Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Biosci Rep ; 39(11)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31701999


MicroRNA (MiR)-942 regulates the development of a variety of tumors, however, its function in breast cancer (BCa) has been less reported. Therefore, the present study investigated the regulatory effects of miR-942 on BCa cells. The expression of miR-942 in whole blood samples and BCa cell lines was detected by quantitative real-time (qRT)-PCR. Direct target gene for miR-942 was confirmed by dual-luciferase reporter assay. FOXA2 expression in adjacent tissues was detected by qRT-PCR. The effects of miR-942, or miR-942 with FOXA2, on the cell viability, proliferation, apoptosis, migration and invasion of BCa cells were determined by cell counting kit-8 (CCK-8), colony formation assay, flow cytometry, wound scratch and Transwell, respectively. The levels of N-Cadherin, E-Cadherin and Snail were determined by Western blot. Kaplan-Meier was used to explore the relationship among the expressions of miR-942 and FOXA2 and the prognosis of BCa patients. MiR-942 had high expressed in BCa, while its low expression significantly suppressed the cell viability, proliferation, migration and invasion of BCa, but increased cell apoptosis. Down-regulation of N-Cadherin and Snail and up-regulation of E-Cadherin were also induced by low-expression of miR-942. FOXA2, which was proved as the direct target gene for miR-942 and was low-expressed in BCa, partially reversed the effect of overexpressed miR-942 on promoting cell viability, proliferation, migration and invasion, and suppressed cell apoptosis. A lower survival rate was observed in BCa patients with a high expression of miR-942 and a low expression of FOXA2. MiR-942 promoted the progression of BCa by down-regulating the expression of FOXA2.

Int Immunopharmacol ; 77: 105948, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31629216


OBJECTIVE: The role of iNKT cells was investigated in chronic adipose tissue inflammation in obese mice after administration of α-GalCer in different pathways. METHODS: C57BL/6J mice were fed high-fat diet (HFD) for 12 weeks to establish the obese mouse model. The pathology of adipose tissue was observed by H&E staining. The rates of iNKT cells, macrophages and cell subsets in adipose tissue were detected by FCM. Cytokine levels in serum and adipose tissue lymphocyte-stimulated supernatants were assessed with the CBA kit. The expression levels of related transcription factor in adipose tissue were detected by Western blot. RESULTS: The proportions of iNKT cells, iNKT10 cells and M2 macrophages were decreased, while those of iNKT1 and M1 macrophages were increased in adipose tissue of HFD-fed mice. The expression levels of the related transcriptional proteins E4BP4 and Arg-1 were decreased while iNOS expression was increased in adipose tissue. Administration of α-GalCer by subcutaneous injection resulted in increased rates of iNKT10 cells and M2 macrophages, and decreased amounts of M1 macrophages in adipose tissue of HFD-fed mice. The expression of E4BP4 and Arg-1 were up-regulated, but iNOS was down-regulated. Meanwhile, infiltration of inflammatory cells into adipose tissue was further reduced. CONCLUSION: The imbalance between the proportions of iNKT1 and iNKT10 cells may be involved in the development of chronic inflammation in obese adipose tissue. Administration of α-GalCer by subcutaneous injection in HFD-fed mice activates adipose tissue iNKT10 cells, which promote M2 macrophage polarization and improve chronic inflammation in obese adipose tissue.

Cancer Med ; 8(4): 1806-1816, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30907072


Bladder cancer (BC) is a complex disease and could be classified into nonmuscle-invasive BC (NMIBC) or muscle-invasive BC (MIBC) subtypes according to the distinct genetic background and clinical prognosis. Until now, the golden standard and confirmed diagnosis of BC is cystoscopy and the major problems of BC are the high rate of recurrence and high costs in the clinic. Recent molecular and genetic studies have provided perspectives on the novel biomarkers and potential therapeutic targets of BC. In this article, we provided an overview of the traditional diagnostic approaches of BC, and introduced some new imaging, endoscopic, and immunological diagnostic technology in the accurate diagnosis of BC. Meanwhile, the minimally invasive precision treatment technique, immunotherapy, chemotherapy, gene therapy, and targeted therapy of BC were also included. Here, we will overview the diagnosis and therapy methods of BC used in clinical practice, focusing on their specificity, efficiency, and safety. On the basis of the discussion of the benefits of precision medicine in BC, we will also discuss the challenges and limitations facing the non-invasive methods of diagnosis and precision therapy of BC. The molecularly targeted and immunotherapeutic approaches, and gene therapy methods to BC treatment improved the prognosis and overall survival of BC patients.