Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Nat Commun ; 12(1): 2102, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833231

RESUMO

High myopia is a leading cause of blindness worldwide. Myopia progression may lead to pathological changes of lens and affect the outcome of lens surgery, but the underlying mechanism remains unclear. Here, we find an increased lens size in highly myopic eyes associated with up-regulation of ß/γ-crystallin expressions. Similar findings are replicated in two independent mouse models of high myopia. Mechanistic studies show that the transcription factor MAF plays an essential role in up-regulating ß/γ-crystallins in high myopia, by direct activation of the crystallin gene promoters and by activation of TGF-ß1-Smad signaling. Our results establish lens morphological and molecular changes as a characteristic feature of high myopia, and point to the dysregulation of the MAF-TGF-ß1-crystallin axis as an underlying mechanism, providing an insight for therapeutic interventions.


Assuntos
Cristalino/patologia , Fatores de Transcrição Maf/metabolismo , Miopia Degenerativa/patologia , Fator de Crescimento Transformador beta1/metabolismo , beta-Cristalinas/biossíntese , gama-Cristalinas/biossíntese , Animais , Feminino , Humanos , Cristalino/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Smad/metabolismo , Regulação para Cima/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-33860706

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Most patients die of respiratory failure within 3 years of onset. In this study, we reported a female Chinese ALS patient with SOD1 c.404G > C, p.S135T mutation. The missense mutation was identified as "Likely pathogenic" according to the ACMG/AMP 2015 guideline. The patient presented with weakness and atrophy of lower limbs with slow progression. We reviewed two other reports on patients with the same SOD1 p.S135T mutation. These patients had lower extremity onset, negative Babinski sign, slow disease progression, and prolonged survival. This report indicates that specific phenotype-genotype correlations of SOD1 p.S135T mutation in ALS.

3.
J Ultrasound Med ; 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33797767

RESUMO

Point-of-care ultrasound (POCUS) is becoming an essential skill for internists. To date, there are no professional guidelines for how POCUS skills should be taught to medical students. A panel of POCUS experts from seven academic medical centers in the United States was convened to describe the components of independently developed IM clerkship POCUS training programs, identify areas of similarity and difference, and propose recommendations for alignment.

4.
J Int Med Res ; 49(3): 300060521992962, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33750234

RESUMO

OBJECTIVE: To evaluate the performance of a DNA methylation-based digital droplet polymerase chain reaction (ddPCR) assay to detect aberrant DNA methylation in cell-free DNA (cfDNA) and to determine its application in the detection of hepatocellular carcinoma (HCC). METHODS: The present study recruited patients with liver-related diseases and healthy control subjects. Blood samples were used for the extraction of cfDNA, which was then bisulfite converted and the extent of DNA methylation quantified using a ddPCR platform. RESULTS: A total of 97 patients with HCC, 80 healthy control subjects and 46 patients with chronic hepatitis B/C virus infection were enrolled in the study. The level of cfDNA in the HCC group was significantly higher than that in the healthy control group. For the detection of HCC, based on a cut-off value of 15.7% for the cfDNA methylation ratio, the sensitivity and specificity were 78.57% and 89.38%, respectively. The diagnostic accuracy was 85.27%, the positive predictive value was 81.91% and the negative predictive value was 87.20%. The positive likelihood ratio of 15.7% in HCC diagnosis was 7.40, while the negative likelihood ratio was 0.24. CONCLUSIONS: A sensitive methylation-based assay might serve as a liquid biopsy test for diagnosing HCC.

5.
Reproduction ; 161(5): 549-559, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33730691

RESUMO

Oocyte vitrification has significantly improved the survival rate and become the mainstream method for cryopreserving oocytes. Previous studies have demonstrated that the ultrastructure, mitochondrial function, DNA methylation, and histone modification exhibit an irreversible effect after oocyte vitrification. However, little is known about the effects of oocyte vitrification on glucose transport and metabolism. This study aims to determine whether mouse oocyte vitrification causes abnormal glucose metabolism and identify a strategy to correct abnormal glucose metabolism. Furthermore, this study further investigates the effects of oocyte vitrification on glucose uptake, and glucose metabolism, and energy levels. The results indicated that vitrification significantly reduced the glucose transport activity, NADPH, glutathione, and ATP levels, and increased reactive oxygen species levels in oocytes (P < 0.01). Vitrification also reduced the expression of glucose transporter isoform 1 (GLUT1) (P < 0.01). Adding a GLUT1 inhibitor reduced the glucose uptake capacity of oocytes. Furthermore, the inclusion of vitamin C into thawing and culture solutions restored abnormal glucose transportation and metabolism and improved the survival, two-cell embryo, and blastocyst rates of the vitrified groups via parthenogenesis (P < 0.05). Overall, this method may improve the quality and efficiency of oocyte vitrification.

6.
J Microbiol Biotechnol ; 31(4): 570-583, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33753701

RESUMO

Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100°C), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90°C for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.

7.
BMC Neurol ; 21(1): 109, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750325

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD), a group of autoimmune neurological diseases, involve the optic nerve, spinal cord, and brain. Meningitis is rarely reported as the primary clinical manifestation of both anti-aquaporin-4 (AQP4)/ anti-myelin oligodendrocyte glycoprotein (MOG) antibody-negative NMOSD (NMOSDneg). CASE PRESENTATION: A 30-year-old man initially presented with fever, headache, and neck stiffness. Lumbar puncture revealed mixed cell reaction and decreased glucose levels. As a result, tuberculous meningitis was suspected. After 1 month, the patient developed longitudinally extensive transverse myelitis and area postrema syndrome. This was followed by the presentation of meningitis-like symptoms once again in the third attack, but his condition eventually improved after corticosteroid treatment without relapse for 2 years. However, he was readmitted to our hospital owing to symptoms of diplopia, hiccup, and numbness in the right hand. Brain magnetic resonance imaging (MRI) revealed that the area postrema still contained lesions. Spinal MRI revealed several segmental enhancements at the C4-C5, T1, and T5 levels. Anti-AQP4 and anti-MOG antibodies were persistently absent in the serum and cerebrospinal fluid (CSF). The patient was finally diagnosed with NMOSDneg. CONCLUSIONS: Meningitis could be a recurrent manifestation of NMOSDneg and requires more careful evaluation.

8.
Signal Transduct Target Ther ; 6(1): 114, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686059

RESUMO

Since the first description of a coronavirus-related pneumonia outbreak in December 2019, the virus SARS-CoV-2 that causes the infection/disease (COVID-19) has evolved into a pandemic, and as of today, >100 million people globally in over 210 countries have been confirmed to have been infected and two million people have died of COVID-19. This brief review summarized what we have hitherto learned in the following areas: epidemiology, virology, and pathogenesis, diagnosis, use of artificial intelligence in assisting diagnosis, treatment, and vaccine development. As there are a number of parallel developments in each of these areas and some of the development and deployment were at unprecedented speed, we also provided some specific dates for certain development and milestones so that the readers can appreciate the timing of some of these critical events. Of note is the fact that there are diagnostics, antiviral drugs, and vaccines developed and approved by a regulatory within 1 year after the virus was discovered. As a number of developments were conducted in parallel, we also provided the specific dates of a number of critical events so that readers can appreciate the evolution of these research data and our understanding. The world is working together to combat this pandemic. This review also highlights the research and development directions in these areas that will evolve rapidly in the near future.


Assuntos
Inteligência Artificial , Diagnóstico por Computador , Pandemias , /diagnóstico , /patologia , Humanos
9.
Clin Nutr ; 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33579553

RESUMO

BACKGROUND & AIMS: The Global Leadership Initiative on Malnutrition (GLIM) released new universal criteria for diagnosing and grading malnutrition, and calls for further investigations not only in different clinical setting but also in GLIM itself including reference value, combination and weight of different GLIM criteria. This study aimed to weigh the GLIM criteria and develop a scored-GLIM system, and then validate as well as evaluate its application in nutritional assessment and survival prediction for patients with cancer. DESIGN: A total of 3547 patients in the primary cohort and 415 patients in the validation cohort were included in the study. Patients' nutritional status were retrospectively assessed using the GLIM criteria. Kaplan-Meier survival curves and multivariate Cox regression analyses were performed to analyze the association between nutritional status and overall survival (OS). A nomogram was produced to quantify the GLIM criteria and develop the scored-GLIM system. C-index, receiver operating characteristic (ROC) curve and calibration curve analyses were performed to validate the predictive accuracy and discriminatory capacity of the scored-GLIM. Finally, a decision curve was applied to assess the clinical utility of the scored-GLIM system. RESULTS: In the primary cohort, 70.3% of patients were diagnosed as malnutrition. The malnutrition severity grading according to the GLIM criteria were associated with the prognosis of patients with cancer (HR 1.42, 1.23 to 1.65 for moderate malnutrition; HR 1.80,1.84 to 2.09 for severe malnutrition). The weight of each GLIM criteria was calculated, and unintentional weight loss was the most determining factor acting upon mortality (HR 1.82, 1.64 to 2.10 for stage II and HR 1.50, 1.31 to 1.73 for stage I). A nomogram was constructed by four factors of GLIM to weigh the GLIM criteria. The areas under the ROC curve were 65.3 (1-year ROC) and 65.5 (3-year ROC), and the C-index was 0.62, and the calibration curves fitted well. Decision curve analysis demonstrated the clinical usefulness of the scored-GLIM system. CONCLUSION: The accuracy and net clinical benefit of scored-GLIM system were similar to scored-PG-SGA but higher than GLIM both in nutrition assessment and in survival prediction for patients with cancer. These findings, along with its time-savings advantages over scored-PG-SGA, suggest scored-GLIM be a better nutritional assessment tool.

10.
Sci Adv ; 7(6)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33547078

RESUMO

Spatial patterning is a fascinating theme in both theoretical and experimental ecology. It reveals resilience and stability to withstand external disturbances and environmental stresses. However, existing studies mainly focus on well-developed persistent patterns rather than transient patterns in self-organizing ecosystems. Here, combining models and experimental evidence, we show that transient fairy circle patterns in intertidal salt marshes can both infer the underlying ecological mechanisms and provide a measure of resilience. The models based on sulfide accumulation and nutrient depletion mechanisms reproduced the field-observed fairy circles, providing a generalized perspective on the emergence of transient patterns in salt marsh ecosystems. Field experiments showed that nitrogen fertilization mitigates depletion stress and shifts plant growth from negative to positive in the center of patches. Hence, nutrient depletion plays an overriding role, as only this process can explain the concentric rings. Our findings imply that the emergence of transient patterns can identify the ecological processes underlying pattern formation and the factors determining the ecological resilience of salt marsh ecosystems.

11.
Sensors (Basel) ; 21(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401744

RESUMO

The purpose of this paper was to investigate the effect of a training state-of-the-art convolution neural network (CNN) for millimeter-wave radar-based hand gesture recognition (MR-HGR). Focusing on the small training dataset problem in MR-HGR, this paper first proposed to transfer the knowledge with the CNN models in computer vision to MR-HGR by fine-tuning the models with radar data samples. Meanwhile, for the different data modality in MR-HGR, a parameterized representation of temporal space-velocity (TSV) spectrogram was proposed as an integrated data modality of the time-evolving hand gesture features in the radar echo signals. The TSV spectrograms representing six common gestures in human-computer interaction (HCI) from nine volunteers were used as the data samples in the experiment. The evaluated models included ResNet with 50, 101, and 152 layers, DenseNet with 121, 161 and 169 layers, as well as light-weight MobileNet V2 and ShuffleNet V2, mostly proposed by many latest publications. In the experiment, not only self-testing (ST), but also more persuasive cross-testing (CT), were implemented to evaluate whether the fine-tuned models generalize to the radar data samples. The CT results show that the best fine-tuned models can reach to an average accuracy higher than 93% with a comparable ST average accuracy almost 100%. Moreover, in order to alleviate the problem caused by private gesture habits, an auxiliary test was performed by augmenting four shots of the gestures with the heaviest misclassifications into the training set. This enriching test is similar with the scenario that a tablet reacts to a new user. The results of two different volunteer in the enriching test shows that the average accuracy of the enriched gesture can be improved from 55.59% and 65.58% to 90.66% and 95.95% respectively. Compared with some baseline work in MR-HGR, the investigation by this paper can be beneficial in promoting MR-HGR in future industry applications and consumer electronic design.


Assuntos
Gestos , Radar , Algoritmos , Feminino , Mãos , Humanos , Masculino , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Adulto Jovem
12.
Theranostics ; 11(1): 164-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391468

RESUMO

Atherosclerosis (AS), the underlying cause of most cardiovascular events, is one of the most common causes of human morbidity and mortality worldwide due to the lack of an efficient strategy for targeted therapy. In this work, we aimed to develop an ideal biomimetic nanoparticle for targeted AS therapy. Methods: Based on macrophage "homing" into atherosclerotic lesions and cell membrane coating nanotechnology, biomimetic nanoparticles (MM/RAPNPs) were fabricated with a macrophage membrane (MM) coating on the surface of rapamycin-loaded poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (RAPNPs). Subsequently, the physical properties of the MM/RAPNPs were characterized. The biocompatibility and biological functions of MM/RAPNPs were determined in vitro. Finally, in AS mouse models, the targeting characteristics, therapeutic efficacy and safety of the MM/RAPNPs were examined. Results: The advanced MM/RAPNPs demonstrated good biocompatibility. Due to the MM coating, the nanoparticles effectively inhibited the phagocytosis by macrophages and targeted activated endothelial cells in vitro. In addition, MM-coated nanoparticles effectively targeted and accumulated in atherosclerotic lesions in vivo. After a 4-week treatment program, MM/RAPNPs were shown to significantly delay the progression of AS. Furthermore, MM/RAPNPs displayed favorable safety performance after long-term administration. Conclusion: These results demonstrate that MM/RAPNPs could efficiently and safely inhibit the progression of AS. These biomimetic nanoparticles may be potential drug delivery systems for safe and effective anti-AS applications.

13.
Nat Commun ; 12(1): 420, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462242

RESUMO

Adult stem cell identity, plasticity, and homeostasis are precisely orchestrated by lineage-restricted epigenetic and transcriptional regulatory networks. Here, by integrating super-enhancer and chromatin accessibility landscapes, we delineate core transcription regulatory circuitries (CRCs) of limbal stem/progenitor cells (LSCs) and find that RUNX1 and SMAD3 are required for maintenance of corneal epithelial identity and homeostasis. RUNX1 or SMAD3 depletion inhibits PAX6 and induces LSCs to differentiate into epidermal-like epithelial cells. RUNX1, PAX6, and SMAD3 (RPS) interact with each other and synergistically establish a CRC to govern the lineage-specific cis-regulatory atlas. Moreover, RUNX1 shapes LSC chromatin architecture via modulating H3K27ac deposition. Disturbance of RPS cooperation results in cell identity switching and dysfunction of the corneal epithelium, which is strongly linked to various human corneal diseases. Our work highlights CRC TF cooperativity for establishment of stem cell identity and lineage commitment, and provides comprehensive regulatory principles for human stratified epithelial homeostasis and pathogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Plasticidade Celular/genética , Doenças da Córnea/patologia , Epitélio Anterior/fisiologia , Redes Reguladoras de Genes/fisiologia , Adolescente , Adulto , Idoso , Linhagem da Célula/genética , Células Cultivadas , Criança , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Doenças da Córnea/genética , Epitélio Anterior/citologia , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Limbo da Córnea/citologia , Masculino , Pessoa de Meia-Idade , Fator de Transcrição PAX6/metabolismo , Cultura Primária de Células , RNA-Seq , Proteína Smad3/genética , Proteína Smad3/metabolismo
14.
Biomaterials ; 267: 120462, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33129190

RESUMO

Ocular surface diseases including conjunctival disorders are multifactorial progressive conditions that can severely affect vision and quality of life. In recent years, stem cell therapies based on conjunctival stem cells (CjSCs) have become a potential solution for treating ocular surface diseases. However, neither an efficient culture of CjSCs nor the development of a minimally invasive ocular surface CjSC transplantation therapy has been reported. Here, we developed a robust in vitro expansion method for primary rabbit-derived CjSCs and applied digital light processing (DLP)-based bioprinting to produce CjSC-loaded hydrogel micro-constructs for injectable delivery. Expansion medium containing small molecule cocktail generated fast dividing and highly homogenous CjSCs for more than 10 passages in feeder-free culture. Bioprinted hydrogel micro-constructs with tunable mechanical properties enabled the 3D culture of CjSCs while supporting viability, stem cell phenotype, and differentiation potency into conjunctival goblet cells. These hydrogel micro-constructs were well-suited for scalable dynamic suspension culture of CjSCs and were successfully delivered to the bulbar conjunctival epithelium via minimally invasive subconjunctival injection. This work integrates novel cell culture strategies with bioprinting to develop a clinically relevant injectable-delivery approach for CjSCs towards the stem cell therapies for the treatment of ocular surface diseases.

15.
Food Res Int ; 138(Pt B): 109818, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33288190

RESUMO

This study aimed to compare the prebiotic effects of oat ß-glucan between steaming and microwave processing by high-throughput sequencing. The results showed that microwave-processed oat ß-glucan with lower average molecular weight (Mw) exhibited a more significant effect in promoting Lactobacillus and Bifidobacterium compared with steaming processed oat ß-glucan with higher Mw at the genus level. The overall microbial composition structure results indicated that the relative abundance of Escherichia-Shigella, Lactobacillus, Enterococcus, and Dialister exhibited significant differences between the samples (p < 0.05). Additionally, the short-chain fatty acid in microwave-processed oat ß-glucan fermentation slurries significantly increased (p < 0.05), and more butyrate was produced from microwave-processed oat ß-glucan, which may be attributed to the higher levels of Blautia and Dialister as butyrate-producers. These results suggest that microwave processing contributed to the degradation of oat ß-glucan and enhanced its prebiotic function.

16.
Cell Death Dis ; 11(11): 1022, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257647

RESUMO

ZD55-IL-24 is similar but superior to the oncolytic adenovirus ONYX-015, yet the exact mechanism underlying the observed therapeutic effect is still not well understood. Here we sought to elucidate the underlying antitumor mechanism of ZD55-IL-24 in both immunocompetent and immunocompromised mouse model. We find that ZD55-IL-24 eradicates established melanoma in B16-bearing immunocompetent mouse model not through the classic direct killing pathway, but mainly through the indirect pathway of inducing systemic antitumor immunity. Inconsistent with the current prevailing view, our further results suggest that ZD55-IL-24 can induce antitumor immunity in B16-bearing immunocompetent mouse model in fact not due to its ability to lyse tumor cells and release the essential elements, such as tumor-associated antigens (TAAs), but due to its ability to put a "nonself" label in tumor cells and then turn the tumor cells from the "self" state into the "nonself" state without tumor cell death. The observed anti-melanoma efficacy of ZD55-IL-24 in B16-bearing immunocompetent mouse model was practically caused only by the viral vector. In addition, we also notice that ZD55-IL-24 can inhibit tumor growth in B16-bearing immunocompetent mouse model through inhibiting angiogenesis, despite it plays only a minor role. In contrast to B16-bearing immunocompetent mouse model, ZD55-IL-24 eliminates established melanoma in A375-bearing immunocompromised mouse model mainly through the classic direct killing pathway, but not through the antitumor immunity pathway and anti-angiogenesis pathway. These findings let us know ZD55-IL-24 more comprehensive and profound, and provide a sounder theoretical foundation for its future modification and drug development.

17.
Front Microbiol ; 11: 561002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304322

RESUMO

Bacterial biofilms are believed to be principal virulence factors for many localized chronic infectious diseases. Escherichia coli is one of the most common microbial pathogens and frequently causes biofilm-associated opportunistic infections, such as diarrhea, endometritis and mastitis. Cinnamomum camphora essential oil (CCEO) has shown potential in treating intractable chronic endometritis in dairy cows. There is little scientific evidence regarding the effect of CCEO on bacterial biofilms. The objective of this study was to investigate the effect of CCEO on E. coli biofilm formation and how CCEO affects E. coli in suspension and in a biofilm. CCEO killed all clinical E. coli strains in either planktonic or biofilm state isolated from dairy cows with clinical endometritis. The minimum inhibitory concentration (MIC) for 90% of the organisms was 4.297 µL/mL, the minimum bactericidal concentration for 90% of the organisms was 6.378 µL/mL, the minimum biofilm inhibitory concentration for 90% of the organisms was 6.850 µL/mL, and the minimum biofilm eradication concentration (MBEC) for 90% of the organisms was 8.467 µL/mL. The MBECs were generally two times higher than the MICs. Flow cytometry analysis confirmed that significant bacterial killing occurred during the first 1 h after exposure to subinhibitory concentrations of CCEO. In addition, CCEO exerted a significant inhibitory effect on E. coli biofilm formation, and bacterial killing occurred during the first 30 min of exposure to subinhibitory biofilm concentrations of CCEO. The biofilm yield of E. coli was significantly reduced after CCEO treatment, along with an increased dead/live microbial ratio in biofilms compared with that in the non-treated control, as confirmed by scanning electron microscopy images and confocal laser scanning microscopy images. These data revealed that CCEO efficiently kills E. coli during planktonic growth and biofilm formation.

18.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3461-3472, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33314836

RESUMO

In order to deal with the frequent seasonal drought and improve water use efficiency and crop photosynthetic efficiency in drylands of southwest China, a field experiment was conducted to investigate the effects of different mulching materials (common white film, common black film, biodegradable film and no film) and ridge-to-furrow ratios (40 cm:40 cm and 40 cm:80 cm) on soil water storage, as well as photosynthetic characteristics, fluorescence parameters and chlorophyll relative content (SPAD) of rapeseed, with the flat planting as the control. The results showed that the average soil water storage under different mulching materials followed the order: ridge with common black film (BR) ≈ ridge with common white film (WR) ≈ ridge with biodegradable film (BDR) > ridge with no film (NR) > flat planting (FP). Meanwhile, ridge-to-furrow ratios did not affect soil water storage. The net photosynthetic rate, stomatal conductance and fluorescence para-meters (Fm, Fv, Fv/Fm, Fv/Fo, qP and qN) of rapeseed under ridge-furrow with film mulching was higher than those under flat planting. Compared with control, SPAD value was improved by 6.1%, 8.6%, 8.5% and 3.6% under WR, BR, BDR and NR, while instantaneous water use efficiency (IWUE) was increased by 18.3%, 11.4%, 16.3% and 10.4% under those treatments, respectively. Rapeseed yield under BR, WR and BDR was significantly higher than that in control, while NR did not increase yield. The treatment of ridge with common black film + 40 cm:40 cm as ridge-to-furrow ratio could gain the highest economic benefit. Ridge-furrow planting of rainfall harvesting could improve soil moisture, increase crop photosynthetic capacity, and raise yield and economic income in rapeseed fields in drylands of southwest China.


Assuntos
Brassica napus , Solo , Agricultura , China , Fotossíntese , Água/análise
19.
Front Plant Sci ; 11: 571138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193504

RESUMO

Soybean is grown worldwide for oil and protein source as food, feed and industrial raw material for biofuel. Steady increase in soybean production in the past century mainly attributes to genetic mediation including hybridization, mutagenesis and transgenesis. However, genetic resource limitation and intricate social issues in use of transgenic technology impede soybean improvement to meet rapid increases in global demand for soybean products. New approaches in genomics and development of site-specific nucleases (SSNs) based genome editing technologies have expanded soybean genetic variations in its germplasm and have potential to make precise modification of genes controlling the important agronomic traits in an elite background. ZFNs, TALENS and CRISPR/Cas9 have been adapted in soybean improvement for targeted deletions, additions, replacements and corrections in the genome. The availability of reference genome assembly and genomic resources increases feasibility in using current genome editing technologies and their new development. This review summarizes the status of genome editing in soybean improvement and future directions in this field.

20.
BMC Surg ; 20(1): 219, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008382

RESUMO

BACKGROUND: The prognostic significance of peripheral blood-derived inflammation markers in patients with gastric cancer (GC) has not been elucidated. This study aimed to investigate the relationship between systemic inflammatory markers and GC prognosis. METHODS: A prospective observational cohort study involving 598 patients was conducted to analyze the prognosis of GC based on systemic inflammatory markers. The following peripheral blood-derived inflammation markers were evaluated: the neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), systemic immune-inflammation index (SII), C-reactive protein/albumin (CRP/Alb) ratio, Glasgow Prognostic Score (GPS), modified Glasgow Prognostic Score (mGPS), prognostic nutrition index (PNI), and prognostic index (PI). The receiver operating characteristics (ROC) curve and the Youden index were used to determine the optimal cutoff values. Univariate and multivariate analysis of prognostic factors was conducted accordingly. RESULTS: The optimal cutoff values of the PNI, fibrinogen, NLR, PLR, SII, and CRP/Alb were 49.5, 397 ng/dl, 2.5, 154, 556, and 0.05, respectively. Multivariate analysis showed that age, PLR, TNM stage, and chemotherapy were the independent prognostic factors for advanced gastric cancer (AGC). Adjuvant chemotherapy improved the long-term prognosis of patients with PLR ≥154, but chemotherapy had no significant effect on the survival of patients with PLR < 154. CONCLUSIONS: Our findings show that higher PLR (≥154) is an independent risk factor for poor prognosis in GC patients. Besides, PLR can predict adjuvant chemotherapy (oxaliplatin/5-fluorouracil combination) response in patients with GC after surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...