Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.986
Filtrar
1.
Clin Chim Acta ; 564: 119930, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39154701

RESUMO

Recessive congenital methemoglobinemia (RCM) is a hereditary autosomal disorder with an extremely low incidence rate. Here, we report a case of methemoglobinemia type I in a patient with congenital persistent cyanosis. The condition was attributed to a novel compound heterozygous mutation in CYB5R3, characterized by elevated methemoglobin levels (13.4 % of total hemoglobin) and undetectable NADH cytochrome b5 reductase (CYB5R3) activity. Whole-exome sequencing (WES) revealed two heterozygous mutations in CYB5R3: a previously reported pathogenic missense mutation c.611G>A(p.Cys204Tyr) inherited from the father, and a novel stop codon mutation c.906A>G(p.*302Trpext*42) from the mother, the latter mutation assessed as likely pathogenic according to ACMG guidelines. In cells overexpressing the CYB5R3 c.906A>G mutant construct, the CYB5R3 mRNA level was significantly lower than in cells overexpressing the wild-type (WT) CYB5R3 construct. However, there was no significant difference in protein expression levels between the mutant and WT constructs. Notably, an additional protein band of approximately 55 kDa was detected in the mutant cells. Immunofluorescence localization showed that, compared to wild-type CYB5R3, the subcellular localization of the CYB5R3 p.*302Trpext*42 mutant protein did not show significant changes and remained distributed in the endoplasmic reticulum and mitochondria. However, the c.906A>G(p.*302Trpext*42) mutation resulted in increased intracellular reactive oxygen species (ROS) levels and decreased NAD+/NADH ratio, suggesting impaired CYB5R3 function and implicating this novel mutation as likely pathogenic.


Assuntos
Citocromo-B(5) Redutase , Metemoglobinemia , Mutação , Humanos , Masculino , Códon de Terminação/genética , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/deficiência , Metemoglobinemia/genética , Metemoglobinemia/congênito , Adulto
2.
Neural Regen Res ; 20(5): 1445-1454, 2025 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39075911

RESUMO

JOURNAL/nrgr/04.03/01300535-202505000-00027/figure1/v/2024-07-28T173839Z/r/image-tiff Cerebral ischemia is a major health risk that requires preventive approaches in addition to drug therapy. Physical exercise enhances neurogenesis and synaptogenesis, and has been widely used for functional rehabilitation after stroke. In this study, we determined whether exercise training before disease onset can alleviate the severity of cerebral ischemia. We also examined the role of exercise-induced circulating factors in these effects. Adult mice were subjected to 14 days of treadmill exercise training before surgery for middle cerebral artery occlusion. We found that this exercise pre-conditioning strategy effectively attenuated brain infarct area, inhibited gliogenesis, protected synaptic proteins, and improved novel object and spatial memory function. Further analysis showed that circulating adiponectin plays a critical role in these preventive effects of exercise. Agonist activation of adiponectin receptors by AdipoRon mimicked the effects of exercise, while inhibiting receptor activation abolished the exercise effects. In summary, our results suggest a crucial role of circulating adiponectin in the effects of exercise pre-conditioning in protecting against cerebral ischemia and supporting the health benefits of exercise.

3.
Neural Regen Res ; 20(1): 224-233, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767487

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.

4.
J Biomed Opt ; 30(Suppl 1): S13702, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39034960

RESUMO

Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.


Assuntos
Imagem Óptica , Glândulas Paratireoides , Espectroscopia de Luz Próxima ao Infravermelho , Tireoidectomia , Humanos , Glândulas Paratireoides/cirurgia , Glândulas Paratireoides/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Imagem Óptica/métodos , Adulto , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Inclusão em Parafina/métodos , Idoso , Câncer Papilífero da Tireoide/cirurgia , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/análise
5.
Nat Commun ; 15(1): 8036, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271701

RESUMO

Molecular imaging holds the potential for noninvasive and accurate grading of liver fibrosis. It is limited by the lack of biomarkers that strongly correlate with liver fibrosis grade. Here, we discover the grading potential of fibroblast activation protein alpha (FAPα) for liver fibrosis through transcriptional analysis and biological assays on clinical liver samples. The protein and mRNA expression of FAPα are linearly correlated with fibrosis grade (R2 = 0.89 and 0.91, respectively). A FAPα-responsive MRI molecular nanoprobe is prepared for quantitatively grading liver fibrosis. The nanoprobe is composed of superparamagnetic amorphous iron nanoparticles (AFeNPs) and paramagnetic gadoteric acid (Gd-DOTA) connected by FAPα-responsive peptide chains (ASGPAGPA). As liver fibrosis worsens, the increased FAPα cut off more ASGPAGPA, restoring a higher T1-MRI signal of Gd-DOTA. Otherwise, the signal remains quenched due to the distance-dependent magnetic resonance tuning (MRET) effect between AFeNPs and Gd-DOTA. The nanoprobe identifies F1, F2, F3, and F4 fibrosis, with area under the curve of 99.8%, 66.7%, 70.4%, and 96.3% in patients' samples, respectively. This strategy exhibits potential in utilizing molecular imaging for the early detection and grading of liver fibrosis in the clinic.


Assuntos
Endopeptidases , Cirrose Hepática , Imageamento por Ressonância Magnética , Proteínas de Membrana , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Gelatinases/metabolismo , Compostos Organometálicos/química , Masculino , Fígado/diagnóstico por imagem , Fígado/patologia , Fígado/metabolismo , Feminino , Compostos Heterocíclicos/química , Pessoa de Meia-Idade , Animais , Meios de Contraste/química
6.
Foods ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39272539

RESUMO

Freezing storage is the most common method of food preservation and the formation of ice crystals during freezing has an important impact on food quality. The water molecular structure, mechanism of ice crystal formation, and ice crystal structure are elaborated in the present review. Meanwhile the methods of ice crystal characterization are outlined. It is concluded that the distribution of the water molecule cluster structure during the crystallization process directly affects the formed ice crystals' structure, but the intrinsic relationship needs to be further investigated. The morphology and distribution of ice crystals can be observed by experimental methods while simulation methods provide the possibility to study the molecular structure changes in water and ice crystals. It is hoped that this review will provide more information about ice crystallization and promote the control of ice crystals in frozen foods.

7.
Nat Prod Bioprospect ; 14(1): 53, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276287

RESUMO

Currently, cocrystallization is a promising strategy for tailoring the physicochemical properties of active pharmaceutical ingredients. Theophylline, an alkaloid and the most primary metabolite of caffeine, is a readily available compound found in tea and coffee. It functions primarily as a bronchodilator and respiratory stimulant, making it a mainstay treatment for lung diseases like asthma. Theophylline's additional potential benefits, including anti-inflammatory and anticancer properties, and its possible role in neurological disorders, have garnered significant research interest. Cocrystal formation presents a viable approach to improve the physicochemical properties of theophylline and potentially mitigate its toxic effects. This review comprehensively explores several successful studies that utilized cocrystallization to favorably alter the physicochemical properties of theophylline or its CCF. Notably, cocrystals can not only enhance the solubility and bioavailability of theophylline but also exhibit synergistic effects with other APIs. The review further delves into the hydrogen bonding sites within the theophylline structure and the hydrogen bonding networks observed in cocrystal structures.

8.
Biosens Bioelectron ; 267: 116775, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276438

RESUMO

Hydrogel and aerogel materials have garnered significant attention in constructing effective surface-enhanced Raman spectroscopy (SERS) substrates due to their excellent adsorption capabilities, high specific surface area, and abundant chemical groups. However, in liquids with complex compositions, non-specific adsorption of macromolecules can lead to surface scaling and pore clogging of the substrate material, limiting the selective enrichment and SERS detection of target molecules. To address this, an innovative aerogel-chimeric hydrogel material (CH@S-CNF/SA/Ag NPs) was developed. The aerogel component, with its high specific surface area and electronegative properties, functions as a SERS "chip" for adsorption and detection of target molecules. Simultaneously, the mesoporous structure of the hydrogel "shell" effectively filters macromolecules from the solution. These CH@S-CNF/SA/Ag NPs were utilized as SERS substrate materials for detecting urine from healthy individuals and patients with chronic kidney disease stage 5 (CKD5). When combined with machine learning algorithms, the detection accuracy reached 99.50%. This work represents a significant advancement in the specific adsorption and SERS detection of small molecules in complex biological samples such as urine and blood.

9.
J Colloid Interface Sci ; 678(Pt B): 1088-1103, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39276517

RESUMO

One of the primary challenges for immune checkpoint blockade (ICB)-based therapy is the limited infiltration of T lymphocytes (T cells) into tumors, often referred to as immunologically "cold" tumors. A promising strategy to enhance the anti-tumor efficacy of ICB is to increase antigen exposure, thereby enhancing T cell activation and converting "cold" tumors into "hot" ones. Herein, we present an innovative all-in-one therapeutic nanoplatform to realize local mild photothermal- and photodynamic-triggered antigen exposure, thereby improving the anti-tumor efficacy of ICB. This nanoplatform involves conjugating programmed death-ligand 1 antibody (aPD-L1) with gadolinium-doped near-infrared (NIR)-emitting carbon dots (aPD-L1@GdCDs), which displays negligible cytotoxicity in the absence of light. But under controlled NIR laser irradiation, the GdCDs produce combined photothermal and photodynamic effects. This not only results in tumor ablation but also induces immunogenic cell death (ICD), facilitating enhanced infiltration of CD8+ T cells in the tumor area. Importantly, the combination of aPD-L1 with photothermal and photodynamic therapies via aPD-L1@GdCDs significantly boosts CD8+ T cell infiltration, reduces tumor size, and improves anti-metastasis effects compared to either GdCDs-based phototherapy or aPD-L1 alone. In addition, the whole treatment process can be monitored by multi-modal fluorescence/photoacoustic/magnetic resonance imaging (FLI/PAI/MRI). Our study highlights a promising nanoplatform for cancer diagnosis and therapy, as well as paves the way to promote the efficacy of ICB therapy through mild photothermal- and photodynamic-triggered immunotherapy.

10.
Nutrition ; 128: 112558, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276682

RESUMO

OBJECTIVE: To determine reference values for diagnosing sarcopenia through chest CT scans and evaluate their suitability for use among the Chinese old population. METHODS: Chest CT scans were obtained from 500 healthy individuals aged 19-39. Skeletal muscle mass was assessed on chest CT at the level of T4 by the skeletal muscle area (T4SMA), skeletal muscle index (T4SMI), T12 erector spinae muscle area (T12ESMA), and T12 skeletal muscle index (T12SMI), as well as skeletal muscle density (SMD) at T4 and T12 levels. The diagnostic threshold for sarcopenia was defined as a gender-specific value below 2 SD of the mean value in the young group. These cutoff values were then applied to a group of older adults aged 65 and over. RESULTS: Diagnostic thresholds for low skeletal muscle in men were 110.05 cm², 36.01 cm²/m², 29.56 cm², and 9.65 cm²/m² for T4SMA, T4SMI, T12ESMA, and T12SMI, respectively. For women, the thresholds were: 69.93 cm², 26.51 cm²/m², 17.84 cm²/m², and 6.87 cm²/m², respectively. Diagnostic thresholds for low SMD were 38.63HU in men, 34.74 HU for women at T4 level. At T12 level, the cutoff values were 40.94 HU for men and 36.63 HU for women. Sarcopenia prevalence in men, defined by T4SMA, T4SMI, T12ESMA, and T12SMI cutoffs, was 35.6%, 18.9%, 36.7%, and 23.7%, respectively. In women, sarcopenia prevalence was 5.1%, 3.2%, 3.2%, and 1.9%, respectively. CONCLUSION: This study established reference values for sarcopenia diagnosis through chest CT scans among the Chinese population, highlighting the importance of utilizing chest CT scans for sarcopenia detection and muscle health monitoring in older adults.

11.
Pharmacol Res ; : 107410, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276955

RESUMO

Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.

12.
Pestic Biochem Physiol ; 204: 106030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277358

RESUMO

There have been persistent concerns about the safety risks associated with DDT residues in the environment. Studies have shown that exposure to DDT or its metabolites can cause various liver diseases. However, the mechanisms of liver toxicity haven't been well studied. In our current investigation, we observed that DDT triggers pyroptosis in human liver cells (HL-7702), representing a novel form of programmed cell death. Our results delineated DDT (0-100 µM) induced pyroptosis in HL-7702 cells, which was confirmed through morphological changes, lactate dehydrogenase (LDH) release, gasdermin E (GSDME) cleavage and Annexin-V/PI staining. Knockdown of GSDME reduced cell death and transferred the mode of cell death from pyroptosis to apoptosis. Notably, DDT exposure markedly increased reactive oxygen species (ROS) production, concurrent with c-Jun N-terminal kinase (JNK) phosphorylation. Intervention with a ROS inhibitor or JNK inhibitor SP600125 restored cell viability and hindered GSDME-mediated pyroptosis. Our results firstly demonstrate that DDT suppresses HL-7702 cells growth by inducing pyroptosis mainly through the ROS/JNK/GSDME pathway. These findings not only contribute to an in-depth understanding of DDT toxicity but also open avenues for gaining valuable insights into potential mitigation strategies and therapeutic interventions.


Assuntos
DDT , Piroptose , Espécies Reativas de Oxigênio , Humanos , Piroptose/efeitos dos fármacos , DDT/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Apoptose/efeitos dos fármacos , Gasderminas
13.
J Nephrol ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39277836

RESUMO

BACKGROUND: Hypokalemia has been associated with an increased risk of peritoneal dialysis (PD)-associated peritonitis. However, hypokalemia is commonly associated with malnutrition, inflammation, and severe coexisting comorbidities, which thus are suspected of being potential confounders. This study was aimed at testing whether hypokalemia was independently associated with the occurrence and prognosis of PD-associated peritonitis. METHODS: A national-level dataset from the Peritoneal Dialysis Telemedicine-assisted Platform Cohort (PDTAP) Study was used to explore the independent association of serum potassium with PD-associated peritonitis. Unmatched and propensity score-adjusted multivariate competing risk models, as well as univariate competing risk models following 1:1 propensity score matching, were conducted to balance potential biases between patients with and without hypokalemia. The association between potassium levels prior to peritonitis and treatment failure due to peritonitis was also investigated. RESULTS: During a median follow-up of 25.7 months in 7220 PD patients, there was a higher incidence of peritonitis in patients with serum potassium below 4.0 mmol/L compared to those with higher serum levels (677 [0.114/patient-year] vs. 914 [0.096/patient-year], P = 0.001). After adjusting for demographics, laboratory tests, residual renal function, and medication use, baseline potassium levels below 4.0 mmol/L were not linked to an increased risk of peritonitis, with a hazard ratio of 0.983 (95% CI 0.855-1.130, P = 0.810). This result remained consistent in both the propensity score adjusted multivariate competing risk regression (HR = 0.974, 95% CI 0.829-1.145, P = 0.750) and the univariate competing risk regression after 1:1 propensity score matching (Fine-Gray test, P = 0.218). The results were similar when analyzing patients with serum potassium level above or below 3.5 mmol/L. Lastly, hypokalemia before the occurrence of peritonitis was not independently associated with treatment failure. CONCLUSION: Hypokalemia was not found to be an independent risk factor for PD-associated peritonitis or treatment failure of peritonitis in China.

15.
Front Genet ; 15: 1466486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280094

RESUMO

Among the largest transcription factor families in plants, bZIPs are crucial for various developmental and physiological processes, particularly abiotic stress resistance. Setaria italica has become a model for understanding stress resistance mechanisms. In this study, we identified 90 bZIP transcription factors in the Setaria italica genome. SibZIPs were classified into 13 groups based on references to Arabidopsis bZIPs. Members in the same group shared similar motifs and gene structure pattern. In addition, gene duplication analysis indenfied 37 pairs of segmental duplicated genes and none tandem duplicated genes in S. italica suggesting segmental duplication contributed to the expansion of the S. italica bZIP gene family. Moreover, the number of SibZIPs genes (39) exhibiting higher expression in roots was significantly more than that in other organs. Twelve SibZIP genes were upregulated in response to dehydration stress. In conclusion, our study advances the current understanding of SibZIP genes and provide a number of candidates for functional analysis of drought tolerance in S. italica.

16.
World J Diabetes ; 15(9): 1932-1941, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39280178

RESUMO

BACKGROUND: Diabetes mellitus type 2 (T2DM) is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action. It has been affecting over 400 million people all over the world. AIM: To explore the pathogenesis of T2DM and to develop and implement new prevention and treatment strategies for T2DM. METHODS: Receiver operating characteristic (ROC) curve analysis was used to conduct diagnostic markers. The expression level of genes was determined by reverse transcription-PCR as well as Western blot. Cell proliferation assays were performed by cell counting kit-8 (CCK-8) tests. At last, T2DM mice underwent Roux-en-Y gastric bypass surgery. RESULTS: We found that NPAS2 was significantly up-regulated in islet ß cell apoptosis of T2DM. The ROC curve revealed that NPAS2 was capable of accurately diagnosing T2DM. NPAS2 overexpression did increase the level of KANK1. In addition, the CCK-8 test revealed knocking down NPAS2 and KANK1 increased the proliferation of MIN6 cells. At last, we found that gastric bypass may treat type 2 diabetes by down-regulating NPAS2 and KANK1. CONCLUSION: This study demonstrated that NPAS2 induced ß cell dysfunction by regulating KANK1 expression in type 2 diabetes, and it may be an underlying therapy target of T2DM.

17.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273345

RESUMO

Hu sheep is a renowned prolific local sheep breed in China, widely distributed across the country due to its excellent reproductive performance. Deciphering the molecular mechanisms underlying the high fecundity of Hu sheep is crucial for improving the litter size of ewes. In this study, we genotyped 830 female Hu sheep using the Illumina OvineSNP50 BeadChip and performed genetic diversity analysis, selection signature detection, and a genome-wide association study (GWAS) for litter size. Our results revealed that the Hu sheep population exhibits relatively high genetic diversity. A total of 4927 runs of homozygosity (ROH) segments were detected, with the majority (74.73%) being short in length. Different genomic inbreeding coefficients (FROH, FHOM, FGRM, and FUNI) ranged from -0.0060 to 0.0126, showing low levels of inbreeding in this population. Additionally, we identified 91 candidate genomic regions through three complementary selection signature methods, including ROH, composite likelihood ratio (CLR), and integrated haplotype score (iHS), and annotated 189 protein-coding genes. Moreover, we observed two significant SNPs related to the litter size of Hu sheep using GWAS analysis based on a repeatability model. Integrating the selection signatures and the GWAS results, we identified 15 candidate genes associated with litter size, among which BMPR1B and UNC5C were particularly noteworthy. These findings provide valuable insights for improving the reproductive performance and breeding of high-fecundity lines of Hu sheep.


Assuntos
Estudo de Associação Genômica Ampla , Tamanho da Ninhada de Vivíparos , Polimorfismo de Nucleotídeo Único , Animais , Tamanho da Ninhada de Vivíparos/genética , Ovinos/genética , Feminino , Seleção Genética , Variação Genética , Homozigoto , Genótipo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , China , Endogamia , Carneiro Doméstico/genética
18.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273460

RESUMO

Degenerative diseases oftentimes occur within the continuous process of aging, and the corresponding clinical manifestations may be neurodegeneration, neoplastic diseases, or various human complex diseases. DNA methylation provides the opportunity to explore aging and degenerative diseases as epigenetic traits. It has already been applied to age prediction and disease diagnosis. It has been shown that various degenerative diseases share co-physiology mechanisms with each other, clues of which may be gained from studying the aging process. Here, we endeavor to predict the risk of degenerative diseases in an aging-relevant comorbid mechanism perspective. Firstly, an epigenetic clock method was implemented based on a multi-scale convolutional neural network, and a Shapley feature attribution analysis was applied to discover the aging-related CpG sites. Then, these sites were further screened to a smaller subset composed of 196 sites by using biomics analysis according to their biological functions and mechanisms. Finally, we constructed a multilayer perceptron (MLP)-based degenerative disease risk prediction model, Mlp-DDR, which was well trained and tested to accurately classify nine degenerative diseases. Recent studies also suggest that DNA methylation plays a significant role in conditions like osteoporosis and osteoarthritis, broadening the potential applications of our model. This approach significantly advances the ability to understand degenerative diseases and represents a substantial shift from traditional diagnostic methods. Despite the promising results, limitations regarding model complexity and dataset diversity suggest directions for future research, including the development of tissue-specific epigenetic clocks and the inclusion of a wider range of diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/diagnóstico , Ilhas de CpG , Envelhecimento/genética , Redes Neurais de Computação
19.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274082

RESUMO

This research delves into the primary issue of polyimide (PI) insulation failures in high-frequency power transformers (HFPTs) by scrutinizing partial discharge development under high-frequency electrical stress. This study employs an experimental approach coupled with a plasma simulation model for a ball-sphere electrode structure. The simulation model integrates the particle transport equation, Poisson equation, and complex chemical reactions to ascertain microscopic parameters, including plasma distribution, electric field, electron density, electron temperature, surface, and space charge distribution. The effect of the voltage polarity and electrical energy on the PD process is also discussed. The contact point plays a pivotal role in triggering partial discharges and culminating in the breakdown of PI insulation. Asymmetry phenomena were found between positive and negative half-cycles by analyzing the PD data stage by stage. A significant number of PDs increased at every stage and the PD amplitude was higher during the negative cycle at the initial stage, but in later stages, the PD amplitude was found to be higher in the positive half-cycle, and scanning electron microscopy (SEM) revealed that the maximum damage occurred near the contact point junction. The simulation results show that the plasma initially accumulates the electron density near the contact point junction. Under the action of the electric field, plasma starts traveling at the PI surface outward from the contact point. Before the PD activity, all parameters have higher values in the plasma head. The microscopic parameters reveal maximum values near the contact point junction, during PD activities where significant damage takes place. These parameter distributions exhibit a decreasing trend over time as when the PD activity ends. The model's predictions are consistent with the experimental data. The paper lays the foundation for future research in polymer insulation design under high-frequency electrical stress.

20.
Neurobiol Dis ; 201: 106659, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243826

RESUMO

AIM: Parkinson's disease (PD) tremor is associated with dysfunction in the basal ganglia (BG), cerebellum (CB), and sensorimotor networks (SMN). We investigated tremor-related static functional network connectivity (SFNC) and dynamic functional network connectivity (DFNC) in PD patients. METHODS: We analyzed the resting-state functional MRI data of 21 tremor-dominant Parkinson's disease (TDPD) patients and 29 healthy controls. We compared DFNC and SFNC between the three networks and assessed their associations with tremor severity. RESULTS: TDPD patients exhibited increased SFNC between the SMN and BG networks. In addition, they spent more mean dwell time (MDT) in state 2, characterized by sparse connections, and less MDT in state 4, indicating stronger connections. Furthermore, enhanced DFNC between the CB and SMN was observed in state 2. Notably, the MDT of state 2 was positively associated with tremor scores. CONCLUSION: The enhanced dynamic connectivity between the CB and SMN in TDPD patients suggests a potential compensatory mechanism. However, the tendency to remain in a state of sparse connectivity may contribute to the severity of tremor symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA