Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.881
Filtrar
1.
Oncol Rep ; 47(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34821374

RESUMO

The objective of the present study was to clarify the expression characteristics of long non­coding RNA (lncRNA) FGD5 antisense RNA 1 (FGD5­AS1) in pancreatic cancer, as well as its biological function and underlying mechanism. Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) was utilized for the detection of FGD5­AS1 and microRNA (miR)­577 expression levels in pancreatic cancer tissues. Transfection was performed to upregulate or downregulate FGD5­AS1 in pancreatic cancer cell lines. MTT and Transwell assays were then utilized to detect the proliferation, migration and invasion of cancer cells, respectively. Subsequently, dual­luciferase reporter gene assay, RNA immunoprecipitation assay, RNA pull­down assay, RT­qPCR, western blotting, and Pearson's correlation analysis were employed to confirm the regulatory relationships among FGD5­AS1, miR­577, low­density lipoprotein receptor­related protein 6 (LRP6) and ß­catenin. Western blotting was employed to determine the expression levels of Axin2, cyclin D1 and c­Myc. The expression level of FGD5­AS1 was upregulated in pancreatic cancer tissues and cell lines. FGD5­AS1 knockdown inhibited pancreatic cancer cell proliferation, migration and invasion. By contrast, miR­577 was significantly inhibited in pancreatic cancer cells and tissues; its downregulation promoted pancreatic cancer cell proliferation, migration and invasion, and reversed the effects of FGD5­AS1 knockdown on pancreatic cancer cells. In addition, it was revealed that miR­577 was a target of FGD5­AS1, and FGD5­AS1 could modulate the expression levels of LRP6, ß­catenin, Axin2, cyclin D1 and c­Myc via suppressing miR­577. In conclusion, in pancreatic cancer, highly expressed FGD5­AS1 activated the Wnt/ß­catenin signaling and promoted cancer cell proliferation, migration and invasion via suppression of miR­577.

2.
Hepatol Int ; 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34850325

RESUMO

BACKGROUND & AIMS: Immunotherapy with hepatitis B virus (HBV)-specific TCR redirected T (HBV-TCR-T) cells in HBV-related hepatocellular carcinoma (HBV-HCC) patients after liver transplantation was reported to be safe and had potential therapeutic efficacy. We aim to investigate the safety of HBV-TCR-T-cell immunotherapy in advanced HBV-HCC patients who had not met the criteria for liver transplantation. METHODS: We enrolled eight patients with advanced HBV-HCC and adoptively transferred short-lived autologous T cells expressing HBV-specific TCR to perform an open-label, phase 1 dose-escalation study (NCT03899415). The primary endpoint was to evaluate the safety of HBV-TCR-T-cell therapy according to National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03) during the dose-escalation process. The secondary endpoint was to assess the efficacy of HBV-TCR-T-cell therapy by evaluating the anti-tumor responses using RECIST criteria (version 1.1) and the overall survival. RESULTS: Adverse events were observed in two participants among the 8 patients enrolled. Only one patient experienced a Grade 3 liver-related adverse event after receiving a dose of 1 × 105 HBV-TCR-T cells/kg, then normalized without interventions with immunosuppressive agents. Among the patients, one achieved a partial response lasting for 27.7 months. Importantly, most of the patients exhibited a reduction or stabilization of circulating HBsAg and HBV DNA levels after HBV-TCR-T-cell infusion, indicating the on-target effects. CONCLUSIONS: The adoptive transfer of HBV-TCR-T cells into advanced HBV-HCC patients were generally safe and well-tolerated. Observations of clinical efficacy support the continued development and eventual application of this treatment strategy in patients with advanced HBV-related HCC. CLINICAL TRIALS REGISTRATION: This study was registered at ClinicalTrials.gov (NCT03899415).

3.
Cancer Med ; 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734491

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous disease. However the inner sub-groups of LUAD have not been fully studied. Markers predicted the sub-groups and prognosis of LUAD are badly needed. AIMS: To identify biomarkers associated with the sub-groups and prognosis of LUAD. MATERIALS AND METHODS: Using nonnegative matrix factorization (NMF) clustering, LUAD patients from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and LUAD cell lines from Genomics of Drug Sensitivity in Cancer (GDSC) dataset were divided into different sub-consensuses based on the gene expression profiling. The overall survival of LUAD patients in each sub-consensus was determined by Kaplan-Meier survival analysis. The common genes which were differentially expressed in each sub-consensus of LUAD patients and LUAD cell lines were identified using TBtools. The predictive accuracy of TPX2 and SELENBP1 for theinner sub-consensuses of LUAD was determined by Receiver operator characteristic (ROC) analysis. The Kaplan-Meier survival analysis was also used to test the prognostic significance of TPX2 and SELENBP1 in LUAD patients. RESULTS: Using nonnegative matrix factorization clustering, LUAD patients in The Cancer Genome Atlas (TCGA), GSE30219, GSE42127, GSE50081, GSE68465, and GSE72094 datasets were divided into three sub-consensuses. Sub-consensus3 LUAD patients were with low overall survival and were with high TP53 mutations. Similarly, LUAD cell lines were also divided into three sub-consensuses by NMF method, and sub-consensus2 cell lines were resistant to EGFR inhibitors. Identification of the common genes which were differentially expressed in different sub-consensuses of LUAD patients and LUAD cell lines revealed that TPX2 was highly expressed in sub-consensus3 LUAD patients and sub-consensus2 LUAD cell lines. On the contrary, SELENBP1 was highly expressed in sub-consensus1 LUAD patients and sub-consensus1 LUAD cell lines. The expression levels of TPX2 and SELENBP1 could distinguish sub-consensus3 LUAD patients or sub-consensus2 LUAD cell lines from other sub-consensuses of LUAD patients or cell lines. Moreover, compared with normal lung tissues, TPX2 was highly expressed, while, SELENBP1 was lowly expressed in LUAD tissues. Furthermore, the higher expression levels of TPX2 were associated with the lower relapse-free survival and the lower overall survival of LUAD patients. While, the higher expression levels of SELENBP1 were associated with the higher relapse-free survival and higher overall survival. At last, we showed that TP53 mutant LUAD patients were with higher TPX2 and lower SELENBP1 expressions. DISCUSSION: Both iCluster and NMF method are proved to be robust LUAD classification systems. However, the LUAD patients in different iclusters had no significant clinical overall survival, while, sub-consensus3 LUAD patients from NMF classification were with lower overall survival than other sub-consensuses. CONCLUSIONS: By integrated analysis of 1765 LUAD patients and 64 LUAD cell lines, we showed that NMF was a robust inner sub-consensuses classification method of LUAD. TPX2 and SELENBP1 were differentially expressed in different LUAD sub- consensuses, and predicted the inner sub-consensuses of LUAD with high accuracy. TPX2 was an unfavorable prognostic biomarker of LUAD which was up-regulated in LUAD tissues and associated with the low overall survival of LUAD. SELENBP1 was a favorable prognostic biomarker of LUAD which was down-regulated in LUAD tissues and associated with the prolonged overall survival of LUAD.

4.
Infect Dis Poverty ; 10(1): 130, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742346

RESUMO

BACKGROUND: Cystic echinococcosis (CE), caused by the larval stage of the complex Echinococcus granulosus sensu lato (s.l.), is a zoonotic parasitic disease with a high social burden in China. E. ortleppi is a species (formerly genotype 5 of E. granulosus s.l.) with unique epidemic areas (tropical areas), transmission patterns (mainly cattle origin), and pathological characteristics (large and small hook lengths) compared to other species that cause CE. A 19-year-old female patient in an area with no history of echinococcosis in Guizhou Province, China, was diagnosed with E. ortleppi infection in 2019. This study is to understand the source of this human E. ortleppi infection. METHODS: We performed computer tomography (CT) scans, surgical operation, morphological sectioning, molecular diagnosis, phylogenetic analyses, and epidemiological investigation in Anshun City, Guizhou Province, China in 2019. RESULTS: The patient presented with intermittent distension and pain in the upper abdomen without other abnormal symptoms. Routine blood examination results were normal. However, abdominal CT revealed a fertile cyst with a diameter of approximately 8 cm, uniform density, and a clear boundary, but without an evident cyst wall in the right lobe of the liver. The cyst was fertile, and phylogenetic analyses revealed that the isolates represented a new E. ortleppi genus haplotype. A result of 10‒14 years incubation period with indigenous infection was considered available for the case through the epidemiological survey. CONCLUSIONS: CE due to E. ortleppi infection can be confused with other diseases causing liver cysts, resulting in misdiagnosis. A transmission chain of E. ortleppi may exist or existed in the past in the previously considered non-endemic areas of echinococcosis in southwestern China.


Assuntos
Equinococose , Echinococcus , Animais , China/epidemiologia , Equinococose/diagnóstico , Equinococose/epidemiologia , Echinococcus/genética , Echinococcus/patogenicidade , Feminino , Genótipo , Humanos , Filogenia , Adulto Jovem
5.
Plant Biotechnol J ; 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726307

RESUMO

MicroRNAs (miRNAs) play vital roles in plant development and defence responses against various stresses. Here, we show that blocking miR1871 improves rice resistance against Magnaporthe oryzae and enhances grain yield simultaneously. The transgenic lines overexpressing miR1871 (OX1871) exhibit compromised resistance, suppressed defence responses and reduced panicle number resulting in slightly decreased yield. In contrast, the transgenic lines blocking miR1871 (MIM1871) show improved resistance, enhanced defence responses and significantly increased panicle number leading to enhanced yield per plant. The RNA-seq assay and defence response assays reveal that blocking miR1871 resulted in the enhancement of PAMP-triggered immunity (PTI). Intriguingly, miR1871 suppresses the expression of LOC_Os06g22850, which encodes a microfibrillar-associated protein (MFAP1) locating nearby the cell wall and positively regulating PTI responses. The mutants of MFAP1 resemble the phenotype of OX1871. Conversely, the transgenic lines overexpressing MFAP1 (OXMFAP1) or overexpressing both MFAP1 and miR1871 (OXMFAP1/OX1871) resemble the resistance of MIM1871. The time-course experiment data reveal that the expression of miR1871 and MFAP1 in rice leaves, panicles and basal internode is dynamic during the whole growth period to manipulate the resistance and yield traits. Our results suggest that miR1871 regulates rice yield and immunity via MFAP1, and the miR8171-MFAP1 module could be used in rice breeding to improve both immunity and yield.

6.
Xenobiotica ; : 1-48, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761729

RESUMO

1. MAK683 (N-((5-fluoro-2,3-dihydrobenzofuran-4-yl)methyl)-8-(2-methylpyridin-3-yl)-[1,2,4]triazolo[4,3-c]pyrimidin-5-amine) is a potent and orally bioavailable EED inhibitor for the potential treatment in oncology. Pharmacokinetics (PK) in preclinical species are characterized by low to moderate plasma clearances, high oral exposure and moderate to high oral bioavailability at dose of 1-2 mg/kg.2. A species comparison of the metabolic pathways of MAK683 has been made using [14C]MAK683 incubations with liver microsomes and hepatocytes from rat, dog, cynomolgus monkey and human. Overall, the in vitro hepatic metabolism pathway of MAK683 in all five species was very complex. A total of 60 metabolites with 19 metabolites greater than 1.5% of the total integrated area in the radiochromatogram of at least one species were identified in five species (rat, mouse, dog, monkey and human).3. The primary in vitro hepatic oxidative metabolism pathway identified in human involved 2-hydroxylation of the dihydrofuran ring to form an alcohol (M28), which was in a chemical equilibrium favoring the formation of its aldehyde form. The aldehyde was then oxidized to the carboxylic acid metabolite (M26) or reduced to the O-hydroxyethylphenol (M29). N-dealkylation (M1), 3-hydroxylation of the dihydrofuran ring (M27), N-oxidation of the pyridine moiety (M53) and sulfate conjugation of M28 to form M19 were also important biotransformation pathways in human hepatocytes. The above major human hepatic metabolic pathways were also observed across the animal species (rat, mouse, dog and monkey) mostly providing precursors for the formation of other metabolites via further oxygenation, glucuronidation, and sulfation pathways.4. No human specific metabolites were observed. In addition, in-vivo biotransformation was also conducted in bile-duct cannulated (BDC) rat. The metabolism in BDC rat was similar to these observed the in vitro hepatocytes.

7.
Front Pharmacol ; 12: 765790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733164

RESUMO

Psoriasis is characterized by keratinocyte proliferation and immune cell infiltration. M2 isoform of pyruvate kinase (PKM2) was reported to have an important role in cell proliferation, which is a rate-limiting enzyme that regulates the final step of glycolysis. However, how PKM2 regulates cell metabolism and proliferation in psoriatic keratinocytes is still poorly understood. Interestingly, we found that PKM2 was highly expressed in psoriatic epidermis from patients and mouse models. PKM2 overexpression promoted keratinocyte glycolytic metabolism while knockdown inhibited keratinocyte proliferation and glycolysis. Mice lacking PKM2 specifically in keratinocytes, pharmacological inhibition of PKM2 or glycolysis inhibited keratinocyte proliferation and showed obvious remission in an imiquimod-induced psoriatic mouse model. Moreover, the inhibitor of the EGF-receptor blocked EGF-stimulated PKM2 expression and glycolysis in keratinocytes. We identify PKM2 as an upregulated gene in psoriasis. PKM2 is essential in keratinocyte over-proliferation and may represent a therapeutic target for psoriasis.

8.
Acta Pharmacol Sin ; 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795412

RESUMO

Neurovascular unit (NVU) is organized multi-cellular and multi-component networks that are essential for brain health and brain homeostasis maintaining. Neurovascular unit dysfunction is the central pathogenesis process of ischemic stroke. Thus integrated protection of NVU holds great therapeutic potential for ischemic stroke. Catalpol, classified into the iridoid monosaccharide glycoside, is the main active ingredient of the radix from traditional Chinese medicine, Rehmannia glutinosa Libosch, that exhibits protective effects in several brain-related diseases. In the present study, we investigated whether catalpol exerted protective effects for NVU in ischemic stroke and the underlying mechanisms. MCAO rats were administered catalpol (2.5, 5.0, 10.0 mg·kg-1·d-1, i.v.) for 14 days. We showed that catalpol treatment dose-dependently reduced the infarction volume and significantly attenuated neurological deficits score in MCAO rats. Furthermore, catalpol treatment significantly ameliorated impaired NVU in ischemic region by protecting vessel-neuron-astrocyte structures and morphology, and promoting angiogenesis and neurogenesis to replenish lost vessels and neurons. Moreover, catalpol treatment significantly increased the expression of vascular endothelial growth factor (VEGF) through up-regulating PI3K/AKT signaling, followed by increasing FAK and Paxillin and activating PI3K/AKT and MEK1/2/ERK1/2 pathways. The protective mechanisms of catalpol were confirmed in an in vitro three-dimensional NVU model subjected to oxygen-glucose deprivation. In conclusion, catalpol protects NVU in ischemic region via activation of PI3K/AKT signaling and increased VEGF production; VEGF further enhances PI3K/AKT and MEK1/2/ERK1/2 signaling, which may trigger a partly feed-forward loop to protect NVU from ischemic stroke.

9.
Int Ophthalmol ; 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34796432

RESUMO

PURPOSE: Diabetic retinopathy (DR) is one of the leading causes of blindness in working-aged people. Few studies were on the relationship between S100 Calcium Binding Protein A9 (S100A9) protein and DR, and none on endothelial cells induced by tasquinimod in high glucose. Therefore, we assessed the relationship between tasquinimod and S100A9 in DR. METHODS: DR pathogenesis was simulated using high-glucose-induced human retinal endothelial cells (HRECs) to study the mRNA expression of s100a9, thrombospondin-1 (tsp-1), hypoxia-inducible factor 1-alpha (hif1-α), intercellular adhesion molecule 1 (icam-1), and vascular endothelial growth factor (vegf) after tasquinimod treatment. The protein expression of S100A9, TSP-1, extracellular signal-regulated kinase (ERK), ICAM-1 and VEGF was also analyzed. RESULT: A total of 28 eyes of 26 patients were included in this experiment. A significantly higher expression of S100A9 as well as enhanced proliferation and mobility was observed in the high-glucose-treated HRECs compared with that in low-glucose-treated cells. However, these were significantly inhibited when treated with high glucose with 50 µM tasquinimod. The mRNA expression of tsp-1 was increased, whereas that of hif1-α, icam-1 and vegf was decreased after tasquinimod treatment. Western blot indicated the increased TSP-1 but decreased ERK, ICAM-1 and VEGF expression after treating with tasquinimod. CONCLUSION: High glucose promoted the expression of s100a9, S100A9 protein in DR patients and HRECs. Tasquinimod inhibited the proliferation, migration and lumen formation of HRECs under a high glucose environment. Tasquinimod might play a vital role in inhibiting angiogenesis through inducing TSP-1 and inhibiting VEGF, ICAM-1 and ERK.

10.
Epidemics ; 37: 100521, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34775297

RESUMO

Understanding the relative contribution of different between-farm transmission pathways is essential in guiding recommendations for mitigating disease spread. This study investigated the association between contact pathways linking poultry farms in New Zealand and the genetic relatedness of antimicrobial resistant Campylobacter jejuni Sequence Type 6964 (ST-6964), with the aim of identifying the most likely contact pathways that contributed to its rapid spread across the industry. Whole-genome sequencing was performed on 167C. jejuni ST-6964 isolates sampled from across 30 New Zealand commercial poultry enterprises. The genetic relatedness between isolates was determined using whole genome multilocus sequence typing (wgMLST). Permutational multivariate analysis of variance and distance-based linear models were used to explore the strength of the relationship between pairwise genetic associations among the C. jejuni isolates and each of several pairwise distance matrices, indicating either the geographical distance between farms or the network distance of transportation vehicles. Overall, a significant association was found between the pairwise genetic relatedness of the C. jejuni isolates and the parent company, the road distance and the network distance of transporting feed vehicles. This result suggests that the transportation of feed within the commercial poultry industry as well as other local contacts between flocks, such as the movements of personnel, may have played a significant role in the spread of C. jejuni. However, further information on the historical contact patterns between farms is needed to fully characterise the risk of these pathways and to understand how they could be targeted to reduce the spread of C. jejuni.

11.
Vet Sci ; 8(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822660

RESUMO

Staphylococcus aureus is one of the leading causes of bovine mastitis worldwide and is a common indication for use of antimicrobials on dairy farms. This study aims to investigate the association between on-farm antimicrobial usage and the antimicrobial resistance (AMR) profiles of mastitis-causing S. aureus. Whole-genome sequencing was performed on 57 S. aureus isolates derived from cows with either clinical or subclinical mastitis from 17 dairy herds in New Zealand. The genetic relatedness between isolates was examined using the core single nucleotide polymorphism alignment whilst AMR and virulence genes were identified in-silico. The association between gene presence-absence and sequence type (ST), antimicrobial susceptibility and dry cow therapy treatment was investigated using Scoary. Altogether, eight STs were identified with 61.4% (35/57) belonging to ST-1. Furthermore, 14 AMR-associated genes and 76 virulence-associated genes were identified, with little genetic diversity between isolates belonging to the same ST. Several genes including merR1 which is thought to play a role in ciprofloxacin-resistance were found to be significantly overrepresented in isolates sampled from herds using ampicillin/cloxacillin dry cow therapy. Overall, the presence of resistance genes remains low and current antimicrobial usage patterns do not appear to be driving AMR in S. aureus associated with bovine mastitis.

12.
J Antibiot (Tokyo) ; 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34824376

RESUMO

A double disulfide tethering depsipeptide dimer, romipeptide A (1) was prepared by NaOH catalyzed dimerization of romidepsin. Its structure was determined by analysis of NMR and HR-ESI-MS data as well as single crystal X-ray diffraction. Bioassay results showed that 1 exhibited good cytotoxic activity against two tumor cell lines B16 and HCT116. This study reported the single crystal data of 1 for the first time. The facile preparation of 1 afforded enough amount for its further biological evaluations.

13.
Front Chem ; 9: 765374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805096

RESUMO

The development of molecular crystalline materials with efficient room-temperature phosphorescence has been obtained much attention due to their fascinating photophysical properties and potential applications in the fields of data storage, bioimaging and photodynamic therapy. Herein, a new co-crystal complex [(DCPA) (AD)2] (DCPA = 9,10-di (4-carboxyphenyl)anthracene; AD = acridine) has been synthesized by a facile solvothermal process. Crystal structure analysis reveals that the co-crystal possesses orderly and alternant arrangement of DCPA donors and AD acceptors at molecular level. Fixed by strong hydrogen bonds, the DCPA molecule displays seriously twisty spatial conformation. Density functional theory (DFT) calculations show well separation of HOMO and LUMO for this co-crystal system, suggesting the efficient triplet excitons generation. Photoluminescence measurements show intensive cyan fluorescence (58.20 ns) and direct white phosphorescence (325 µs) emission at room-temperature. The transient current density-time curve reveals a typical switching electric response under the irradiation of simulated light, reveal that the [(DCPA) (AD)2] co-crystal has a high photoelectric response performance.

14.
Mol Psychiatry ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819637

RESUMO

(R,S)-ketamine elicits rapid-acting and sustained antidepressant actions in treatment-resistant patients with depression. (R)-ketamine produces longer-lasting antidepressant effects than (S)-ketamine in rodents; however, the precise molecular mechanisms underlying antidepressant actions of (R)-ketamine remain unknown. Using isobaric Tag for Relative and Absolute Quantification, we identified nuclear receptor-binding protein 1 (NRBP1) that could contribute to different antidepressant-like effects of the two enantiomers in chronic social defeat stress (CSDS) model. NRBP1 was localized in the microglia and neuron, not astrocyte, of mouse medial prefrontal cortex (mPFC). (R)-ketamine increased the expression of NRBP1, brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element binding protein (p-CREB)/CREB ratio in primary microglia cultures thorough the extracellular signal-regulated kinase (ERK) activation. Furthermore, (R)-ketamine could activate BDNF transcription through activation of CREB as well as MeCP2 (methyl-CpG binding protein 2) suppression in microglia. Single intracerebroventricular (i.c.v.) injection of CREB-DNA/RNA heteroduplex oligonucleotides (CREB-HDO) or BDNF exon IV-HDO blocked the antidepressant-like effects of (R)-ketamine in CSDS susceptible mice. Moreover, microglial depletion by colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397 blocked the antidepressant-like effects of (R)-ketamine in CSDS susceptible mice. In addition, inhibition of microglia by single i.c.v. injection of mannosylated clodronate liposomes (MCLs) significantly blocked the antidepressant-like effects of (R)-ketamine in CSDS susceptible mice. Finally, single i.c.v. injection of CREB-HDO, BDNF exon IV-HDO or MCLs blocked the beneficial effects of (R)-ketamine on the reduced dendritic spine density in the mPFC of CSDS susceptible mice. These data suggest a novel ERK-NRBP1-CREB-BDNF pathways in microglia underlying antidepressant-like effects of (R)-ketamine.

15.
Electrophoresis ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842292

RESUMO

Because of its excellent monodispersity, high-throughput, and low volume, microfluidics-based droplet PCR has become the core technology of digital PCR, next generation sequencing, and other technology platforms. This study constructed a microfluidic water-in-oil droplet PCR system and amplified a commercially available forensic 22-plex STR detection system. We analyzed the sensitivity, concordance, amplification efficiency of the droplet PCR, and influence factors of the above aspects. The droplet PCR showed high concordance with conventional bulk PCR and had high sensitivity as 0.125 ng. Furthermore, we observed the performance of droplet PCR in high-order mixed DNA. As the mixture ratios from 10:1 to 30:1, droplet PCR presented more mixture proportion (Mx) increased loci from 11 (57.89%) to 17 (89.47%). In the mixture ratios 20:1, 25:1, and 30:1, significant Mx differences between droplet PCR and bulk PCR were observed (p < 0.05). The results showed that the droplet PCR could improve the identification of the minor contributor's DNA in a two-person mixture and alleviate the imbalanced amplification problem. This study provides a reference and basis for the wide application of droplet PCR in forensic science. This article is protected by copyright. All rights reserved.

16.
Front Immunol ; 12: 757457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721433

RESUMO

Exhaustion of HIV-1-specific CD8+ T cells prevents optimal control of HIV-1 infection. Identifying unconventional CD8+ T cell subsets to effectively control HIV-1 replication is vital. In this study, the role of CD11c+ CD8+ T cells during HIV-1 infection was evaluated. The frequencies of CD11c+ CD8+ T cells significantly increased and were negatively correlated with viral load in HIV-1-infected treatment-naïve patients. HIV-1-specific cells were enriched more in CD11c+ CD8+ T cells than in CD11c- CD8+ T cells, which could be induced by HIV-1-derived overlapping peptides, marking an HIV-1-specific CD8+ T cell population. This subset expressed higher levels of activating markers (CD38 and HLA-DR), cytotoxic markers (granzyme B, perforin, and CD107a), and cytokines (IL-2 and TNF-α), with lower levels of PD-1 compared to the CD11c- CD8+ T cell subset. In vitro analysis verified that CD11c+ CD8+ T cells displayed a stronger HIV-1-specific killing capacity than the CD11c- counterparts. These findings indicate that CD11c+ CD8+ T cells have potent immunotherapeutic efficacy in controlling HIV-1 infection.

17.
Front Mol Biosci ; 8: 720645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733886

RESUMO

Background: ARHGAP11A, belongs to RhoGAPs family, is vital for cell motility. However, the role of ARHGAP11A in gastric cancer is obscure. Methods: The expression level of ARHGAP11A was analyzed by Oncomine database. The correlation of ARHGAP11A expression with immune infiltrates and associated gene markers was clarified by Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis database. The correlation between ARHGAP11A expression and the patient prognosis was identified by Kaplan-Meier plotter and PrognoScan. Genetic changes of ARHGAP11A were analyzed by cBioPortal. The protein-protein interaction network and gene functional enrichment analysis were constructed and performed by GeneMANIA and Metascape. Results: We found that the expression levels of ARHGAP11A were elevated in various cancers including gastric cancer when compared with normal tissues. High expression of ARHGAP11A was significantly correlated with a better prognosis in gastric cancer. We revealed that the expression of ARHGAP11A was negatively associated with infiltration levels of CD8+ T cells, CD4+ T cells, macrophages and dendritic cells. In addition, ARHGAP11A expression was significantly correlated with gene markers of these immune cells. Lastly, gene functional enrichment analysis indicated that ARHGAP11A involved in regulating lymphocyte activation, cell division, cell killing, myeloid leukocyte differentiation and leukocyte apoptosis. Conclusion: Our findings demonstrated that ARHGAP11A was a valuable prognostic biomarker in gastric cancer. Further work is needed to validate its role and underlying mechanisms in regulating immune infiltrates.

18.
Ann Transl Med ; 9(18): 1458, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34734010

RESUMO

Background: The role of microRNAs (miRNAs) in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) remains to be fully elucidated. This study evaluated the expression profile of miRNAs in the lung tissue of patients with SSc-PAH. Methods: Lung tissue samples were collected from 3 SSc-PAH patients and 4 healthy controls. A small RNA high throughput sequence approach was used for screening the differentially expressed miRNAs in the lung tissue samples. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate 4 highly significant differentially expressed miRNAs. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis for mRNAs were performed using the R package clusterProfiler software. Results: A total of 82 upregulated miRNAs and 35 downregulated miRNAs were detected in the lung tissues of patients with SSc-PAH compared with healthy controls. GO enrichment analysis demonstrated that the upregulated target genes were closely involved in biological processes such as nervous system development, anatomical structure morphogenesis, system development, cellular macromolecule metabolic processes, and cellular processes. The downregulated target genes were involved in the plasma membrane bound cell projection morphogenesis and the regulation of macromolecule metabolic processes. The KEGG enrichment analysis showed that the upregulated genes were associated with important pathways involved in cancer biology, and the target genes of the downregulated miRNAs were involved in axon guidance. High throughput sequencing and qRT-PCR revealed that hsa-miR-205-5p and hsa-miR-539-3p were differentially expressed in SSc-PAH tissue. The target genes of hsa-miR-205-5p and hsa-miR-539-3p, IRF1and ADCYAP1, respectively, were verified using the high throughput dataset GSE48149. Conclusions: miRNAs may play an important role in the pathogenesis of SSc-PAH, and hsa-miR-205-5p and hsa-miR-539-3p may be potential therapeutic targets in patients with SSc-PAH.

20.
ACS Omega ; 6(44): 29839-29851, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778657

RESUMO

Recently, Lanzhou lily has attracted more attention because of its bioactive components specifically polysaccharides. We studied in vitro the effects of Lactobacillus plantarum fermentation on the physicochemical properties, chemical structure, and antioxidant activity of the Lanzhou lily polysaccharide. The results showed that compared with the unfermented Lanzhou lily polysaccharide (LP-W), the molecular weight (M w) of the fermented Lanzhou lily polysaccharide (LPF-W) decreased from 4334 to 1684 kDa, the particle size decreased from 300.8 ± 6.38 to 141.9 ± 4.96 nm, and the solubility increased from 72.33 ± 3.58 to 104.27 ± 2.91 mg/mL. In addition, after fermentation, the monosaccharide composition of LPF-W changed, and the alternation of mannose residues and glucose residues disappeared. The results of the analysis of the antioxidant activity in vitro showed that compared with LP-W, the fermented LPF-W had higher DPPH radical ability, superoxide anion radical scavenging ability, and reducing efficiency, but the hydroxyl radical scavenging ability decreased. These findings provide a reference for the potential application of the lily polysaccharide as a plant-derived antioxidant in functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...