Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 223: 112597, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365213

RESUMO

Quercetin is reported to be beneficial to or pose hazards to the health of animals, the inconsistence remains to be recognized and debated. This work was conducted to understand the neuroprotective or neurotoxic properties of quercetin, and investigate the different action mechanisms between low- and high-level quercetin. Therefore, we evaluated brain oxidative stress and monoamine neurotransmitters in adult zebrafish (Danio rerio) after exposure to 1 and 1000 µg/L quercetin. In addition, the brain transcriptional profiles were analyzed to identify genes and pathways that were differentially regulated in the brains. The results of oxidative stress and neurotransmitters suggest that low-level quercetin might be beneficial to nervous system, while high-level quercetin might exert detrimental effects. Furthermore, transcriptional profiles also suggested different toxic mechanisms occurred between low- and high-level quercetin. At 1 µg/L quercetin, enrichment analysis of differently expressed genes (DEGs) revealed that the fanconi anemia pathway might be an important mechanism in neuroprotective effects. At 1000 µg/L quercetin, the up-regulated DEGs were enriched in many Gene Ontology (GO) terms related to neuronal synapses, indicating potential neuroprotective effects; however, enrichment of up-regulated DEGs in GO terms of response to stimulus and the MAPK signaling pathway was also found, which indicated increases of stress. Notably, at 1000 µg/L quercetin, the down-regulated DEGs were enriched in several GO terms related to the proteostasis and the proteasome pathway, indicating impairment of proteasome functions which was involved in neurodegenerative diseases. Moreover, several hub genes involved in the pathology of neurodegenerative diseases were identified by Protein-protein interaction analysis at 1000 µg/L quercetin. Thus, high-level quercetin might pose potential risk inducing neurodegenerative diseases, which should receive more attention in the future. Additionally, our findings may provide awareness to society and researchers about toxicity possibilities of phytochemicals on wildlife and human.


Assuntos
Fármacos Neuroprotetores , Peixe-Zebra , Animais , Encéfalo , Perfilação da Expressão Gênica , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Quercetina/farmacologia , Peixe-Zebra/genética
2.
World J Clin Cases ; 8(13): 2876-2884, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32742998

RESUMO

BACKGROUND: Pulmonary sarcomatoid carcinoma (PSC), a rare subtype of non-small cell lung cancer (NSCLC), is poorly differentiated and highly aggressive. Treatment is limited, and the prognosis is poor. Pembrolizumab is an anti-programmed death (PD)-1 antibody with good efficacy in NSCLC. Recent studies have demonstrated that PD-ligand 1 (PD-L1) overexpression is common in PSCs, which suggests that anti-PD-L1 treatment is an ideal option. However, the response to pembrolizumab in PSC has not been studied. CASE SUMMARY: We present a PSC case with PD-L1 overexpression that significantly benefited from pembrolizumab. A 73-year-old Chinese male was detected with a right lung lesion. Pathological analysis of the right upper lobectomy confirmed PSC. The PD-L1 test revealed overexpression (TPS: 90%). Multiple metastases occurred 1 mo after surgery, representing stage IV PSC. Neither first-line chemotherapy nor second-line antiangiogenic agents showed any benefit. Radiotherapy (1200 cGy) was administered to relieve chest wall pain. The patient received the PD-1 inhibitor pembrolizumab (100 mg) as third-line therapy; however, because of fever and severe infection, he refused to receive immunotherapy any longer. Thus, only one dose of pembrolizumab was administered. Deep sustained remission of most of the metastases was achieved except for lesions in the right adrenal gland, which first shrank and then progressed. The patient died because of disease progression in the right adrenal gland. He achieved a progression-free survival time of 8 mo and an overall survival time of 9 mo with third-line pembrolizumab. CONCLUSION: Our findings highlight and offer direct evidence of the efficacy of pembrolizumab in PD-L1-overexpressing PSCs. Combined radiotherapy and immunotherapy may enhance treatment efficacy.

3.
Fish Shellfish Immunol ; 105: 359-368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32693159

RESUMO

Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 µg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 µg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1ß, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 µg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.


Assuntos
Ansiedade , Apoptose/imunologia , Inflamação/veterinária , Quercetina/metabolismo , Comportamento Social , Natação , Peixe-Zebra/imunologia , Ração Animal/análise , Animais , Ansiedade/induzido quimicamente , Apoptose/efeitos dos fármacos , Encéfalo/imunologia , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Estresse Oxidativo/imunologia , Quercetina/administração & dosagem
4.
Biol Trace Elem Res ; 194(2): 432-442, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31264129

RESUMO

Fifty male mice were exposed to 50 nm unmodified nano-ZnO through intragastric administration for 90 days to detect the long-term effects of unmodified nano-ZnO in mice. Results showed that the blood glucose, serum follicle stimulating hormone, luteinizing hormone, testosterone, and estradiol were significantly decreased (p < 0.05). The serum triglyceride, total cholesterol, and low-density lipoprotein were significantly increased (p < 0.05). The semen quality of the 160 mg/kg·bw group were significantly lowered (p < 0.05). The liver and testis catalase and CuZn-SOD activities were significantly elevated (p < 0.05). The abilities of •OH inhibition in the livers and testes of the 160 mg/kg·bw group were significantly lowered (p < 0.05). The liver and testis MDA levels of the 160 mg/kg·bw group were significantly elevated (p < 0.05). Results indicate that exposure of nano-ZnO could induce lipid metabolism disorder, hyperlipidemia, and reproductive toxicity to male mice through oxidative injury.


Assuntos
Metabolismo dos Lipídeos , Análise do Sêmen , Animais , Hormônio Foliculoestimulante , Humanos , Hormônio Luteinizante , Masculino , Camundongos , Sêmen , Testículo , Testosterona
5.
Biol Trace Elem Res ; 194(2): 443, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31338805

RESUMO

The original version of this article unfortunately contained a mistake. The correct title should be "The Effects of 50 nm Unmodified Nano-ZnO on Lipid Metabolism and Semen Quality in Male Mice". The original article has been corrected.

6.
Neurotoxicol Teratol ; 74: 106809, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31129159

RESUMO

Propiconazole is a triazole fungicide used in agriculture. Via run-off, it can enter the aquatic environment, and can adversely affect organisms. However, data are scarce on how propiconazole may affect early developmental life stages of fish. The objectives of this study were to evaluate the potential sub-lethal effects of propiconazole during zebrafish development. Wildtype zebrafish (ABTu strain) embryos and larvae were exposed to propiconazole (0.1-100 µM) for up to 150 hours post fertilization (hpf) depending upon the endpoint measured. Propiconazole decreased survival and induced hypopigmentation in fish at 100 µM compared to the water and solvent controls. Pericardial edema was also noted in embryos and larvae (beginning at 2-3 dpf) exposed to 100 µM propiconazole. To visualize the effects of propiconazole on the circulatory system in more detail, we exposed transgenic zebrafish (globin-LCR:eGFP) to the fungicide. Hematopoietic changes were observed within 48 h of exposure to 100 µM, and localization of blood cells in the cardic region became diffuse, indicating pooling of blood in the pericardial region. We measured oxidative respiration in embryos as sufficient ATP is needed for development. Exposure to 100 µM propiconazole (~6-30 hpf) reduced basal respiration (~50%), oligomycin-induced ATP linked respiration (~70%), proton leak (~30%), and non-mitochondrial respiration (~50%), indicating compromised mitochondrial bioenergetics. A Visual Motor Response (VMR) test was used to measure dark photokinesis behavior in larval fish exposed to propiconazole for a 6-day period. Larval fish exposed to the highest concentration in the assay (10 µM) showed evidence of hypoactivity. This study demonstrates that propiconazole can induce hypopigmentation in zebrafish, disrupt mitochondrial bioenergetics, and can alter locomotor activity. However, these sub-lethal responses were observed at concentrations above what is typically detected in the environment.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Locomoção/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Triazóis/toxicidade , Animais , Respiração Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Peixe-Zebra/embriologia
7.
Biol Trace Elem Res ; 189(2): 478-489, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30109551

RESUMO

Nanometer zinc oxide (nano-ZnO) is widely used in many kinds of fields. However, information about the toxicity and toxic mechanism of nano-ZnO is limited. The aims of this study were to investigate the long-term toxic effects of unmodified 50 nm ZnO administered by gavage in mice. After 90 days, hematological parameters, hepatic and renal functions, and oxidative and anti-oxidative status were measured. Pathological damages in livers, kidneys, and other tissues were also examined by hematoxylin and eosin (H&E) staining. The results showed that oral nano-ZnO exposure induced anemia and damages to liver and kidney, influenced the antioxidant system, and impacted functions of liver and kidney in mice after a 90-day exposure. The main cause for oxidative stress in vivo induced by nano-ZnO might be hydroxyl free radical. The lowest observed adverse effect level (LOAEL) was 40 mg/kg·bw, and the livers, kidneys, lungs, pancreas, and gastrointestinal tracts are the target organs.


Assuntos
Nanopartículas Metálicas/química , Óxido de Zinco/toxicidade , Anemia/induzido quimicamente , Animais , Feminino , Hematoxilina/química , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/efeitos adversos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Óxido de Zinco/química
8.
Fish Shellfish Immunol ; 84: 848-856, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30381267

RESUMO

p38 mitogen-activated protein kinase (MAPK) is an important protein which plays a key role in regulating the innate immunity, so exploring its molecular characterization is helpful in understanding the resistance against microbial infections in cultured fish. Here, a full-length cDNA of p38 MAPK was cloned from liver of blunt snout bream (Megalobrama amblycephala) which covered 2419 bp with an open reading frame of 1086 bp encoding 361 amino acids. p38 MAPK contained the characteristic structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW), which are conserved in MAPK family. To investigate p38 MAPK functions, two in vivo experiments were carried out to examine its expression following ammonia exposure and bacterial challenge. Also, an in vitro experiment was conducted to assess the role of p38 MAPK in inflammation of primary hepatocytes induced by lipopolysaccharide (LPS). The results showed the ubiquitous expression of p38 MAPK in all the tested tissues with varying levels. p38 MAPK mRNA expression was significantly up-regulated by ammonia stress and Aeromonas hydrophila challenge, and altered in a time-dependent manner. Moreover, the results indicated that the inflammatory response induced by LPS in hepatocytes is p38 MAPK dependent as knockdown of p38 MAPK using siRNA technology depressed the expression of IL-1ß and IL-6. The findings in this study showed that p38 MAPK has anti-stress property, and plays key role in protection against bacterial infection and inflammation in blunt snout bream.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Amônia/efeitos adversos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Celular/genética , Lipopolissacarídeos/farmacologia , Filogenia , Distribuição Aleatória , Alinhamento de Sequência/veterinária , Proteínas Quinases p38 Ativadas por Mitógeno/química
9.
Ecotoxicol Environ Saf ; 169: 76-84, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30423510

RESUMO

The impacts of triphenyltin (TPT) on ecological health have been of great concern due to their widespread use and ubiquity in aquatic ecosystems. However, little is known about the effects of TPT on the reproductive behaviors of fishes. Therefore, the present study was conducted to investigate the effects of TPT at environmentally relevant concentrations (0, 1 and 10 ng Sn/L) on the mating behaviors and the attractiveness to females during mating in male guppies (Poecilia reticulata). The results showed that TPT exposure disturbed the mating behaviors; the TPT-exposed male fish performed more sneaking attempts, but no changes in sigmoid courtship were displayed. The increases in sneaking attempts might be related to increases in testosterone levels induced by TPT exposure. In the context of a competing male, the TPT-exposed males were less attractive to females during mating. The decreases in attractiveness might be related to decreases in carotenoid-based coloration, shown as decreases in caudal fin redness values and skin carotenoid contents. In addition, TPT-induced total antioxidant capacities, the activities of superoxide dismutase and catalase, and the contents of malondialdehyde in liver and intestinal tissues indicated increases in oxidative stress. Both oxidative stress and coloration are linked to carotenoids. Thus, we speculated that the TPT-exposed males might use carotenoids to cope with increases in oxidative stress at the expense of carotenoid-based coloration. The disruption of mating behaviors and the decrease in attractiveness to females in male fish could result in reproductive failure. The present study underscores the importance of using behavioral tests as a sensitive tool in assessing the impact of pollutants present in aquatic environments.


Assuntos
Compostos Orgânicos de Estanho/toxicidade , Comportamento Sexual Animal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Carotenoides/metabolismo , Feminino , Masculino , Poecilia/metabolismo , Poecilia/fisiologia , Reprodução/efeitos dos fármacos
10.
Environ Sci Technol ; 52(13): 7553-7565, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29878769

RESUMO

In recent years, decreases in fish populations have been attributed, in part, to the effect of environmental chemicals on ovarian development. To understand the underlying molecular events we developed a dynamic model of ovary development linking gene transcription to key physiological end points, such as gonadosomatic index (GSI), plasma levels of estradiol (E2) and vitellogenin (VTG), in largemouth bass ( Micropterus salmoides). We were able to identify specific clusters of genes, which are affected at different stages of ovarian development. A subnetwork was identified that closely linked gene expression and physiological end points and by interrogating the Comparative Toxicogenomic Database (CTD), quercetin and tretinoin (ATRA) were identified as two potential candidates that may perturb this system. Predictions were validated by investigation of reproductive associated transcripts using qPCR in ovary and in the liver of both male and female largemouth bass treated after a single injection of quercetin and tretinoin (10 and 100 µg/kg). Both compounds were found to significantly alter the expression of some of these genes. Our findings support the use of omics and online repositories for identification of novel, yet untested, compounds. This is the first study of a dynamic model that links gene expression patterns across stages of ovarian development.


Assuntos
Bass , Disruptores Endócrinos , Animais , Estradiol , Feminino , Masculino , Transcriptoma , Vitelogeninas
11.
Data Brief ; 18: 1193-1195, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900293

RESUMO

RNA-sequencing was used to identify sex-biased gene expression in brains of rare minnow (Gobiocypris rarus) by comparing transcriptomic profiles between females and males. Furthermore, transcriptomic responses to 10 ng/L tributyltin (TBT) in both male and female brains were also investigated to understand whether TBT affects the identified sex-biased genes. Differentially expressed genes (DEGs) were identified using the IDEG6 web tool. In this article, we presented male- and female-biased DEGs, and up-regulated and down-regulated DEGs after TBT exposure. The raw reads data supporting the present analyses has been deposited in NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra) with accession number PRJNA376634. The data presented in this article are related to the research article entitled "Transcriptomic analyses of sexual dimorphism of rare minnow (G. rarus) brains and effects of tributyltin exposure" (doi: 10.1016/j.ecoenv.2018.02.049).

12.
Ecotoxicol Environ Saf ; 156: 18-24, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29524779

RESUMO

The brain of fish displays sexual dimorphisms and exhibits remarkable sexual plasticity throughout their life span. Although reproductive toxicity of tributyltin (TBT) in fish is well documented in fish, it remains unknown whether TBT interrupts sexual dimorphisms of fish brains. In this work, brain transcriptomic profiles of rare minnow (Gobiocypris rarus) was characterized and sex-biased genes were identified using RNA sequencing. Functional annotation and enrichment analysis were performed to reveal differences of gene products and pathways between the brains of male and female fish. Furthermore, transcriptomic responses of male and female brains to TBT at 10 ng/L were also investigated to understand effects of TBT on brain sexual dimorphisms. Only 345 male-biased and 273 female-biased genes were found in the brains. However, significant female-biased pathways of circadian rhythm and phototransduction were identified in the brains by enrichment analysis. Interestingly, following TBT exposure in the female fish, the circadian rhythm pathway was significantly disrupted based on enrichment analysis, while in the male fish, the phototransduction pathway was significantly disrupted. In the female fish, expression of genes (Per, Cry, Rev-Erb α, Ror, Dec and CK1δ/ε) in the circadian rhythm pathway was down-regulated after TBT exposure; while in the male fish, expression of genes (Rec, GNAT1_2, GNGT1, Rh/opsin, PDE and Arr) in the phototransduction pathway was up-regulated after TBT exposure. Overall, our results not only provide key data on the molecular basis of brain sexual dimorphisms in fish, but also offer valuable resources for investigating molecular mechanisms by which environmental chemicals might influence brain sexual plasticity.


Assuntos
Cyprinidae/genética , Caracteres Sexuais , Transcriptoma/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Cyprinidae/metabolismo , Feminino , Perfilação da Expressão Gênica , Transdução de Sinal Luminoso/efeitos dos fármacos , Masculino , Análise de Sequência de RNA
13.
Biol Trace Elem Res ; 185(1): 124-134, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29294227

RESUMO

Nanometer zinc oxide (nano-ZnO) is widely used in diverse industrial and agricultural fields. Due to the extensive contact humans have with these particles, it is crucial to understand the potential effects that nano-ZnO have on human health. Currently, information related to the toxicity and mechanisms of nano-ZnO is limited. The aim of the present study was to investigate acute and cumulative toxic effects of 50-nm unmodified ZnO in mice. This investigation will seek to establish median lethal dose (LD50), a cumulative coefficient, and target organs. The acute and cumulative toxicity was investigated by Karber's method and via a dose-increasing method, respectively. During the experiment, clinical signs, mortality, body weights, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. The LD50 was 5177-mg/kg·bw; the 95% confidence limits for the LD50 were 5116-5238-mg/kg·bw. It could be concluded that the liver, kidney, lung, and gastrointestinal tract were target organs for the 50-nm nano-ZnO acute oral treatment. The cumulative coefficient (K) was 1.9 which indicated that the cumulative toxicity was apparent. The results also indicated that the liver, kidney, lung, and pancrea were target organs for 50-nm nano-ZnO cumulative oral exposure and might be target organs for subchronic and chronic toxicity of oral administered 50-nm ZnO.


Assuntos
Óxido de Zinco/toxicidade , Animais , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Nanopartículas/toxicidade , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Tamanho da Partícula
14.
Environ Toxicol ; 33(1): 104-111, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29087020

RESUMO

Dibutyltin (DBT) is the degradation products of TBT, which is generally considered higher toxicity than TBT in the immune system. In order to learn more about the mechanisms of immune-toxic of DBT, we exposed zebrafish (Danio rerio) to 0, 1, 10 and 100 ng/L DBT for 8 weeks. At the end of the experiment, we determined the immune parameters and immune-related genes. The results showed that with an increase in TBT dose, lysozyme activities and IgM, C3, C4 content in intestine, skin and spleen were all significantly inhibited by the DBT exposure. Fish exposed to 10 ng/L and 100 ng/L showed significantly lower lysozyme activities and IgM, C3, C4 content than those of the control group. Zebrafish exposed to 10 ng/L and 100 ng/L DBT, the mRNA transcript levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), interferon γ2 (INFγ2), nuclear factor-κB p65 (NF-kB p65), inhibitor protein-κBα (IκBα), IκB kinases ß (IKKß), Janus family of protein tyrosine kinases (JAKs) and the signal transducers and activators of transcription proteins (STATs) all increased with the DBT levels in the intestine and spleen. Those parameters showed significantly higher values in 10 ng/L and 100 ng/L than those of fish in the control group. However, no significant difference was found in IκB kinases α (IKKα) and IκB kinase γ (IKKγ) mRNA levels in the intestine and spleen. These data imply that DBT might be via suppression on IKKß/IkBa/NF-kBp65 and JAK/STAT signaling pathways to regulate the immunity of zebrafish.


Assuntos
Compostos Orgânicos de Estanho/toxicidade , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/imunologia
15.
Saudi J Biol Sci ; 24(6): 1126-1135, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28855803

RESUMO

MicroRNAs (miRNAs) are a kind of small single-strand RNA molecules with lengths of 18-25 nt, which do not encode any proteins. They play an essential role in gene expression regulation by binding to their target genes, leading to translational repression or transcript degradation. In this study, 23 miRNAs were predicted from five cyprinidae fishes by using a bioinformatics-based gene search based on blasting ESTs and GSS in NCBI, of which 21 miRNA genes have not been previously reported. To prove their validity, five of the computationally predicted miRNAs were verified by RTPCR, their transcripts were successfully detected, and, 46 potential target genes for these miRNAs were predicted, most target genes encode transcription factors, they are involved in signal transduction, metabolism and development processes.

16.
Fish Shellfish Immunol ; 68: 84-91, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28698125

RESUMO

The aim of the present study was to investigate effects of dietary Lactobacillus delbrueckii (L. delbrueckii) on immune response, disease resistance against Aeromonas hydrophila (A. hydrophila), antioxidant capability and growth performance of Cyprinus carpio Huanghe var. 450 fish (mean weight of 1.05 ± 0.03 g) were randomly distributed into five groups that fed diets containing different levels of L. delbrueckii (0, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 CFU g-1) for 8 weeks. The results showed that intestinal immune parameters such as lysozyme, acid phosphatase, and myeloperoxidase activities, immunoglobulin M content, and the survival rate were improved in fish fed with 1 × 106 and 1 × 107 CFU g-1L. delbrueckii. In addition, 1 × 107 CFU g-1L. delbrueckii supplementation down-regulated mRNA levels of TNF-α, IL-8, IL-1ß and NF-κBp65, and up-regulated IL-10 and TGF-ß mRNA levels in the intestine. The survival rate was significantly (P < 0.05) higher (68.33%) in fish fed 1 × 106 CFU g-1L. delbrueckii than the control diet-fed group (40%) after challenge by A. hydrophila. Fish fed with diet containing 1 × 106 CFU g-1L. delbrueckii showed higher antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and total antioxidant capacity (T-AOC) and lower MDA concentrations than those of the control group (P < 0.05). The relative gene expression (SOD, CAT, GPX) showed the same trend with their activities. In addition, the growth performance was significantly improved in fish fed with the diet containing 1 × 106 and 1 × 107 CFU g-1L. delbrueckii (P < 0.05). These results demonstrated that dietary optimal levels of L. delbrueckii enhanced immunity, disease resistance against A. hydrophila antioxidant capability and growth performance in Cyprinus carpio Huanghe var.


Assuntos
Carpas , Suplementos Nutricionais , Resistência à Doença , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Lactobacillus delbrueckii , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Lactobacillus delbrueckii/química , Lactobacillus delbrueckii/imunologia , Distribuição Aleatória
17.
Toxicol Appl Pharmacol ; 327: 30-38, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28450151

RESUMO

Quercetin is a natural product that is sold as a supplement in health food stores. While there are reported benefits for this flavonoid as a dietary supplement due to antioxidant properties, the full scope of its biological interactions has not been fully addressed. To learn more about the mechanisms of action related to quercetin, we exposed zebrafish (Danio rerio) embryos to 1 and 10µg/L quercetin for 96h starting at 3h post fertilization. Quercetin up to 10µg/L did not induce significant mortality in developing fish, but did increase prevalence of an upward-curved dorsal plane in hatched larvae. To determine whether this developmental defect was potentially related to mitochondrial bioenergetics during development, we measured oxygen consumption rate in whole embryos following a 24-hour exposure to quercetin. Basal mitochondrial and ATP-linked respiration were decreased at 1 and 10µg/L quercetin, and maximal respiration was decreased at 10µg/L quercetin, suggesting that quercetin impairs mitochondrial bioenergetics. This is proposed to be related to the deformities observed during development. Due to the fact that ATP production was affected by quercetin, larval behaviors related to locomotion were investigated, as well as transcriptional responses of six myogenesis transcripts. Quercetin at 10µg/L significantly reduced the swimming velocity of zebrafish larvae. The expression levels of both myostatin A (mstna) and myogenic differentiation (myoD) were also altered by quercetin. Mstna, an inhibitory factor for myogenesis, was significantly increased at 1µg/L quercetin exposure, while myoD, a stimulatory factor for myogenesis, was significantly increased at 10µg/L quercetin exposure. There were no changes in transcripts related to apoptosis (bcl2, bax, casp3, casp7), but we did observe a decrease in mRNA levels for catalase (cat) in fish exposed to each dose, supporting an oxidative stress response. Our data support the hypothesis that quercetin may affect locomotion and induce deformities in zebrafish larvae by diminishing ATP production and by altering the expression of transcripts related to muscle formation and activity.


Assuntos
Suplementos Nutricionais/toxicidade , Metabolismo Energético/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Quercetina/toxicidade , Anormalidades Induzidas por Medicamentos/patologia , Trifosfato de Adenosina/biossíntese , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Larva , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Proteína MyoD/biossíntese , Proteína MyoD/genética , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Natação , Transcrição Genética/efeitos dos fármacos , Poluentes Químicos da Água , Peixe-Zebra
18.
Ecotoxicol Environ Saf ; 138: 1-8, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27987418

RESUMO

Tributyltin (TBT) is a toxic compound released into aquatic ecosystems through antifouling paints. This study was designed to examine the effects of TBT on antioxidant ability and immune responses of zebrafish (Danio rerio). Three hundred sixty healthy zebrafish were randomly grouped into four groups and exposed to different doses of TBT (0, 1, 10 and 100ngL-1). At the end of 8 weeks, the fish were sampled, and antioxidant capability, immune parameters and immune-related genes were assessed. The results showed that with an increase in TBT dose, the concentration of malonaldehyde in the liver was significantly increased (p<0.05), whereas the activities of total superoxide dismutase, catalase and glutathione peroxidase were significantly decreased (p<0.05) compared to the control. The activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to those of the fish exposed to 0ngL-1 TBT (p<0.05). However, the expression of the HSP70, HSP90, tumor necrosis factor-α(TNF-α), interleukins (IL-1ß, IL-6), and nuclear factor-kappa B p65 (NF-κ B p65) genes were all enhanced with an increase in TBT dose. The results indicated that TBT induced oxidative stress and had immunotoxic effects on zebrafish.


Assuntos
Desinfetantes/toxicidade , Imunidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malondialdeído/metabolismo , Muramidase/metabolismo , Distribuição Aleatória , Superóxido Dismutase/metabolismo , Compostos de Trialquitina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-27397556

RESUMO

Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17ß-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats.


Assuntos
Bass/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Imunidade Celular/genética , Reprodução/genética , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Animais , Bass/crescimento & desenvolvimento , Biologia Computacional , Imunidade Celular/efeitos dos fármacos , Lagos , Análise em Microsséries , Reprodução/efeitos dos fármacos , Vitelogeninas/sangue , Áreas Alagadas
20.
Fish Shellfish Immunol ; 54: 639-47, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26965748

RESUMO

In the present study, the interleukin-6 gene (IL-6) cDNA in blunt snout bream (Megalobrama amblycephala) was identified and its expression profiles under ammonia stress and bacterial challenge were investigated. The IL-6 sequence consisted of 1045 bp, including a 696 bp ORF which translated into a 232 amino acid (AA) protein. The protein contained a putative signal peptide of 24 AA in length. IL-6 expression analysis showed that the it is differentially expressed in various tissues under normal conditions and the highest IL-6 level was observed in the intestine tissue, followed by the liver, and then in the gills. Under ammonia stress, the IL-6 mRNA level both in spleens and intestine increased significantly (P < 0.05), with the maximum levels attained at 6 h, 12 h (72, 10-fold, respectively). Thereafter, they all significantly decreased (P < 0.01) and returned to the basal value within 48 h. Whereas, in livers it slightly decreased at 3 h firstly (0.5-fold), and then significantly (P < 0.05) increased with the maximum level attained 12 h (3-fold). Further expression analysis showed that the mRNA level of IL-6 in spleens, intestine and livers of blunt snout bream all increased significantly (P < 0.05), with maximum values attained at 6 h, 3 h, 6 h (10, 6, 18-fold, respectively) after Aeromonas hydrophila (A. hydrophila) injection, and then decreased to the basal value within 24 h which suggested that IL-6 was involved in the immune response to A. hydrophila. The cloning and expression analysis of the IL-6 provide theoretical basis to further study the mechanism of anti-adverseness and expression characteristics under stress conditions in blunt snout bream.


Assuntos
Cyprinidae/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Interleucina-6/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Amônia/toxicidade , Animais , Sequência de Bases , Clonagem Molecular , Cyprinidae/classificação , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Interleucina-6/química , Interleucina-6/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...