Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.766
Filtrar
1.
J Hazard Mater ; 382: 121113, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479827

RESUMO

Copper ion (Cu (II)) pollution has attracted much attention due to its remarkable toxic domino effect at excess amount. Efficient Cu (II) ions removal is thus a prerequisite for wastewater recycling. Herein, we present a facile and environmentally benign strategy to fabricate thiol (SH)-functionalized Fe3O4@C nanoparticles (denoted as Fe3O4@C-SH NPs) based on one-step self-assembling of a bifunctional oligopeptide with a sequence of Cys-Lys-Cys-Lys-Cys-Lys (CK-VI) for highly efficient removal of copper ions (Cu (II)) in aqueous solutions. Under the physiological conditions, CK-VI readily self-organized into a robust and tailor-made functional monolayer predominately composed of well-packed ß-sheets on the surface of Fe3O4@C NPs with their thiol groups standing on the outermost layer. The resulting Fe3O4@C-SH NPs containing abundant thiol active sites exhibited excellent adsorption capacity (up to 28.8 mg g-1) and selectivity for Cu (II) ions over coexisting ions. Compared with other covalent grafting methods with multistep processes and in harsh conditions, the proposed oligopeptides assembly-based coating method makes it possible to rapidly fabricate the Fe3O4@C-SH NPs in a simple mild one-step aqueous process with low cost. The current study provides facile and environmentally friendly approaches to rapidly tailor multifunctional surfaces of NPs for various toxic metal ions removal from wastewater.

2.
J Hazard Mater ; 382: 121107, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493742

RESUMO

Cu(II)-EDTA is highly stable in a wide pH range (3.0∼12.0) and hard to be removed by the conventional precipitation method. Fe(III) displacement/UV photolysis/alkaline precipitation [Fe(III)/UV/NaOH] has been proposed as a promising method for the removal of Cu(II)-EDTA. Nevertheless, a high dose of Fe(III) is needed in this combined process, resulting in the production of a large amount of hazardous sludge. The photochemistry of Fe(III) is known to be ligand-dependent. Fe(III)-oxalate complexes are strongly photoactive. However, the addition of oxalic acid to the Fe(III)/UV/NaOH process was of little help. Acetylacetone (AA) is a good chelating ligand for many metals and has been proved as an efficient photo-activator. By introducing a low dose of AA ([AA]/[Cu] = 1.5) into the Fe(III)/UV/NaOH process, the Fe(III) dosage ([Fe]/[Cu]) was reduced from 10.4 to 3.2. As a result, the chemical cost was reduced from 13.9 to 7.6 kW h/m3. Meanwhile, the energy cost in the UV photolysis was reduced from 1066.5 to 752.4 kW h/m3. Most importantly, the sludge yields were reduced from 8.3 to 2.7 kg/m3 in a simulated wastewater and from 101.8 to 30.8 kg/m3 in a real electroplating wastewater. Such a sludge reduction is of great significance in mitigating the load of landfill.

3.
J Ethnopharmacol ; 247: 112201, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31499140

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bergenin is a well-known active compound that exhibits antioxidant, antiarrhythmic, hepatoprotective, and anti-inflammatory activities. However, the resource reserve of Rodgersia sambucifolia, one of the main raw materials for extracting bergenin, have sharply declined, and the bergenin content in different germplasms differs vastly, resulting in a serious shortage of the market supply of bergenin. AIM OF THE STUDY: To investigate the influence of genetic diversity and environmental factors on bergenin content in Rodgersia sambucifolia. MATERIALS AND METHODS: Fifty Rodgersia sambucifolia samples with a growth period of 2-3 years were collected from different areas across China and the bergenin content was determined via HPLC. Meanwhile the total genomic DNA was extracted and ISSR was performed. The bergenin content as measured using HPLC and the environmental data gathered from the meteorological stations and field work were combined and analyzed using correlation tests in XLSTAT 2018 to detect the key factors affecting bergenin content. The genetic UPGMA tree constructed based on genetic distances of the 50 samples and the chemical dendrogram constructed according to the distance between the bergenin content were compared to determine the correlation between genetic and chemical differentiation. RESULTS: Among the 50 individuals, bergenin content varied from 2.83 to 12.54%, with the highest content being 4.43-fold that of the lowest content. The survey of the 50 individuals produced a total of 193 amplified bands, 187 of which were polymorphic (96.89%). In the study, bergenin content was positively correlated with annual mean temperature (AMT) (r = 0.583, P < 0.0001) and 1-12 month monthly mean temperature (MMT) (P < 0.0001). A comparison of the genetic dendrogram with the AHC dendrogram found no corresponding relationship between them. Mantel correlation analyses also showed that there was no significant correlation between them (r = 0.144). CONCLUSIONS: There were large differences in bergenin content among different germplasms that were not correlated with the high genetic variation in Rodgersia sambucifolia but were significantly correlated with environmental factors, such as temperature. This study lays the foundation for subsequent superior germplasm selection and artificial breeding of Rodgersia sambucifolia to improve the bergenin content and meet market demands.

4.
J Pharm Biomed Anal ; 177: 112846, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31522097

RESUMO

The ß-lactam core is a key structure responsible for inducing both IgE-mediated acute-onset hypersensitivity and T-cell-mediated delayed-onset hypersensitivity with penicillins in humans. There is essentially no clinically significant immunologic cross-reactivity noted between the ß-lactam cores of penicillins and cephalosporins based on challenge studies in humans. The side-chains appear to be more important in inducing IgE-mediated acute-onset hypersensitivity and T-cell delayed-onset hypersensitivity with cephalosporins in humans. Despite these clinical findings, the U. S. Food and Drug Administration (FDA) still requires the level of ß-lactam-related antibiotic residues to be controlled at very low levels in manufacturing facilities. Ceftolozane is Merck & Co., Inc., Kenilworth, NJ, USA's (MSD's) 5th generation broad spectrum cephalosporin antibiotic against gram-negative bacteria. In searching for the optimal decontamination method of ceftolozane, most methods were found to be very slow in opening the ß-lactam ring in ceftolozane. Moreover, most of the previously reported decontamination methods applied analytical methods that only monitored the disappearance of the parent molecule as the endpoint of degradation. In this way, many of the ß-lactam-containing degradation products could be overlooked. In order to develop an efficient decontamination solution for ceftolozane, a sensitive ultra high performance liquid chromatography-high resolution-electrospray ionization-tandem mass spectrometry (UHPLC-HRMS/MS) method was first developed to ensure the detection of the ß-lactam ring in all degradation products. Through online UHPLC-UV-HRMS monitoring, 2.5 N KOH in 50% aqueous MeOH or 50% aqueous EtOH was identified as the best condition to fully degrade the ß-lactam ring in ceftolozane. This decontamination could be done within 15 min, even at 100 mg/mL concentration, and thus enable a quick turnaround time for equipment cleaning in the ß-lactam manufacturing facility. This method was also successfully applied to 12 other commercially available ß-lactam antibiotics.

5.
Nanotechnology ; 31(2): 02LT01, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31550691

RESUMO

Self-catalyzed metal organic chemical vapor deposition (MOCVD) growth of Ga2O3 nanowires on GaN layers prepared on a sapphire substrate has been studied. Nanowire orientations are found to be growth temperature dominated. The vertical yields over total (VOT) curve shows a maximum peak beyond 70% around 480 °C, based on scanning electron microscope observations. X-ray diffraction patterns revealed a primary ß-(-201) normal orientation of as grown nanowires all over the studied temperature interval. Further transmission electron microscopy characterization had confirmed ß-(-201) normal axial orientation of these vertical nanowires, which have well crystallinity. The ß-(010)//GaN(110) in-plane epitaxial relationship is consistent with reported Ga2O3 film/nanowire growth. Nanowires crystallized in ß-[001] axial orientation were considered to be the inclined ones. Based on contrast experiments, the temperature dominated growth behavior is considered a thermodynamic process. The two observed crystalline orientation might have distinguishable but similar system energy, which results in coexistence of multi orientation nanowires over a large temperature span and an optimum temperature window for vertical ß-(-201) normal orientation. The presented optimized ß-Ga2O3 nanowire arrays with highest VOT close to 90% should effectively promote development of reliable high performance devices based on Ga2O3 nanowires.

6.
Toxicol Lett ; 318: 12-21, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31622651

RESUMO

Maternal smoking during pregnancy and lactation is associated with increased fat mass in the offspring, but the mechanism by which this occurs is not fully understood. Our study focused on the relationships among maternal nicotine exposure, adipose angiogenesis and adipose tissue function in female offspring. Pregnant rats were randomly assigned to nicotine or control groups. Microvascular density, lipid metabolism and α7nAChR-Egr1-FGF2 signaling pathway genes/proteins were tested in 4-, 12- and 26-week female offspring. In vitro, nicotine concentration- and time-response experiments were conducted in 3T3-L1. Lipid metabolism and α7nAChR-Egr1-FGF2 signaling pathway genes/proteins were tested. The conditioned media of differentiated 3T3-L1 treated with nicotine were used to observe tube formation in human umbilical vein endothelial cells (HUVECs). Nicotine-exposed females presented higher adipose microvascular density. The gene expression of α7nAChR, Egr1 and FGF2 was significantly increased in gonadal white adipose tissue (gWAT) and inguinal subcutaneous WAT (igSWAT) of nicotine-exposed females at 4 weeks of age. The protein expression of α7nAChR, Egr1 and FGF2 was increased in gWAT and igSWAT of nicotine-exposed females at 4 weeks of age, and increased in gWAT at 26 weeks. In vitro, nicotine increased the expression of lipid metabolism and α7nAChR-Egr1-FGF2 signaling pathway genes/proteins in a concentration- and time-dependent manner. In the tube formation experiment, adipocytes affected by nicotine promoted HUVEC angiogenesis. Therefore, maternal nicotine exposure promoted the early angiogenesis of adipose tissue via the α7nAChR-Egr1-FGF2 signaling pathway, and this angiogenesis mechanism was associated with increased adipogenesis in adipose tissue of female offspring.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Exposição Materna , Camundongos , Gravidez , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
7.
Int J Cancer ; 146(1): 103-114, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199508

RESUMO

Next-generation sequencing of cell-free circulating DNA (cfDNA) has emerged as promising technique for identifying minimally invasive genomic profiling of tumor cells recently. However, it remains relatively unknown in LAM disease. In our study, paired cfDNA and genomic DNA (gDNA) in blood samples were obtained from 23 LAM patients and seven healthy controls to explore mutations profiles of targeted 70 cancer-related genes. As results, log2-based allele frequencies of mutations in cfDNA were significantly different from those of gDNA. By comparing the mutual mutations identified both in cfDNA and gDNA, a significant correlation was also observed. After removing mutations in gDNA, distinct somatic mutation profiles of cfDNA were observed in LAM patients. Forty of 70 targeted genes had recurrent mutations, of which ATM, BRCA2 and APC showed the highest frequency. Based on the mutation, correlation network constructed of 40 mutated genes, 11 hub genes bearing intensive interactions were highlighted, including BRCA1, BRCA2, RAD50, RB1, NF1, APC, MLH3, ATM, PDGFRA, PALB2 and BLM. Expression of the hub genes showed significant clusters between LAM patients and controls and that RAD50 and BRCA2 had the strongest associations with subject phenotypes. Myogenesis and estrogen response were confirmed to be positively regulated in LAM patients. Collectively, our study provided a landscape of genomic alterations in LAM and discovered several potential driver genes, that is, BRCA2 and RAD50, which shed a substantial light on the clinical application of key molecular markers and potential therapy targets for precision diagnosis and treatment in the future.

8.
Int J Cancer ; 146(1): 208-222, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251822

RESUMO

The role of Fyn-related kinase (FRK) in malignant tumors remains controversial. Our study investigated the function of FRK in lung cancer. Immunohistochemistry staining and generating a knockout of FRK by CRISPR/Cas9 in H1299 (FRK-KO-H1299) cells were strategies used to explore the role of FRK. Immunohistochemistry staining indicated that FRK expression was elevated in 223 lung cancer tissues compared to 26 distant normal lung tissues. FRK contributed to poor survival status in lung cancer patients and acted as a predictor for poor prognosis of lung cancer. Knockout of FRK by CRISPR/Cas9 markedly inhibited proliferation, invasion, colony formation and epithelial-mesenchymal transition (EMT) process in the lung cancer cell line H1299. Further exploration indicated that FRK-KO damaged the stemness phenotype of H1299 by inhibiting CD44 and CD133 expression. Seahorse detection and a U-13 C flux assay revealed that FRK-KO induced metabolism reprogramming by inhibiting the Warburg effect and changing the energy type in H1299 cells. Epidermal growth factor stimulation recovered the expression of FRK and biological functions, metabolic reprogramming and stemness phenotype of H1299 cells. FRK plays an oncogenic role in lung cancer cells via a novel regulation mechanism of enhancing the stemness of H1299 cells by inducing metabolism reprogramming, which finally promotes EMT and metastasis. Our study also indicates that FRK could be used as a potential therapeutic target for drug development.

9.
J Cell Biochem ; 121(1): 867-875, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31452270

RESUMO

Long noncoding RNAs (lncRNAs) are linked to tumor development and progression. The aim of this study was to determine the prognostic significance and biological role of LINC01116 in head and neck squamous cell carcinoma (HNSCC). We identified 21 aberrantly expressed lncRNAs specific to HNSCC that were common in two microarray datasets. LINC01116 was highly overexpressed in HNSCC tissues and was correlated to shorter overall survival and relapse-free survival duration, as analyzed by the online Gene Expression Profiling Interactive Analysis platform. LINC01116 was also overexpressed in oral squamous cell carcinoma and nasopharyngeal carcinoma tissues, and LINC01116 silencing significantly inhibited the migration and invasion capacities of both cell lines by blocking the epithelial-mesenchymal transition process. In addition, 125 coexpressing genes were identified by circlncRNAnet, and were mainly located on human autosomes and enriched in transforming growth factor-ß signaling pathway. These findings indicate that LINC01116 might be a potential therapeutic target for HNSCC.

10.
J Nanosci Nanotechnol ; 20(4): 2259-2266, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492235

RESUMO

N-doped SnO2 nanowires were synthesized via chemical vapor deposition in the presence of NH3 gas with SnO2 nanowires as the precursor. All samples exhibited room-temperature ferromagnetism (FM). X-ray diffraction measurement showed that the FM is intrinsic. Results of vibrating sample magnetometry indicated that FM decreased along with increasing NH3 flow rate. Further analysis by X-ray photoelectron spectroscopy showed that the N atom was substituted at the lattice site of O, and NH3 was chemisorbed in the surface of samples. The chemisorbed NH3 was the dominant ingredient and main factor causing the significant decrease in FM. However, the FM of the samples after etching was enhanced due to the doped N atoms.

11.
J Nanosci Nanotechnol ; 20(4): 2416-2422, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492256

RESUMO

In this paper, loofah sponge-based activated carbon (LAC) is prepared via loofah sponge as precursors and KOH as activator. N2 adsorption, X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the surface morphology and the structure of loofah sponge-based activated carbon. Cyclic voltammetry (CV), galvanostatic charge/discharge cycle and electrochemical impedance spectroscopy (EIS) were utilized to test electrochemical properties of loofah spongebased activated carbon. The results showed that loofah sponge-based activated carbon (LAC-700) prepared at 700 °C has the highest specific surface area (936 m²·g-1). The material delivers specific capacitance of 152.89 F·g-1 at the current density of 0.1 A·g-1, and specific capacitance of 116.69 F·g-1 at the current density of 5 A·g-1 in 30 wt% KOH aqueous electrolyte.

12.
Microvasc Res ; 127: 103913, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31449822

RESUMO

The "metabolic memory", a phenomenon that the target cell remembers the early hyperglycemia, has been reported to be a critical issue in diabetes pathogenesis. Here, we confirmed the inducible effects of high glucose (HG) and HG followed by normal glucose (HN) upon the proliferation and the tube formation capacity of human umbilical vein endothelial cells (HUVECs), as well as the suppressive effects of HG and HN on HUVEC apoptosis. In the meantime, the miR-320 expression could be dramatically downregulated (** and ## P < 0.01), whereas VEGFA expression (** and ## P < 0.01) and VEGFA, PKC, and RAGE protein levels could be remarkably induced via HG and HN stimulation. More importantly, the effects of HG and HN were not significantly different, suggesting the existence of high glucose-induced metabolic memory and the involvement of miR-320 and VEGFA in high glucose-induced metabolic memory in HUVECs. Consistently, miR-320 overexpression significantly reversed the effects of HG and HN on HUVECs (* and # P < 0.05, ** and ## P < 0.01). miR-320 suppressed the expression of VEGFA via direct binding to the 3'-UTR of VEGFA mRNA, therefore suppressing high glucose-induced metabolic memory (** P < 0.01); the effects of miR-320 overexpression on HUVECs could be reversed by VEGFA overexpression (# P < 0.05, ## P < 0.01), indicating that miR-320/VEGFA axis modulates the proliferation, apoptosis, and the angiogenesis capacity of HUVECs. In conclusion, we demonstrate that miR-320/VEGFA axis is crucial to high glucose-induced metabolic memory during HUVEC dysfunction and may be involved in the pathology of diabetes.

13.
Food Chem ; 306: 125615, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31622833

RESUMO

Phycocyanin (PC), a plant-based protein with interesting biological activity, is rarely directly applied in the food industry because it has structural and functional limitations. This study combined ultra-high-pressure (UHP) treatment with glycation to improve PC functionality and explored resulting structural changes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, scanning electron microscopy, Fourier-transform infrared spectroscopy, circular dichroism, and UV-visible spectroscopy. The UHP treatment obviously improved the speed and degree of glycation and the composite-modified PC (CM-PC) showed high solubility and good emulsifying and foaming performance. Scanning electron microscopy images showed the CM-PC surface was loose and fluffy. Gel electrophoresis, Fourier-transform infrared spectroscopy, and circular dichroism results demonstrated that the content of α-helix decreased from 78.1% in PC to 26.6% in CM-PC, and hydroxyl groups were introduced. UV-visible spectroscopy showed that the mechanism of composite modification involved stretching of the PC and promotion of binding with sugars.

14.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671764

RESUMO

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-ß, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.

15.
J Hazard Mater ; : 121431, 2019 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-31672436

RESUMO

Spermatogenesis-related microRNAs (miRNAs) are vulnerable to polycyclic aromatic hydrocarbons (PAHs). Changes in spermatogenesis-related miRNAs may be biological intermedia in mechanisms linking PAHs and semen quality. This study aimed to investigate whether spermatogenesis-related microRNAs mediate the associations between PAHs and semen quality. We measured 10 monohydroxylated PAHs (OH-PAHs) in repeated urine samples and three candidate spermatogenesis-related miRNAs (miRNA106a, miRNA21, and miRNA34c) in seminal plasma from men attending an infertility clinic (n = 111). Mediation analysis was applied to determine the mediating role of spermatogenesis-related miRNAs in the association of PAH exposure with semen quality. Urinary 2-OHFlu and 2-OHPh were related to reduced seminal plasma miRNA34c (p for trend = 0.05 and 0.03, respectively). Urinary 9-OHPh was related to reduced seminal plasma miR106a (p for trend = 0.02), which in turn, was positively associated with sperm concentration, sperm count, sperm total motility, and progressive motility (all p for trends<0.05). Up to 43.8% of the eff ;ect of urinary 9-OHPh on decreased sperm concentration was mediated by seminal plasma miR106a. Our results suggested that certain PAH exposure was associated with reduced spermatogenesis-related miRNAs and such alterations might be an intermediate mechanism by which PAHs exert its adverse effects on semen quality.

16.
J Autism Dev Disord ; 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673908

RESUMO

The current study examined eye movement control in autistic (ASD) children. Simple targets were presented in isolation, or with central, parafoveal, or peripheral distractors synchronously. Sixteen children with ASD (47-81 months) and nineteen age and IQ matched typically developing children were instructed to look to the target as accurately and quickly as possible. Both groups showed high proportions (40%) of saccadic errors towards parafoveal and peripheral distractors. For correctly executed eye movements to the targets, centrally presented distractors produced the longest latencies (time taken to initiate eye movements), followed by parafoveal and peripheral distractor conditions. Central distractors had a greater effect in the ASD group, indicating evidence for potential atypical voluntary attentional control in ASD children.

17.
Opt Express ; 27(19): 27112-27123, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674578

RESUMO

A sapphire derived fiber (SDF) based Fabry-Perot interferometer (FPI) with an etched micro air cavity for strain measurement at high temperatures is proposed. The FPI is formed by splicing a section of SDF between an etched single mode fiber (ESMF) and a capillary. The SDF's core containing 51.3mol.% aluminum provides the intrinsic Fabry-Perot interferometer cavity with an enhanced fringe contrast through the narrow etched air cavity reflector. Because the different Poisson effects of the cladding and the core have different deformations under axial stress, the transverse strain imposed from the cladding to the core was introduced to the additive model. The strain sensitivity of the FPI was theoretically analyzed and experimentally demonstrated at room temperature. A thermal annealing process was performed to study the stability in high temperatures and to release the residual stress during the sensor's fabrication. The strain calibration was carried out subsequently from 20℃ to 1000℃. Benefiting from the doping in the core and diffusion in the cladding of the high temperature resistant material Al2O3, the proposed sensor was proved to operate well in 950℃ and was also characteristized by a sensitivity of 1.19 pm/µÉ› and 1.06 pm/µÉ› in the process of loading and unloading strain separately.

18.
ACS Appl Mater Interfaces ; 11(47): 43879-43887, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31675204

RESUMO

Although important advances have been achieved in the development of radiolabeled prostate-specific membrane antigen (PSMA)-targeting ligand constructs for both diagnosis and therapy of prostate cancer (PCa) over the past decade, challenges related to off-target effects and limited treatment responses persist. In this study, which builds upon the successful clinical translation of a series of ultrasmall, dye-encapsulating core-shell silica nanoparticles, or Cornell Prime Dots (C' dots), for cancer management, we sought to address these limitations by designing a dual-modality, PSMA-targeting platform that evades undesirable accumulations in the salivary glands, kidneys, and reticuloendothelial system, while exhibiting bulk renal clearance. This versatile PCa-targeted particle imaging probe offers significant clinical potential to improve future theranostic applications in a variety of patient care settings.

19.
Artigo em Inglês | MEDLINE | ID: mdl-31724840

RESUMO

Bis(diphenylphosphinomethyl)phenylphosphine (dpmp)-supported Pt2Au heterotrinuclear complexes [Pt2Au(dpmp)2(C≡CPh)4](ClO4) (1), [Pt2Au(dpmp)2(DEBf)(C≡CPh)2](ClO4) (2), and [Pt2Au(dpmp)2(DECz)(C≡CPh)2](ClO4) (3) were prepared and used in organic light-emitting diodes (OLEDs) as a new class of light emitters, where DEBf = dibenzofuran-4,6-diacetylide and DECz = 3,6-di-tert-butylcarbazole-1,8-diacetylide. Although the flexible structure of Pt2Au complex 1 (λem = 503 nm, Φem < 0.1%) results in weak photoluminescence in fluid CH2Cl2, complexes 2 (λem = 585 nm, Φem = 4.9%) and 3 (λem = 589 nm, Φem = 3.2%) with a rigid conformation give a much stronger phosphorescence. The displacement of two σ-bonded phenylacetylide ligands with a diacetylide ligand such as DEBf and DECz to fasten Pt2Au structures facilitates greatly luminescent emission so that the emissive quantum yield in doping film is as high as 89% for 2 and 93% for 3. As revealed by a theoretical study, the severe structural distortion of diacetylide-linked Pt2Au complexes 2 (λem = 585 nm) and 3 (λem = 589 nm) in a triplet excited state gives rise to significant red shifts of phosphorescent emission spectra relative to that of complex 1 (λem = 503 nm). By means of Pt2Au complexes as phosphorescent emitters, solution-processed OLEDs achieved a relatively low external quantum efficiency (EQE < 9.5%) when commercial poly(ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) was used as the hole-injection layer (HIL). In contrast, the peak EQE was increased to 18.3% with a dramatic increase of efficiency by the use of modified HILs composed of PEDOT:PSS and PSS-Na, which provide a higher work function and a better film morphology.

20.
Zhongguo Fei Ai Za Zhi ; 22(11): 738-740, 2019 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-31771745

RESUMO

Immunological checkpoint inhibitors have been approved for a short period of time in China, and real-world clinical data are still in the collection stage. Reports of domestic programmed death-1 (PD-1) treatment-related adverse reactions are rare. The author reported a case of hypotension in the process of Pembrolizumab infusion and successful infusion after blood pressure recovery, hoping to provide reference for the application of immunological checkpoint inhibitors, to provide patients with the greatest clinical benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA