Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Front Oncol ; 11: 736941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804926

RESUMO

Background: Glioblastoma (GBM) is a prevalent brain malignancy with an extremely poor prognosis, which is attributable to its invasive biological behavior. The RNA-binding motif protein 8A (RBM8A) has different effects on various human cancers. However, the role of RBM8A in GBM progression remains unclear. Methods: We investigated the expression levels of RBM8A in 94 GBM patients and explored the correlation between RBM8A expression and patient prognosis. Using in vitro and in vivo assays, combined with GBM sequencing data from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we examined whether and how RBM8A contributes to GBM progression. Results: RBM8A was up-regulated in GBM tissues, and its higher expression correlated with worse prognosis. Knockdown of RBM8A inhibited GBM progression and invasion ability both in vitro and in vivo. On the contrary, overexpression of RBM8A promoted GBM progression and invasion ability. Enrichment analysis of differentially expressed genes in GBM data identified the Notch1/STAT3 network as a potential downstream target of RBM8A, and this was supported by molecular docking studies. Furthermore, we demonstrated that RBM8A regulates the transcriptional activity of CBF1. The γ-secretase inhibitor DAPT significantly reversed RBM8A-enhanced GBM cell proliferation and invasion, and was associated with down-regulation of p-STAT3 and Notch1 protein. Finally, the gene set variance analysis score of genes involved in regulation of the Notch1/STAT3 network by RBM8A showed good diagnostic and prognostic value for GBM. Conclusions: RBM8A may promote GBM cell proliferation and migration by activating the Notch/STAT3 pathway in GBM cells, suggesting that RBM8A may serve as a potential therapeutic target for the treatment of GBM.

2.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770958

RESUMO

Gymnema sylvestre (Retz.) Schult is a multi-purpose traditional medicine that has long been used for the treatment of various diseases. To discover the potential bioactive composition of G. sylvestre, a chemical investigation was thus performed. In this research, four new C21 steroidal glycosides sylvepregosides A-D (1-4) were isolated along with four known compounds, gymnepregoside H (5), deacetylkidjoladinin (6), gymnepregoside G (7) and gymnepregoside I (8), from the ethyl acetate fraction of G. sylvestre. The structures of the new compounds were established by extensive 1D and 2D nuclear magnetic resonance (NMR) spectra with mass spectroscopy data. Compounds 1-6 promoted glucose uptake by the range of 1.10- to 2.37-fold, respectively. Compound 1 showed the most potent glucose uptake, with 1.37-fold enhancement. Further study showed that compounds 1 and 5 could promote GLUT-4 fusion with the plasma membrane in L6 cells. The result attained in this study indicated that the separation and characterization of these compounds play an important role in the research and development of new anti-diabetic drugs and pharmaceutical industry.

3.
Front Plant Sci ; 12: 718981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721452

RESUMO

Light is highly heterogeneous in natural conditions, and plants need to evolve a series of strategies to acclimate the dynamic light since it is immobile. The present study aimed to elucidate the response of light reaction of photosynthesis to dynamic sunflecks in a shade-tolerant species Panax notoginseng and to examine the regulatory mechanisms involved in an adaptation to the simulated sunflecks. When P. notoginseng was exposed to the simulated sunflecks, non-photochemical quenching (NPQ) increased rapidly to the maximum value. Moreover, in response to the simulated sunflecks, there was a rapid increase in light-dependent heat dissipation quantum efficiency of photosystem II (PSII) (ΦNPQ), while the maximum quantum yield of PSII under light (F v'/F m') declined. The relatively high fluorescence and constitutive heat dissipation quantum efficiency of PSII (Φf,d) in the plants exposed to transient high light (400, 800, and 1,600 µmol m-2 s-1) was accompanied by the low effective photochemical quantum yield of PSII (ΦPSII) after the dark recovery for 15 min, whereas the plants exposed to transient low light (50 µmol m-2 s-1) has been shown to lead to significant elevation in ΦPSII after darkness recovery. Furthermore, PSII fluorescence and constitutive heat dissipation electron transfer rate (J f,d) was increased with the intensity of the simulated sunflecks, the residual absorbed energy used for the non-net carboxylative processes (J NC) was decreased when the response of electron transfer rate of NPQ pathway of PSII (J NPQ) to transient low light is restricted. In addition, the acceptor-side limitation of PSI [Y(NA)] was increased, while the donor-side limitation of photosystems I (PSI) [Y(ND)] was decreased at transient high light conditions accompanied with active cyclic electron flow (CEF). Meanwhile, when the leaves were exposed to transient high light, the xanthophyll cycle (V cycle) was activated and subsequently, the J NPQ began to increase. The de-epoxidation state [(Z + A)/(V + A + Z)] was strongly correlated with NPQ in response to the sunflecks. In the present study, a rapid engagement of lutein epoxide (Lx) after the low intensity of sunfleck together with the lower NPQ contributed to an elevation in the maximum photochemical quantum efficiency of PSII under the light. The analysis based on the correlation between the CEF and electron flow devoted to Ribulose-1, 5-bisphosphate (RuBP) oxygenation (J O) indicated that at a high light intensity of sunflecks, the electron flow largely devoted to RuBP oxygenation would contribute to the operation of the CEF. Overall, photorespiration plays an important role in regulating the CEF of the shade-tolerant species, such as P. notoginseng in response to transient high light, whereas active Lx cycle together with the decelerated NPQ may be an effective mechanism of elevating the maximum photochemical quantum efficiency of PSII under light exposure to transient low light.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34652582

RESUMO

PURPOSE: Ketone body oxidation yields more ATP per mole of consumed oxygen than glucose. However, whether an increased ketone body supply in hypoxic cardiomyocytes and ischemic hearts is protective or not remains elusive. The goal of this study is to determine the effect of ß-hydroxybutyrate (ß-OHB), the main constituent of ketone bodies, on cardiomyocytes under hypoxic conditions and the effects of ketogenic diet (KD) on cardiac function in a myocardial infarction (MI) mouse model. METHODS: Human peripheral blood collected from patients with acute myocardial infarction and healthy volunteers was used to detect the level of ß-OHB. N-terminal proB-type natriuretic peptide (NT-proBNP) levels and left ventricular ejection fractions (LVEFs) were measured to study the relationship between plasma ß-OHB and cardiac function. Adult mouse cardiomyocytes and MI mouse models fed a KD were used to research the effect of ß-OHB on cardiac damage. qPCR, western blot analysis, and immunofluorescence were used to detect the interaction between ß-OHB and glycolysis. Live/dead cell staining and imaging, lactate dehydrogenase, Cell Counting Kit-8 assays, echocardiography, and 2,3,5-triphenyltetrazolium chloride staining were performed to evaluate the cardiomyocyte death, cardiac function, and infarct sizes. RESULTS: ß-OHB level was significantly higher in acute MI patients and MI mice. Treatment with ß-OHB exacerbated cardiomyocyte death and decreased glucose absorption and glycolysis under hypoxic conditions. These effects were partially ameliorated by inhibiting hypoxia-inducible factor 1α (HIF-1α) degradation via roxadustat administration in hypoxia-stimulated cardiomyocytes. Furthermore, ß-OHB metabolisms were obscured in cardiomyocytes under hypoxic conditions. Additionally, MI mice fed a KD exhibited exacerbated cardiac dysfunction compared with control chow diet (CD)-fed MI mice. CONCLUSION: Elevated ß-OHB levels may be maladaptive to the heart under hypoxic/ischemic conditions. Administration of roxadustat can partially reverse these harmful effects by stabilizing HIF-1α and inducing a metabolic shift toward glycolysis for energy production.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34674133

RESUMO

As an important working fluid in tight shale reservoir, supercritical CO2 has been proven to improve oil recovery efficiently. However, the high filtration caused by the low viscosity of pure supercritical CO2 hinders its development. The research objective of this investigation is to explore the filtration of supercritical CO2 with a branched siloxane (BTMT) as a CO2 thickener and filtration-reducing agent, and analyze the influence level of some parameters about rock core and chemicals on the CO2 filtration in the tight shale reservoir by using response surface method (RSM). The results demonstrate that the rising temperature causes a gradually increasing filtration, but filtration coefficient (f) decreases with increasing the pressure difference P, injection speed, and thickener concentration. The thickener concentration is the factor that causes the greatest change in filtration coefficient according to the response surface method, and the injection speed has the smallest effect on the filtration. The viscosity of fracturing fluid is the main characterization parameter leading to change of filtration coefficient, all factors that contribute to increasing the viscosity of the fracturing fluid will lead to a reduction in the filtration coefficient and an enhanced oil recovery. In addition, the adsorption and reservoir residue of BTMT on low-permeability shale were subordinated to a Langmuir monolayer theory, and a low residual of BTMT in shale can prevent thickeners and fracturing fluids from damaging shale reservoirs. The improvement of thickener and CO2 fracturing technology provided a basic reference for shale exploitation, greenhouse effect, and reservoir protection.

7.
Sci Rep ; 11(1): 20584, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663825

RESUMO

Gastric cancer (GC) is a common cancer and the leading cause of cancer-related death worldwide. To improve the diagnosis and treatment of GC, it is necessary to identify new biomarkers by investigating the cellular and molecular mechanisms. In this study, miR-30c-5p expression was significantly down-regulated in GC tissues by comprehensive analysis using multiple databases. The target genes of miR-30c-5p with up-regulated expression level in GC were identified, including ADAM12 (a disintegrin and metalloproteinase12), EDNRA (the Endothelin receptor type A), STC1 (stanniocalcin 1), and CPNE8 (the calcium-dependent protein, copine 8). The expression level of ADAM12 was significantly related to depth of invasion (p = 0.036) in GC patients. The expression level of EDNRA was significantly related to grade (P = 0.003), depth of invasion (P = 0.019), and lymphatic metastasis (P = 0.001). The expression level of CPNE8 was significantly related to grade (P = 0.043) and TNM stage (P = 0.027).Gene set enrichment analysis showed that they might participate in GC progression through cancer-related pathways. CIBERSORT algorithm analysis showed that their expressions were related to a variety of tumor-infiltrating immune cells. The higher expression of those target genes might be the independent risk factor for poor survival of GC patients, and they might be potential prognostic markers in GC patients.

8.
Pathogens ; 10(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34684224

RESUMO

Epstein-Barr virus (EBV) promotes tumor angiogenesis in nasopharyngeal carcinoma (NPC) by activating store-operated Ca2+ entry. Since such entry has been linked to stromal interaction molecule 1 (STIM1), we examined whether the virus acts via STIM1-dependent Ca2+ signaling to promote tumor angiogenesis in NPC. STIM1 expression was detected in NPC cell lines HK1 and CNE2 that were negative or positive for EBV. STIM1 was knocked down in EBV-positive cells using recombinant lentivirus, then cytosolic Ca2+ levels were measured based on fluorescence resonance energy transfer. Cells were also exposed to epidermal growth factor (EGF), and secretion of vascular endothelial growth factor (VEGF) was measured using an enzyme-linked immunosorbent assay. Endothelial tube formation was quantified in an in vitro angiogenesis assay. Growth of CNE2-EBV xenografts was measured in mice, and angiogenesis was assessed based on immunohistochemical staining against CD31. Paraffin-embedded NPC tissues from patients were assayed for CD31 and STIM1. EGFR and ERK signaling pathways were assessed in NPC cell lines. STIM1 expression was higher in EBV-positive than in EBV-negative NPC cell lines. STIM1 knockdown in EBV-positive NPC cells significantly reduced Ca2+ influx and VEGF production after EGF treatment. STIM1 knockdown also inhibited xenograft growth and angiogenesis. Moreover, CD31 expression level was higher in EBV-positive than EBV-negative NPC tissues, and high expression of CD31 co-localized with high expression of STIM1 in EBV-positive tissues from NPC patients. Viral infection of NPC cells led to higher levels of phosphorylated ERK1/2 after EGF treatment, which STIM1 knockdown partially reversed. Our results suggest that EBV promotes EGF-induced ERK1/2 signaling by activating STIM1-dependent Ca2+ signaling, and that blocking such signaling may inhibit EBV-promoted angiogenesis in NPC.

9.
Bioengineered ; 12(1): 7165-7177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34503377

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality. An increasing number of abnormal gene expressions were identified to be associated with the progression of HCC. Previous studies showed that the hsa-miR-30 c-5p (miR-30 c), one of the miR-30 family members, might play a role in suppressing tumor progression in a variety of tumors. The present study aims to examine miR-30 c effects in the development of HCC. The role of miR-30 c in HCC was comprehensively investigated by using bioinformatics and experiments in vitro. The multiple databases were combined to predict and screen the target genes and upstream lncRNAs of miR-30 c, and then constructed a competitive endogenous RNA (ceRNA) regulatory network with miR-30 c as the central miRNA. The miR-30 c-related ceRNA regulatory network was also initially validated in vitro. The results showed that miR-30 c over-expression could inhibit proliferation, migration, invasion, induce apoptosis, and increase G0/G1 phase ratio of HCC cells. Three miR-30 c upstream lncRNAs and 12 miR-30 c target genes were expressed in HCC cells with increased expression and poor prognosis, and a miR-30 C-related ceRNA regulatory network was constructed. This study verified miR-30 c as an inhibitory factor in the progression of HCC and performed analyses on the miR-30 c regulatory network, which might provide potential target information for HCC prognoses and therapies. However, further experiments in vivo and studies including clinical trials will be conducted to validate our results.

10.
Zool Res ; 42(6): 692-709, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581030

RESUMO

The Chinese tree shrew (Tupaia belangeri chinensis) is emerging as an important experimental animal in multiple fields of biomedical research. Comprehensive reference genome annotation for both mRNA and long non-coding RNA (lncRNA) is crucial for developing animal models using this species. In the current study, we collected a total of 234 high-quality RNA sequencing (RNA-seq) datasets and two long-read isoform sequencing (ISO-seq) datasets and improved the annotation of our previously assembled high-quality chromosome-level tree shrew genome. We obtained a total of 3 514 newly annotated coding genes and 50 576 lncRNA genes. We also characterized the tissue-specific expression patterns and alternative splicing patterns of mRNAs and lncRNAs and mapped the orthologous relationships among 11 mammalian species using the current annotated genome. We identified 144 tree shrew-specific gene families, including interleukin 6 (IL6) and STT3 oligosaccharyltransferase complex catalytic subunit B (STT3B), which underwent significant changes in size. Comparison of the overall expression patterns in tissues and pathways across four species (human, rhesus monkey, tree shrew, and mouse) indicated that tree shrews are more similar to primates than to mice at the tissue-transcriptome level. Notably, the newly annotated purine rich element binding protein A (PURA) gene and the STT3B gene family showed dysregulation upon viral infection. The updated version of the tree shrew genome annotation (KIZ version 3: TS_3.0) is available at http://www.treeshrewdb.org and provides an essential reference for basic and biomedical studies using tree shrew animal models.


Assuntos
Genoma , Análise de Sequência de RNA/veterinária , Tupaiidae/genética , Animais , Sequência de Bases , Isoformas de Proteínas , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Especificidade da Espécie
12.
Bioengineered ; 12(1): 5641-5654, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506251

RESUMO

To investigate the potential role of GXYLT2 (glucoside xylosyltransferase 2) in gastric cancer (GC), the TCGA (The Cancer Genome Atlas) database and Gene Expression Omnibus (GEO) dataset were used to evaluate GXYLT2 mRNA expression, and the standardized mean difference and diagnostic value were comprehensively assessed. Survival analysis and univariate/multivariate cox regression analysis were performed to evaluate the prognostic value of GXYLT2 in GC patients. The correlation between GXYLT2 and tumor immune cells was identified by using the CIBERSORT algorithm. The results showed that GXYLT2 expression level was significantly increased in GC tissues. GXYLT2 expression was significantly correlated with the grade, stage, and invasion depth of gastric cancer. Overall survival was reduced in the high GXYLT2 expression group. Univariate and multivariate Cox regression analyses showed that GXYLT2 was a reliable prognostic factor. GSEA showed that GXYLT2 might participate in the development of GC through tumor-related pathways. The expression of GXYLT2 was positively correlated with 5 tumor-infiltrating immune cells (resting dendritic cells, m2 macrophages, monocytes, active NK cells and resting mast cells), and was negatively correlated with 6 tumor-infiltrating immune cells (plasma cells, activated memory CD4 T cells, resting NK cells, activated dendritic cells, and activated neutrophils and mast cells). Through cell experiment verification, GXYLT2 expression level in gastric cancer cells was found to be high, which verified the results from the bioinformatics analysis. Furthermore, immunohistochemical staining results also showed that GC tissues had positive GXYLT2 expression. In summary, GXYLT2 might be a potential diagnostic and prognostic biomarker for gastric cancer.

13.
J Cancer ; 12(17): 5338-5344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335950

RESUMO

Background: Pancreatic cancer (PC) is one of the most aggressive and lethal malignancies in the world. High cholesterol intake may have a certain association with an elevated risk of PC, though dyslipidemia in PC patients has rarely been reported. In this study, we compared serum lipids levels between PC and non-PC tumor patients and assessed their prognostic value in PC. Methods: 271 patients treated at Wuhan Union Hospital from January 2012 to December 2016 and 204 individuals at Shanghai General Hospital from January 2018 to December 2019 were recruited. Their demographic parameters, laboratory data, pathological information, and clinical outcomes were extracted and analyzed. The mRNA expressions of related lipoprotein, low density lipoprotein receptor (LDLR) and high density lipoprotein binding protein (HDLBP), in PC tissues and paired noncancerous tissues and follow-up information were assessed based on the GEO database (GSE15471 and GSE62165) and TCGA database. Results: A total of 172 non-PC tumor patients and 260 PC patients were finally eligible for our analysis. PC patients exhibited higher levels of serum triglyceride, cholesterol, and low-density lipoprotein (LDL) and a lower serum high-density lipoprotein (HDL) level on admission versus the non-PC tumor group. In PC patients, LDLR mRNA expression was upregulated, and HDLBP mRNA expression was downregulated in cancerous tissues compared to these levels in paired noncancerous tissues. The survival analysis revealed that dyslipidemia had a non-significant association with a poor prognosis, but PC patients with a high LDLR level were at risk of poor survival. Conclusion: Dyslipidemia is detected in PC patients but has a non-significant relation to PC prognosis. However, LDLR may be a potential predictive marker for PC prognosis.

14.
ACS Nano ; 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34269058

RESUMO

Spatially controlled preparation of heterostructures composed of layered materials is important in achieving interesting properties. Although vapor-phased deposition methods can prepare vertical and lateral heterostructures, liquid-phased methods, which can enable scalable production and further solution processes, have shown limited controllability. Herein, we demonstrate by using wet chemical methods that metallic Sn0.5Mo0.5S2 nanosheets can be deposited epitaxially on the edges of semiconducting SnS2 nanoplates to form SnS2/Sn0.5Mo0.5S2 lateral heterostructures or coated on both the edges and basal surfaces of SnS2 to give SnS2@Sn0.5Mo0.5S2 core@shell heterostructures. They also showed good light-to-heat conversion ability due to the metallic property of Sn0.5Mo0.5S2. In particular, the core@shell heterostructure showed a higher photothermal conversion efficiency than the lateral counterpart, largely due to its randomly oriented and polycrystalline Sn0.5Mo0.5S2 layers with larger interfacing area for multiple internal light scattering.

15.
Cancer Lett ; 516: 64-72, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34089807

RESUMO

Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.

16.
Front Plant Sci ; 12: 663473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093621

RESUMO

Photosynthetic and photoprotective responses to simulated sunflecks were examined in the shade-demanding crop Amorphophallus xiei intercropped with maize (intercropping condition) or grown in an adjacent open site (monoculture condition). Both intercropping leaves and monoculture leaves exhibited very fast induction responses. The times taken to achieve 90% maximum net photosynthetic rate in intercropping leaves and monoculture leaves were 198.3 ± 27.4 s and 223.7 ± 20.5 s during the photosynthetic induction, respectively. During an 8-min simulated sunfleck, the proportion of excess excited energy dissipated through the xanthophyll cycle-dependent pathway (Φ NPQ) and dissipated through constitutive thermal dissipation and the fluorescence (Φ f, d) pathway increased quickly to its maximum, and then plateaued slowly to a steady state in both intercropping and monoculture leaves. When the illumination was gradually increased within photosystem II (PSII), Φ NPQ increased quicker and to a higher level in monoculture leaves than in intercropping leaves. Relative to their monoculture counterparts, intercropping leaves exhibited a significantly lower accumulation of oxygen free radicals, a significantly higher content of chlorophyll, and a similar content of malondialdehyde. Although monoculture leaves exhibited a larger mass-based pool size of xanthophyll cycle [V (violaxanthin) + A (antheraxanthin) + Z (zeaxanthin)] than intercropping leaves, intercropping leaves had a higher ratio of (Z + A)/(V + Z + A) than monoculture leaves. intercropping leaves had markedly higher glutathione content and ascorbate-peroxidase activity than their monoculture counterparts. Similar activities of catalase, peroxidase, dehydroascorbate reductase, and monodehydroascorbate were found in both systems. Only superoxide dismutase activity and ascorbate content were lower in the intercropping leaves than in their monoculture counterparts. Overall, the xanthophyll cycle-dependent energy dissipation and the enzymatic antioxidant defense system are important for protecting plants from photooxidation in an intercropping system with intense sunflecks.

18.
Cell Death Dis ; 12(4): 367, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824300

RESUMO

Gastrointestinal stromal tumors (GISTs) are common neoplasms of the gastrointestinal tract that can be treated successfully using C-kit target therapy and surgery; however, imatinib chemoresistance is a major barrier to success in therapy. The present study aimed to discover alternative pathways in imatinib-resistant GISTs. Long noncoding RNAs (lncRNAs) are newly discovered regulators of chemoresistance. Previously, we showed that the lncRNA HOTAIR was upregulated in recurrent GISTs. In this study, we analyzed differentially expressed lncRNAs after imatinib treatment and found that HOTAIR displayed the largest increase. The distribution of HOTAIR in GISTs was shifted from nucleus to cytoplasm after imatinib treatments. The expression of HOTAIR was validated as related to drug sensitivity through Cell Counting Kit-8 assays. Moreover, HOTAIR was associated strongly with cell autophagy and regulated drug sensitivity via autophagy. Mechanistically, HOTAIR correlated negatively with miRNA-130a in GISTs. The downregulation of miRNA-130a reversed HOTAIR-small interfering RNA-induced suppression of autophagy and imatinib sensitivity. We identified autophagy-related protein 2 homolog B (ATG2B) as a downstream target of miR-130a and HOTAIR. ATG2B downregulation reversed the effect of pEX-3-HOTAIR/miR-130a inhibitor on imatinib sensitivity. Finally, HOTAIR was shown to influence the autophagy and imatinib sensitivity of GIST cells in mouse tumor models. Our results suggested that HOTAIR targets the ATG2B inhibitor miR-130a to upregulate the level of cell autophagy so that promotes the imatinib resistance in GISTs.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Proteínas de Transporte Vesicular/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/genética , RNA Longo não Codificante/genética
19.
BMC Med Genomics ; 14(1): 82, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731094

RESUMO

BACKGROUND: Cryptic balanced translocations often evade detection by conventional cytogenetics. The preimplantation genetic testing (PGT) technique can be used to help carriers of balanced translocations give birth to healthy offspring; however, for carriers of cryptic balanced translocations, there is only one report about trying assisted reproduction using the PGT technique but with no pregnancy. CASE PRESENTATION: A couple had 3 births out of 4 pregnancies, and all died very young, with two of them having both cerebral palsy and glaucoma. The husband with oligoasthenospermia was found to be a cryptic balanced translocation carrier for t (9,13) (p24.3, q31.3) with G-banding, FISH (fluorescence in-situ hybridization), and MicroSeq techniques; live birth of a healthy baby girl was achieved with PGT/NGS (next-generation sequencing) for the couple. CONCLUSION: Here, we report for the first time a successful live birth of a healthy baby through the PGT technique for a family in which the husband is a carrier of the cryptic balanced translocation t (9,13) (p24.3, q31.3), presumably causative for cerebral palsy and glaucoma. Our study showed that the PGT/NGS technique can effectively help families with a cryptic balanced translocation have healthy offspring.


Assuntos
Paralisia Cerebral , Nascido Vivo , Adulto , Feminino , Testes Genéticos , Humanos , Gravidez , Diagnóstico Pré-Implantação
20.
Sci Rep ; 11(1): 6715, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762626

RESUMO

In recent years, global warming has become increasingly devastating, leading to severe consequences, such as extreme weather events and sea-level rise. To reduce carbon dioxide emissions, it is essential to recognize different emission sources and key driving factors. Three main carbon emission sources from the period between 1990 and 2017 were identified in China: the energy industry, fuel combustion in other industries, and industrial process. For each source, a driving force model was developed via multiple linear regression. Based on these models, forecasts of the carbon intensity and total CO2 emissions were obtained from 2018 to 2030. The results demonstrate that the CO2 emission intensity and total emissions will continue to decrease but more effort will be required to achieve the goal of Paris Agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...