Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5623, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221398

RESUMO

To facilitate the utility of SNP-based genotyping, we developed a new method called target SNP-seq which combines the advantages of multiplex PCR amplification and high throughput sequencing. Compared with KASP, Microarrays, GBS and other SNP genotyping methods, target SNP-seq is flexible both in SNPs and samples, yields high accuracy, especially when genotyping genome wide perfect SNPs with high polymorphism and conserved flanking sequences, and is cost-effective, requiring 3 days and $7 for per DNA sample to genotype hundreds of SNP loci. The present study established a DNA fingerprint of 261 cucumber varieties by target SNP-seq with 163 perfect SNPs from 4,612,350 SNPs based on 182 cucumber resequencing datasets. Four distinct subpopulations were found in 261 Chinese cucumber varieties: the north China type, the south China type, the Europe type, and the Xishuangbanna type. The north China type and Xishuangbanna type harbored lower genetic diversity, indicating greater risk of genetic erosion in these two subpopulations. Furthermore, a core set of 24 SNPs was able to distinguish 99% of the 261 cucumber varieties. 29 core cucumber backbone varieties in China were identified. Therefore, target SNP-seq provides a new way to screen out core SNP loci from the whole genome for DNA fingerprinting of crop varieties. The high efficiency and low cost of target SNP-seq is more competitive than the current SNP genotyping methods, and it has excellent application prospects in genetic research, as well as in promoting plant breeding processes in the near future.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32160455

RESUMO

We combine in situ heated atomic force microscopy (AFM) with automated line-by-line spectral analysis to quantify the relaxation or decay phenomenon of nanopatterned composite polymer films above the glass-transition temperature of the composite material. This approach enables assessment of pattern fidelity with a temporal resolution of ≈1 s, providing the necessary data density to confidently capture the short-time relaxation processes inaccessible to conventional ex situ measurements. Specifically, we studied the thermal decay of nanopatterned poly(methyl methacrylate) (PMMA) and PMMA nanocomposite films containing unmodified and PMMA-grafted silica nanoparticles (SiO2 NP) of varying concentrations and film thicknesses using this new approach. Features imprinted on neat PMMA films were seen to relax at least an order of magnitude faster than the NP-filled films at decay temperatures above the glass transition of the PMMA matrix. It was also seen that patterned films with the lowest residual thickness (34 nm) filled with unmodified SiO2 NP decayed the slowest. The effect of nanoparticle additive was almost negligible in reinforcing the patterned features for films with the highest residual thickness (257 nm). Our in situ pattern decay measurement and the subsequent line-by-line spectral analysis enabled the investigation of various parameters affecting the pattern decay such as the underlying residual thickness, type of additive system, and temperature in a timely and efficient manner.

3.
J Agric Food Chem ; 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32159344

RESUMO

Substantial studies have shown that ω-3 polyunsaturated fatty acids (PUFAs) have various health-promoting effects; however, there are inconsistent results from animal studies that showed that ω-3 PUFAs have no effects or even detrimental effects. Emerging research suggests that oxidized ω-3 PUFAs have different effects compared to unoxidized ω-3 PUFAs; therefore, lipid oxidation of dietary ω-3 PUFAs could contribute to the mixed results of ω-3 PUFAs in animal studies. Here, we prepared an AIN-93G-based, semi-purified, powder diet, which is one of the most commonly used rodent diets in animal studies, to study the oxidative stability of fortified ω-3 PUFAs in animal feed. We found that lowering the storage temperature or the addition of a certain antioxidant, notably tert-butylhydroquinone (TBHQ), helps to stabilize ω-3 PUFAs and suppress ω-3 oxidation in the animal diet, while reducing the level of oxygen in the storage atmosphere is not very effective. The addition of 50 ppm of TBHQ in the diet inhibited 99.5 ± 0.1% formation of primary oxidation products and inhibited 96.1 ± 0.7% formation of secondary oxidation products, after 10 days of storage of the prepared diet at a typical animal-feeding experiment condition. Overall, our results highlight that ω-3 PUFAs are highly prone to lipid oxidation in a typical animal-feeding experiment, emphasizing the critical importance to stabilize ω-3 PUFAs in animal studies.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32092917

RESUMO

Soil erosion risk assessment is an essential foundation for the planning and implementation of soil and water conservation projects. The commonality among existing studies is that they considered different indicators (e.g., rainfall and slope) in order to determine the soil erosion risk; however, the majority of studies in China neglect one important indicator, namely the slope aspect. It is widely accepted that the vegetation and distribution of rainfall differs according to the different slope aspects (such as sunny slope and shady slope) and these attributes will accordingly influence the soil erosion. Thus, existing studies neglecting this indicator cannot reflect the soil erosion well. To address this problem, a flexible soil erosion risk assessment method that supports decision makers in identifying priority areas in soil and water conservation planning was developed in the present study. Firstly, in order to verify the impact of the slope aspect on soil erosion, field investigations were conducted, and its impact on the characteristics of the community in the study area was analyzed. Secondly, six assessment indicators were selected, including slope gradient, precipitation, NDVI, land use, soil texture and slope aspect. Next, a developed multi-criteria decision analysis (MCDA) method based on the Choquet integral was adopted to assess the soil erosion risk. The MCDA method, combining objective data with subjective assessment based on Choquet integral, could solve the weight problem encountered when using the quantitative method. The parameters required can be modified according to the soil erosion types, assessment scales, and data availability. The synergistic and inhibitory effects among the soil erosion parameters were also considered in the assessment. Finally, the soil erosion risk results in the Xinshui River watershed revealed that more attention should be paid to the slope of farmland and grassland during the planning and management of soil and water conservation projects. The methodology used in the current study can support decision makers in planning and implementing soil and water conservation measures in regions with different erosion types.

5.
BMC Genomics ; 21(1): 96, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000662

RESUMO

BACKGROUND: Broomcorn millet is a drought-tolerant cereal that is widely cultivated in the semiarid regions of Asia, Europe, and other continents; however, the mechanisms underlying its drought-tolerance are poorly understood. The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family that is involved in the regulation of tissue development and abiotic stress. To date, NAC transcription factors have not been systematically researched in broomcorn millet. RESULTS: In the present study, a total of 180 NAC (PmNAC) genes were identified from the broomcorn millet genome and named uniformly according to their chromosomal distribution. Phylogenetic analysis demonstrated that the PmNACs clustered into 12 subgroups, including the broomcorn millet-specific subgroup Pm_NAC. Gene structure and protein motif analyses indicated that closely clustered PmNAC genes were relatively conserved within each subgroup, while genome mapping analysis revealed that the PmNAC genes were unevenly distributed on broomcorn millet chromosomes. Transcriptome analysis revealed that the PmNAC genes differed greatly in expression in various tissues and under different drought stress durations. The expression of 10 selected genes under drought stress was analyzed using quantitative real-time PCR. CONCLUSION: In this study, 180 NAC genes were identified in broomcorn millet, and their phylogenetic relationships, gene structures, protein motifs, chromosomal distribution, duplication, expression patterns in different tissues, and responses to drought stress were studied. These results will be useful for the further study of the functional characteristics of PmNAC genes, particularly with regards to drought resistance.

6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(2): 151-156, 2020 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-32030943

RESUMO

Objective: To compare differences in the maintenance of cervical curvature after anterior cervical surgery between zero-profile and self-locking intervertebral cage and plate-cage construct (PCC). Methods: A clinical data of 100 patients with single-segment cervical disc herniation who were treated with anterior cervical discectomy and fusion were retrospectively analyzed between January 2015 and January 2016. Among them, 50 patients were treated with the zero-profile and self-locking intervertebral cage (group A) and 50 patients with the PCC (group B). There was no significant difference between the two groups in age, gender, bone mineral density, disease duration, operative segment, and preoperative visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, C 2-7 cervical curvature, segmental Cobb angle, and adjacent vertebral height ( P>0.05). The operation time and intraoperative blood loss were recorded. The postoperative VAS and JOA scores were used to evaluate the clinical efficacy. The C 2-7 cervical curvature, segmental Cobb angle, and adjacent vertebral height were measured on lateral X-ray films, and the interbody fusion was evaluated according to Pitzen's criteria. Results: The operation time in group A was significantly shorter than that in group B ( t=2.442, P=0.021), but there was no significant difference in the intraoperative blood loss between the two groups ( t=0.812, P=0.403). All patients were followed up 24-36 months, with an average of 28.5 months. According to Pitzen's criteria for cervical interbody fusion, bone fusion achieved in both groups. The VAS score, JOA score, C 2-7 cervical curvature, segmental Cobb angle, and adjacent vertebral height of the two groups at 1 and 24 months after operation were significantly improved when compared with those before operation ( P<0.05). The C 2-7 cervical curvature, segmental Cobb angle, and adjacent vertebral height of group A at 24 months changed significantly compared with those at 1 month ( P<0.05). The other indexes of the two groups showed no significant difference between the different time points after operation ( P>0.05). There were significant differences in C 2-7 cervical curvature, segmental Cobb angle, and adjacent vertebral height between the two groups at 24 months after operation ( P<0.05); but there was no significant difference in the clinical indexes at 1 and 24 months and the imaging indexes at 1 month between the two groups ( P>0.05). Conclusion: Compared with the PCC, the zero-profile and self-locking intervertebral cage can significantly shorten the operation time and obtain the same clinical efficacy, but the intervertebral height loss and secondary cervical curvature change after operation is more serious.


Assuntos
Placas Ósseas , Fusão Vertebral , Vértebras Cervicais , Discotomia , Humanos , Estudos Retrospectivos , Espondilose , Resultado do Tratamento
7.
Food Funct ; 11(2): 1684-1691, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32037431

RESUMO

Previous studies have shown that curcumin, a bioactive dietary compound with a thiol-reactive α,ß-unsaturated carbonyl moiety, can covalently modify protein thiols. However, most of the previous studies were performed in cultured cells or cell-free enzyme systems, and so it remains unknown whether curcumin could covalently modify proteins after oral administration in vivo. Using click chemistry-based fluorescence imaging, here we show that oral administration of dialkyne-curcumin (Di-Cur), a "click" probe mimicking curcumin, results in covalent modifications of cellular proteins in colon and liver tissues, but not in other tissues, in mice. This result suggests that oral administration of curcumin leads to the formation of the curcumin-protein complex in a tissue-specific manner, which could contribute to the biological effects and/or pharmacokinetics of curcumin. Further studies to elucidate the identities of curcumin-binding proteins could greatly help us to better understand the molecular mechanisms of curcumin, and develop novel strategies for disease prevention.

8.
J Nutr Biochem ; 76: 108286, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918337

RESUMO

Peroxidation of polyunsaturated fatty acids leads to the formation of a large array of lipid-derived electrophiles (LDEs), many of which are important signaling molecules involved in the pathogenesis of human diseases. Previous research has shown that one of such LDEs, trans, trans-2,4-decadienal (tt-DDE), increases inflammation, however, the underlying mechanisms are not well understood. Here we used click chemistry-based proteomics to identify the cellular targets which are required for the pro-inflammatory effects of tt-DDE. We found that treatment with tt-DDE increased cytokine production, JNK phosphorylation, and activation of NF-κB signaling in macrophage cells, and increased severity of dextran sulfate sodium (DSS)-induced colonic inflammation in mice, demonstrating its pro-inflammatory effects in vitro and in vivo. Using click chemistry-based proteomics, we found that tt-DDE directly interacts with Hsp90 and 14-3-3ζ, which are two important proteins involved in inflammation and tumorigenesis. Furthermore, siRNA knockdown of Hsp90 or 14-3-3ζ abolished the pro-inflammatory effects of tt-DDE in macrophage cells. Together, our results support that tt-DDE increases inflammatory responses via Hsp90- and 14-3-3ζ-dependent mechanisms.

9.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(1): 69-75, 2020 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-31939238

RESUMO

Objective: To compare the effectiveness and screw planting accuracy of percutaneous reduction and internal fixation with robot and traditional fluoroscopy-assisted in the treatment of single-level thoracolumbar fractures without neurological symptoms. Methods: The clinical data of 58 patients with single-level thoracolumbar fractures without neurological symptoms between December 2016 and January 2018 were retrospectively analysed. According to different surgical methods, the patients were divided into group A (28 cases underwent robot-assisted percutaneous reduction and internal fixation) and group B (30 cases underwent fluoroscopy-assisted percutaneous reduction and internal fixation). There was no neurological symptoms, other fractures or organ injuries in the two groups. There was no significant difference in general data of age, gender, fracture location, AO classification, time from injury to surgery, and preoperative vertebral anterior height ratio, sagittal Cobb angle, visual analogue scale (VAS) score, and Oswestry disability index (ODI) score between the two groups ( P>0.05). The screw placement time, operation time, intraoperative blood loss, intraoperative fluoroscopy frequency, hospitalization time, operation cost, postoperative complications, VAS score, ODI score, anterior vertebral height ratio, and sagittal Cobb angle before operation, at 3 days, 6 months after operation, and at last follow-up were recorded and compared between the two groups. The accuracy of the pedicle screw placement was evaluated by Neo's criteria. Results: The screw placement time, operation time, and intraoperative fluoroscopy frequency of group A were significantly less than those of group B, and the operation cost was significantly higher than that of group B ( P<0.05). But there was no significant difference in intraoperative blood loss and hospitalization time between the two groups ( P>0.05). Both groups were followed up 12-24 months, with an average of 15.2 months. The accuracy rate of screw placement in groups A and B was 93.75% (150/160) and 84.71% (144/170), respectively, and the difference was significant ( χ 2=5.820, P=0.008). Except for 1 case of postoperative superficial infection in group A and wound healing after dressing change, there was no complication such as neurovascular injury, screw loosening and fracture in both groups, and there was no significant difference in the incidence of complications between the two groups ( χ 2=0.625, P=0.547). The anterior vertebral height ratio, sagittal Cobb angle, VAS score, and ODI score of the two groups were significantly improved ( P<0.05); there was no significant difference between the two groups at all time points after operation ( P>0.05). Conclusion: The spinal robot and traditional fluoroscopy-assisted percutaneous reduction and internal fixation can both achieve satisfactory effectiveness in the treatment of single-level thoracolumbar fractures without neurological symptoms. However, the former has higher accuracy, fewer fluoroscopy times, shorter time of screw placement, and lower technical requirements for the operator. It has wide application potential.


Assuntos
Fixação Interna de Fraturas , Parafusos Pediculares , Robótica , Fraturas da Coluna Vertebral , Fluoroscopia , Humanos , Vértebras Lombares , Estudos Retrospectivos , Vértebras Torácicas , Resultado do Tratamento
10.
Langmuir ; 36(5): 1192-1200, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31955570

RESUMO

Well-defined polymer-grafted solid inorganic nanoparticles (NPs) are imperative for practical applications in various fields based on the prerequisite of facile initiator immobilization. Direct atom transfer radical polymerization (ATRP) initiator-tethered solid NPs are described using 2-bromo-2-methylpropionic acid as a tetherable initiator. To illustrate the versatility of the proposed strategy, nano-hydroxyapatite (n-HAP) nanocrystals (NCs) were selected to demonstrate the morphology-controlled synthesis of 2-bromo-2-methylpropionate (2-BrMP) group-immobilized n-HAP (n-HAP-Br) NCs. When water was employed as the sole solvent, the continually introduced 2-BrMP groups altered the surface hydrophobic capacity of the n-HAP-Br NC and thus led to unavoidable aggregation of n-HAP-Br NCs. The synthesis of individually dispersed n-HAP-Br NCs was achieved by rational adjusting polarity of the aqueous medium through adding a portion of water-miscible organic solvents. The type and concentration of added water-miscible organic solvents had critical effects on the morphology and particle size of n-HAP-Br NCs. To verify the efficiency of the tethered initiator, n-HAP-g-poly2-(dimethylamino) ethyl methacrylate (n-HAP-g-PDMAEMA), n-HAP-g-polyacrylonitrile (n-HAP-g-PAN), and n-HAP-g-polymethyl methacrylate (n-HAP-g-PMMA) were fabricated by surface-initiated ATRP (SI-ATRP). Acting as a solid particle emulsifier, the designed n-HAP-g-PDMAEMA-stabilized Pickering emulsion displayed dual pH and temperature response with reversible behaviors. This work presents a versatile and simple way for the fabrication of initiator-immobilized solid NPs (e.g., n-HAP NCs, gibbsite nanoplatelets, and γ-FeOOH nanofibers) ready for polymer grafting and thus enables promising performance in widespread applications.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31943656

RESUMO

Nitrogen-doped carbon materials (N-Cmat ) are emerging as low-cost metal-free electrocatalysts for the electrochemical CO2 reduction reaction (CO2 RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2 RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well-defined N-Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2 RR performance on pyridinic N can be significantly boosted by electronic modulation from in-situ-generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm-2 at -0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2 RR on N-Cmat , which may guide the exploration of cost-effective electrocatalysts for efficient CO2 reduction.

12.
Biochem Biophys Res Commun ; 521(3): 739-745, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706574

RESUMO

Long noncoding RNAs (lncRNAs) have been identified to be critical regulator in the osteosarcoma (OS) tumorigenesis. However, the role of lncRNA MIR17HG in the OS proliferation and chemotherapy resistance is still unclear. Here, this research aims to investigate the function of lncRNA MIR17HG in the OS proliferation and cisplatin resistance. Clinically, results revealed that higher MIR17HG expression was associated with shorter overall survival. Functional investigations indicated that MIR17HG promoted the proliferation, invasion and cisplatin resistance of OS cells in vitro, and the MIR17HG knockdown inhibited the growth in vivo. Mechanistically, MIR17HG targeted the miR-130a-3p/SP1 axis, moreover, transcription factor SP1 bind with the MIR17HG promoter region to promote its expression. Taken together, MIR17HG displays the tumor-promotive role in the progression of OS through SP1/MIR17HG/miR-130a-3p/SP1 feedback loop. Our findings might help us to offer novel therapeutic strategies for OS.

13.
World Neurosurg ; 133: e303-e307, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31520754

RESUMO

OBJECTIVE: To explore the safety and efficacy of hydrogen peroxide H2O2 in controlling blood loss and surgical site infection (SSI) after multisegmental lumbar spine surgery. METHODS: A total of 2626 patients who had undergone multisegmental lumbar spinal surgery from January 2015 to January 2018 were included in the present study. Stratified by the use of H2O2 irrigation, they were divided into 2 groups: the control group (n = 1345) and the experimental group (n = 1281). The demographic parameters, laboratory examination results, and surgery-related information (e.g., operative time, number of operated levels, intraoperative blood loss, postoperative drainage, postoperative SSI, extubation time), and perioperative complications were recorded. RESULTS: No significant differences were seen regarding the demographic parameters, laboratory examination results, comorbidities, and surgery-related information. The extubation time and postoperative drainage collection were lower in the experimental group (3.6 ± 0.5 vs. 4.1 ± 0.6 days, P = 0.402; 251.8 ± 67.5 vs. 291.8 ± 71.3 mL, P = 0.013). In the control group, the rate of SSI was 2.4% (32 of 1345) and included 17 superficial wound infections and 15 deep wound infections. In the experimental group, the SSI rate was 1.4% (18 of 1281; 15 with a superficial wound infection and 3 with a deep wound infection). Staphylococcus aureus was the most common organism, especially in the experimental group (66.7% vs. 50%). No statistically significant difference was found between the 2 groups in the perioperative complications, including hematencephalon, deep vein thrombosis, pulmonary embolism, and myocardial infarction (P > 0.05). Pneumocephalus was not observed in either group. CONCLUSION: The application of H2O2 in posterior lumbar interbody fusion can reduce the blood loss and incidence of SSI after surgery and was quite beneficial for controlling the increasing number of vancomycin-resistant bacteria.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Perda Sanguínea Cirúrgica/prevenção & controle , Hemostasia Cirúrgica/métodos , Peróxido de Hidrogênio/uso terapêutico , Vértebras Lombares/cirurgia , Fusão Vertebral , Infecção da Ferida Cirúrgica/prevenção & controle , Idoso , Antibacterianos/uso terapêutico , Anti-Infecciosos Locais/administração & dosagem , Antibioticoprofilaxia , Estudos de Casos e Controles , Feminino , Humanos , Peróxido de Hidrogênio/administração & dosagem , Masculino , Pessoa de Meia-Idade , Pré-Medicação , Estudos Retrospectivos , Infecções Estafilocócicas/prevenção & controle , Irrigação Terapêutica
14.
Soft Matter ; 16(3): 709-717, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31819928

RESUMO

Hydrogels can be used as an alternative coating material for ships against marine biofouling. However, the adhesion of wet and soft hydrogels onto solid metals remains a challenging problem. Here we report the adhesion of a typical hydrogel material, poly(vinyl alcohol) (PVA)-glycerol hydrogel, onto stainless steel substrates and the antifouling potency of the adhered PVA-glycerol hydrogels. Poly(allylamine hydrochloride) (PAH) hydrogel and ethyl α-cyanoacrylate (ECA) are used as the binders, and they are found to be able to firmly bond the PVA-glycerol hydrogels onto the stainless steel substrates. The PAH hydrogel does not affect the mechanical properties of the PVA-glycerol hydrogel during use, but it tends to lose the adhesive ability in a dehydrating environment. In contrast, the ECA adhesive can maintain strong bonding between PVA-glycerol hydrogels and substrates upon several water losing/water absorbing cycles, despite some negative effects on the strength of the PVA-glycerol hydrogel. Biological experiments show that the PVA-glycerol hydrogel has a strong settlement-inhibiting effect on the barnacle Balanus albicostatus, suggesting that combining the PVA-glycerol hydrogel with ECA adhesive may have promising applications in marine antifouling.

15.
Oncogene ; 39(7): 1514-1526, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31673069

RESUMO

Cancer immune surveillance is an important host protection process that inhibits carcinogenesis and maintains cellular homeostasis. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, by a combined bioinformatics prediction and experimental approach, we identify BCL11B 3'-UTR as a putative MICA and MICB ceRNA. We demonstrate in several human cell lines of different origins that the knockdown of BCL11B downregulates surface expression of MICA and MICB. Furthermore, we demonstrate miRNA dependency of BCL11B-mediated MICA and MICB regulation in Dicer knockdown HCT116 cells. In addition, MICA/B-targeting miRNAs (miR-17, miR-93, miR-20a, miR-20b, miR-106a, and miR-106b) repressed the expression of BCL11B by targeting its 3'-UTR. Moreover, we showed that the BCL11B knockdown-mediated downregulation of MICA/B resulted in reduced NK cell elimination in vitro and in vivo through reduced recognition of NKG2D. Of particular significance, BCL11B displays tumor-suppressive properties. The expression of BCL11B is downregulated in colon cancer tissues and associated with a reduced median survival of colon cancer patients. Taken together, our study revealed a new mechanism of BCL11B that prevents immune evasion of cancerous cells by upregulation of the NKG2D ligands MICA and MICB in a ceRNA manner.

16.
Theriogenology ; 142: 246-250, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31711699

RESUMO

Reproductive traits are important factors in sheep production. The Booroola fecundity (FecB) gene-the first major gene for prolificacy identified in sheep-has a positive effect on ovulation rates and litter size under natural reproductive conditions. However, the effect of the FecB gene on reproductive performance under assisted reproduction, which uses many artificial hormones, remains unclear. In the present study, we evaluated the effect of FecB (BMPR-1B mutation) on reproductive performance under assisted reproduction, and examined offspring body weight at birth and weaning and survival rate at weaning. There were no differences among three genotype groups (homozygous carrier, BB; heterozygous carrier, B+; non-carrier, ++) in terms of estrus detection rate, time to estrus onset, or estrus duration following estrus synchronization (P > 0.05). The pregnancy rates at 60 d were similar among three genotype groups after artificial insemination (P > 0.05). However, the B allele had an additive effect on litter size (one copy resulted in an increase of 0.88 lambs and two copies produced an additional 0.41 lambs; P < 0.01), and increased lambing and fecundity rates (P < 0.01). After multiple ovulation, the average numbers of recovered embryos per ewe were 9.16 ±â€¯0.79, 8.20 ±â€¯0.77, and 8.44 ±â€¯0.61 in the BB, B+, and ++ ewes, respectively (P > 0.05). There were no differences in the fertilization rate or numbers of grade 1-2 embryos among different groups (P > 0.05). The birth and weaning weights of lambs from BB and B+ ewes were lower than those of lambs born from ++ ewes (P < 0.01) owing to the high fecundity. The survival rate of lambs at weaning did not differ among groups (P > 0.05). Our results indicated that the presence of the B allele had an additive effect on litter size after artificial insemination, but it did not influence the parameters of estrus synchronization and multiple ovulation. Furthermore, the higher prolificacy in ewes carrying the B allele was associated with a reduction in offspring body weight at birth and weaning.

17.
Langmuir ; 35(49): 16111-16119, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31697082

RESUMO

Nanohydroxyapatite (n-HAP) as an environmentally friendly adsorbent of heavy metal ions still requires the rational design of the pore structure and surface characteristic for enhancing their adsorption capacity toward heavy metal ions. A novel one-step strategy was developed to regulate the pore structure and surface characteristic of esterified HAP (n-EHAP) nanocrystals (NCs) for enhancing the adsorption capacity by incorporation of 2-bromo-2-methylpropionate (2-BrMP) groups on the surface of n-EHAP NCs. When using water as the sole solvent, the aggregation of n-EHAP NCs became unavoidable because of incorporation of hydrophobic 2-BrMP groups on n-HAP particle surfaces. The synthesis of uniform and individual n-EHAP NCs was achieved by rational adjustment of the aqueous dispersion medium to avoid agglomeration and precipitation, which was induced by the changing surface characteristic of n-EHAP NCs during the continuing incorporation of hydrophobic 2-BrMP groups in the water/acetone system. The successful incorporation of hydrophobic 2-BrMP groups on the surface of n-EHAP NCs was characterized by X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and liquid nitrogen adsorption isotherms. To explore the potential application in water treatment, a series of systematically designed batch experiments were conducted to determine the influences of the adsorbent dosage, solution pH, and contact time on the adsorption behavior of n-EHAP NCs. Experimental results indicated that the addition of water-soluble acetone greatly promoted the formation of individual n-EHAP NCs without aggregation, and furthermore, the successful incorporation of hydrophobic 2-BrMP groups led to formation of porously structured n-EHAP NCs with a higher surface area and an increasing micro-/mesopore ratio. Compared with pristine n-HAP, n-EHAP NCs exhibited lower crystallinity with smaller crystallite size and demonstrated an ultrahigh adsorption capacity for Pb(II) in acidic solution with a record of close to 2400 mg/g. The improved performance of n-EHAP NCs originated from both the suitable porous structure with a higher micro-/mesoporosity ratio and the existing tethered 2-BrMP group-induced the ester bond, providing more adsorption active affinity sites for heavy metal ions. The highly efficient adsorption (99.99%) was further achieved using tap water spiked with traces of Pb(II) (63 ppb). The presented findings promise the application of n-EHAP NCs in water treatment as an alternative, low-cost, and ecofriendly adsorbent for environmental remediation.

18.
BMC Genomics ; 20(1): 799, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675924

RESUMO

BACKGROUND: Microsatellites, or simple sequence repeats (SSRs), represent important DNA variations that are widely distributed across the entire plant genome and can be used to develop SSR markers, which can then be used to conduct genetic analyses and molecular breeding. Cultivated peanut (A. hypogaea L.), an important oil crop worldwide, is an allotetraploid (AABB, 2n = 4× = 40) plant species. Because of its complex genome, genomic marker development has been very challenging. However, sequencing of cultivated peanut genome allowed us to develop genomic markers and construct a high-density physical map. RESULTS: A total of 8,329,496 SSRs were identified, including 3,772,653, 4,414,961, and 141,882 SSRs that were distributed in subgenome A, B, and nine scaffolds, respectively. Based on the flanking sequences of the identified SSRs, a total of 973,984 newly developed SSR markers were developed in subgenome A (462,267), B (489,394), and nine scaffolds (22,323), with an average density of 392.45 markers per Mb. In silico PCR evaluation showed that an average of 88.32% of the SSR markers generated only one in silico-specific product in two tetraploid A. hypogaea varieties, Tifrunner and Shitouqi. A total of 39,599 common SSR markers were identified among the two A. hypogaea varieties and two progenitors, A. duranensis and A. ipaensis. Additionally, an amplification effectiveness of 44.15% was observed by real PCR validation. Moreover, a total of 1276 public SSR loci were integrated with the newly developed SSR markers. Finally, a previously known leaf spot quantitative trait locus (QTL), qLLS_T13_A05_7, was determined to be in a 1.448-Mb region on chromosome A05. In this region, a total of 819 newly developed SSR markers were located and 108 candidate genes were detected. CONCLUSIONS: The availability of these newly developed and public SSR markers both provide a large number of molecular markers that could potentially be used to enhance the process of trait genetic analyses and improve molecular breeding strategies for cultivated peanut.

19.
Oncoscience ; 6(9-10): 371-375, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31763369

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths in the United States. Furthermore, it is well established that obese individuals have high risks of developing CRC, and obesity-associated CRC represents an unmet medical problem in the United States. Using a metabolomics approach, our recent research supports that the cytochrome P450 (CYP) monooxygenase/soluble epoxide hydrolase (sEH)-mediated eicosanoid pathway could play critical roles in the pathogenesis of CRC and obesity-associated CRC. Here in this review, we discuss recent studies about the roles of the CYP/sEH eicosanoid pathway in the pathogenesis of these diseases.

20.
Biotechnol Biofuels ; 12: 219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534478

RESUMO

Background: Butanol production by fermentation has recently attracted increasingly more attention because of its mild reaction conditions and environmentally friendly properties. However, traditional feedstocks, such as corn, are food supplies for human beings and are expensive and not suitable for butanol production at a large scale. In this study, acetone, butanol, and ethanol (ABE) fermentation with non-pretreated cassava using a symbiotic TSH06 was investigated. Results: In batch fermentation, the butanol concentration of 11.6 g/L was obtained with a productivity of 0.16 g/L/h, which was similar to that obtained from glucose system. A full utilization system of cassava was constructed to improve the fermentation performance, cassava flour was used as the substrate and cassava peel residue was used as the immobilization carrier. ABE fermentation with immobilized cells resulted in total ABE and butanol concentrations of 20 g/L and 13.3 g/L, which were 13.6% and 14.7% higher, respectively, than those of free cells. To further improve the solvent productivity, continuous fermentation was conducted with immobilized cells. In single-stage continuous fermentation, the concentrations of total ABE and butanol reached 9.3 g/L and 6.3 g/L with ABE and butanol productivities of 1.86 g/L/h and 1.26 g/L/h, respectively. In addition, both of the high product concentration and high solvent productivity were achieved in a three-stage continuous fermentation. The ABE productivity and concentration was 1.12 g/L/h and 16.8 g/L, respectively. Conclusions: The results indicate that TSH06 could produce solvents from cassava effectively. This study shows that ABE fermentation with cassava as a substrate could be an efficient and economical method of butanol production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA