6.
Neurosci Lett ; 474(2): 99-103, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20227465

RESUMO

Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra (SN) with the presence of alpha-synuclein inclusions termed Lewy bodies. The neuroprotective effects of protocatechuic acid (PAc) both in vitro and in vivo have been reported. However, little is known about the effects of PAc on neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in vivo. In this study, we demonstrated that PAc inhibited the reduction of the latent periods in a rotarod test, and the contents of dopamine (DA) and its metabolites in striatum, and furthermore, it ameliorated the pathology in SN and the decreases in the expression of tyrosine hydroxylase (TH) in SN of C57BL/6J mice induced by MPTP. Taken together, our results indicate for the first time that PAc has neuroprotective effects on MPTP treated C57BL/6J mice and may be useful in clinical treatment of PD.


Assuntos
Antioxidantes/uso terapêutico , Hidroxibenzoatos/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Esquema de Medicação , Ácido Homovanílico/metabolismo , Intoxicação por MPTP/patologia , Intoxicação por MPTP/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA