Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(8): 5053-5061, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298866

RESUMO

Solution-processed organic photovoltaics (OPVs) based on bulk-heterojunctions have gained significant attention to alleviate the increasing demend of fossil fuel in the past two decades. OPVs combined of a wide bandgap polymer donor and a narrow bandgap nonfullerene acceptor show potential to achieve high performance. However, there are still two reasons to limit the OPVs performance. One, although this combination can expand from the ultraviolet to the near-infrared region, the overall external quantum efficiency of the device suffers low values. The other one is the low open-circuit voltage (VOC) of devices resulting from the relatively downshifted lowest unoccupied molecular orbital (LUMO) of the narrow bandgap. Herein, the approach to select and incorporate a versatile third component into the active layer is reported. A third component with a bandgap larger than that of the acceptor, and absorption spectra and LUMO levels lying within that of the donor and acceptor, is demonstrated to be effective to conquer these issues. As a result, the power conversion efficiencies (PCEs) are enhanced by the elevated short-circuit current and VOC; the champion PCEs are 11.1% and 13.1% for PTB7-Th:IEICO-4F based and PBDB-T:Y1 based solar cells, respectively.

2.
J Phys Chem Lett ; 10(11): 3171-3175, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31119942

RESUMO

Two-dimensional (2D) perovskites incorporating hydrophobic organic spacer cations show improved film stability and morphology compared to their three-dimensional (3D) counterparts. However, 2D perovskites usually exhibit low photoluminescence quantum efficiency (PLQE) owing to strong exciton-phonon interaction at room temperature, which limits their efficiency in light-emitting diodes (LEDs). Here, we demonstrate that the device performance of 2D perovskite LEDs can be significantly enhanced by doping Mn2+ in (benzimidazolium)2PbI4 2D perovskite films to suppress the exciton-phonon interaction. The distorted [PbI6]4- octahedra by Mn-doping and the rigid benzimidazolium (BIZ) ring without branched chains in the 2D perovskite structure lead to improved crystallinity and rigidity of the perovskites, resulting in suppressed phonon-exciton interaction and enhanced PLQE. On the basis of this strategy, for the first time, we report yellow electroluminescence from free excitons in 2D ( n = 1) perovskites with a maximum brightness of 225 cd m-2 and a peak EQE of 0.045%.

3.
Nat Commun ; 10(1): 1624, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944314

RESUMO

The original PDF version of this Article contained an error in the Additional information section, which incorrectly included the statement 'This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019'. This has been removed from the PDF version of the Article. The HTML version was correct from the time of publication.

4.
Nat Commun ; 10(1): 570, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718494

RESUMO

Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm-2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.

5.
Adv Mater ; : e1804771, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30345566

RESUMO

Quasi-2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of ≈40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi-2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large-bandgap perovskites with the vertical growth in the bottom region and oriented small-bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of ≈96 h at a high current density of 200 mA cm-2 in air.

6.
Adv Sci (Weinh) ; 5(8): 1800755, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128263

RESUMO

Herein, efficient organic solar cells (OSCs) are realized with the ternary blend of a medium band gap donor (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T)) with a low band gap acceptor (2,2'-((2Z,2'Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HF-PCIC)) and a near-infrared acceptor (2,2'-((2Z,2'Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO-4F)). It is shown that the introduction of IEICO-4F third component into PBDB-T:HF-PCIC blend increases the short-circuit current density (Jsc) of the ternary OSC to 23.46 mA cm-2, with a 44% increment over those of binary devices. The significant current improvement originates from the broadened absorption range and the active layer morphology optimization through the introduction of IEICO-4F component. Furthermore, the energy loss of the ternary cells (0.59 eV) is much decreased over that of the binary cells (0.80 eV) due to the reduction of both radiative recombination from the absorption below the band gap and nonradiative recombination upon the addition of IEICO-4F. Therefore, the power conversion efficiency increases dramatically from 8.82% for the binary cells to 11.20% for the ternary cells. This work provides good examples for simultaneously achieving both significant current enhancement and energy loss mitigation in OSCs, which would lead to the further construction of highly efficient ternary OSCs.

7.
ACS Appl Mater Interfaces ; 9(42): 36810-36816, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28985052

RESUMO

One-step solution process is the simplest method to fabricate organic-inorganic metal halide perovskite thin films, which however does not work well when employed in the planar-heterojunction (PHJ) solar cells due to the generally poor film morphology. Here we show that hydrazinium chloride can be used as an additive in the precursor solution to produce perovskite films featuring higher coverage and better crystallinity. The light absorption ability and charge carrier lifetime are both significantly improved accordingly. Under the optimal additive ratio, the average power conversion efficiency (PCE) of the inverted PHJ perovskite solar cells greatly increases by as much as 70%, and the champion device shows a satisfying PCE of 12.66%. These results suggest that N2H5Cl is a promising additive for fabricating high-efficiency perovskite solar cells via one-step method, which could be of interest in the future commercial solar cell industry.

8.
Phys Chem Chem Phys ; 19(6): 4516-4521, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120956

RESUMO

Recently, perovskite based solar cells have attracted lots of research interest, some of which is in the passivation of perovskite surfaces, particularly the heterojunction based surface passivation. In this study, the optical dynamics of MAPbBr3 single crystals with and without heterojunction passivation were studied systematically by means of a time-resolved spectroscopic technique for the first time. The emission lifetime of MAPbBr3 single crystals under two-photon (1064 nm) excitation is a few orders of magnitude longer than that measured under one-photon (355 nm or 532 nm) excitation. Interestingly, with surface passivation, the lifetime measured at 355 nm excitations could be tuned significantly, whereas the lifetime change under 1064 nm excitations was considerably less. Our results give a direct evidence of surface quench by comparing the lifetimes before and after surface passivation. Furthermore, the results demonstrate that proper MAPbCl3-MAPbBr3 heterojunctions can dramatically reduce the recombination channels in the surface region, which can be potentially useful for perovskite based solar cells, light emitting diodes (LED), and sensitive detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA