Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(44): 22331-22340, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31604827

RESUMO

It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA ß-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.

2.
Sci Total Environ ; 693: 133490, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31635006

RESUMO

Lead is among the most common toxic heavy metals and its contamination is of great public concern. Bacillus coagulans is the probiotic which can be considered as the lead absorption sorbent to apply in the lead contaminant water directly or indirectly. A better understanding of the lead resistance and tolerance mechanisms of B. coagulans would help further its development and utilization. Wild-type Bacillus coagulans strain R11 isolated from a lead mine, was acclimated to lead-containing culture media over 85 passages, producing two lead-adapted strains, and the two strains shown higher lead intracellular accumulation ability (38.56-fold and 19.36-fold) and reducing ability (6.94-fold and 7.44-fold) than that of wild type. Whole genome sequencing, genome resequencing, and comparative transcriptomics identified lead resistance and tolerance process significantly involved in these genes which regulated glutathione and sulfur metabolism, flagellar formation and metal ion transport pathways in the lead-adapted strains, elucidating the relationships among the mechanisms regulating lead deposition, deoxidation, and motility and the evolved tolerance to lead. In addition, the B. coagulans mutants tended to form flagellar and chemotaxis systems to avoid lead ions rather than export it, suggesting a new resistance strategy. Based on the present results, the optimum lead concentration in environment should be considered when employed B. coagulans as the lead sorbent, due to the bacteria growth ability decreased in high lead concentration and physiology morphology changed could reduce the lead removal effectiveness. The identified deoxidization and compound secretion genes and pathways in B. coagulans R11 also are potential genetic engineering candidates for synthesizing glutathione, cysteine, methionine, and selenocompounds.


Assuntos
Bacillus coagulans/fisiologia , Chumbo , Probióticos , Estresse Fisiológico
3.
Cell Microbiol ; : e13114, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31487436

RESUMO

Nuclear import of proteins relies on nuclear import receptors called importins/karyopherins (Kaps), whose functions were reported in yeasts, fungi, plants, and animal cells, including cell cycle control, morphogenesis, stress sensing/response, and also fungal pathogenecity. However, limited is known about the physiological function and regulatory mechanism of protein import in the rice-blast fungus Magnaporthe oryzae. Here, we identified an ortholog of ß-importin in M. oryzae encoded by an ortholog of KAP119 gene. Functional characterisation of this gene via reverse genetics revealed that it is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The mokap119Δ mutant was also defective in formation of appressorium-like structure from hyphal tips. By affinity assay and liquid chromatography-tandem mass spectrometry, we identified potential MoKap119-interacting proteins and further verified that MoKap119 interacts with the cyclin-dependent kinase subunit MoCks1 and mediates its nuclear import. Transcriptional profiling indicated that MoKap119 may regulate transcription of infection-related genes via MoCks1 regulation of MoSom1. Overall, our findings provide a novel insight into the regulatory mechanism of M. oryzae pathogenesis likely by MoKap119-mediated nuclear import of the cyclin-dependent kinase subunit MoCks1.

4.
Annu Rev Microbiol ; 73: 559-578, 2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226024

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of acute and chronic infections. Usually a commensal on the host body, P. aeruginosa is capable of transforming into a virulent pathogen upon sensing favorable changes in the host immune system or stress cues. P. aeruginosa infections are hard to eradicate, because this pathogen has developed strong resistance to most conventional antibiotics; in addition, in chronic infections it commonly forms a biofilm matrix, which provides bacterial cells a protected environment to withstand various stresses including antibiotics. Given its importance as a human pathogen and its notorious antimicrobial tolerance, P. aeruginosa has been the subject of intensive investigations internationally. Research progress over the last two decades has unveiled a range of chemical communication systems in this pathogen. These diversified chemical communication systems endow P. aeruginosa a superb ability and remarkable flexibility to coordinate and modulate accordingly the transcriptional expression of various sets of genes associated with virulence and other physiologic activities in response to environmental changes. A fair understanding of the chemical signaling mechanisms with which P. aeruginosa governs virulence gene expression may hold the key to developing alternative therapeutic interventions that control and prevent bacterial infections.

5.
Cell Microbiol ; 21(10): e13076, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254473

RESUMO

Pseudomonas aeruginosa, an opportunistic life-threatening human bacterial pathogen, employs quorum-sensing (QS) signal molecules to modulate virulence gene expression. 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde (IQS) is a recently identified QS signal that integrates the canonical lasR-type QS of P. aeruginosa and host phosphate stress response to fine-tune its virulence production for a successful infection. To address the role of IQS in pathogen-host interaction, we here present that IQS inhibits host cell growth and stimulates apoptosis in a dosage-dependent manner. By downregulating the telomere-protecting protein POT1 in host cells, IQS activates CHK1, CHK2, and p53 in an Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR)-dependent manner and induces DNA damage response. Overexpression of POT1 in host cells presents a resistance to IQS treatment. These results suggest a pivotal role of IQS in host apoptosis, highlighting the complexity of pathogenesis mechanisms developed by P. aeruginosa during infection.

6.
MBio ; 10(3)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138747

RESUMO

Zeamines are a family of polyamino phytotoxins produced by Dickeya zeae EC1. These phytotoxins are also potent antibiotics against a range of microorganisms. To understand how D. zeae EC1 can protect itself from the antimicrobial activity of zeamines, we tested whether the ABC transporter genes within the zms (zeamine synthesis) gene cluster were related to zeamine resistance. Our results ruled out the possible involvement of these ABC transporters in zeamine resistance and instead unveiled an RND (resistance-nodulation-cell division) efflux pump, DesABC, which plays an important role in zeamine resistance in D. zeae EC1. The desAB genes are located next to the zms gene cluster, but desC is at a distant location in the bacterial genome. Null mutation of the desABC genes in a zeamine-minus derivative of strain EC1 led to about an 8- to 32-fold decrease in zeamine tolerance level. This efflux pump was zeamine specific and appeared to be conserved only in Dickeya species, which may explain the high potency of zeamines against a wide range of bacterial pathogens. Significantly, expression of the desAB genes was abolished by deletion of zmsA, which encodes zeamine biosynthesis but could be induced by exogenous addition of zeamines. The results suggest that sophisticated and coordinated regulatory mechanisms have evolved to govern zeamine production and tolerance. Taken together, these findings documented a novel signaling role of zeamines and the first resistance mechanism against zeamines, which is a family of potent and promising antibiotics against both Gram-positive and Gram-negative bacterial pathogens.IMPORTANCE Zeamines are a family of newly identified phytotoxins and potent antibiotics produced by D. zeae EC1. Unlike most bacterial organisms, which are highly sensitive, D. zeae EC1 is tolerant to zeamines, but the mechanisms involved are unknown. Our study showed, for the first time, that a new RND efflux pump, DesABC, is indispensable for D. zeae EC1 against zeamines. We found that the DesABC efflux pump was zeamine specific and appeared to be conserved only in the Dickeya species, which may explain the high potency of zeamines against a wide range of bacterial pathogens. We also showed that expression of DesABC efflux system genes was induced by zeamines. These findings not only provide an answer to why D. zeae EC1 is much more tolerant to zeamines than other bacterial pathogens but also document a signaling role of zeamines in modulation of gene expression.

7.
mSphere ; 4(3)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142621

RESUMO

Sporisorium scitamineum is the fungal pathogen causing severe sugarcane smut disease that leads to massive economic losses globally. S. scitamineum invades host cane by dikaryotic hyphae, formed after sexual mating of two haploid sporidia of opposite mating type. Therefore, mating/filamentation is critical for S. scitamineum pathogenicity, while its molecular mechanisms remain largely unknown. The AGC (cyclic AMP [cAMP]-dependent protein kinase 1 [protein kinase A {PKA}], cGMP-dependent protein kinase [PKG], and protein kinase C [PKC]) kinase family is a group of serine/threonine (Ser/Thr) protein kinases conserved among eukaryotic genomes, serving a variety of physiological functions, including cell growth, metabolism, differentiation, and cell death. In this study, we identified an AGC kinase, named SsAgc1 (for S. scitamineum Agc1), and characterized its function by reverse genetics. Our results showed that SsAgc1 is critical for S. scitamineum mating/filamentation and pathogenicity, and oxidative stress tolerance under some circumstances. Transcriptional profiling revealed that the SsAgc1 signaling pathway may control expression of the genes governing fungal mating/filamentation and tryptophan metabolism, especially for tryptophol production. We showed that tryptophan and tryptophol could at least partially restore ssagc1Δ mating/filamentation. Overall, our work revealed a signaling pathway mediated by AGC protein kinases to regulate fungal mating/filamentation, possibly through sensing and responding to tryptophol as signal molecules.IMPORTANCE The AGC signaling pathway represents a conserved distinct signaling pathway in regulation of fungal differentiation and virulence, while it has not been identified or characterized in the sugarcane smut fungus Sporisorium scitamineum In this study, we identified a PAS domain-containing AGC kinase, SsAgc1, in S. scitamineum Functional analysis revealed that SsAgc1 plays a regulatory role on the fungal dimorphic switch.

8.
Int J Mol Sci ; 20(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813400

RESUMO

The initiative strategy for the development of novel anti-microbial agents usually uses the virulence factors of bacteria as a target, without affecting their growth and survival. The type III secretion system (T3SS), one of the essential virulence factors in most Gram-negative pathogenic bacteria because of its highly conserved construct, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) causes leaf blight diseases and is one of the most important pathogens on rice. To find potential anti-virulence agents against this pathogen, a number of natural compounds were screened for their effects on the T3SS of Xoo. Three of 34 compounds significantly inhibited the promoter activity of the harpin gene, hpa1, and were further checked for their impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with CZ-1, CZ-4 and CZ-9 resulted in an obviously attenuated HR without affecting bacterial growth and survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hypersensitive response and pathogenicity (hrp) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.


Assuntos
Oryza/microbiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sistemas de Secreção Tipo III/metabolismo , Xanthomonas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes de Plantas , Oryza/efeitos dos fármacos , Oryza/genética , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química , Tabaco/microbiologia , Xanthomonas/efeitos dos fármacos , Xanthomonas/crescimento & desenvolvimento
9.
Mol Microbiol ; 111(6): 1493-1509, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825339

RESUMO

Bacterial pathogen Dickeya zeae strain EC1 produces antibiotics-like phytotoxins called zeamines, which are major virulence determinants encoded by the zms gene cluster. In this study, we identified a zeamine-deficient mutant with a Tn5 insertion in a gene designated as vfmI encoding a two-component system (TCS) sensor histidine kinase (HK), which is accompanied by vfmH encoding a response regulator (RR) at the same genetic locus. Domain analysis shows this TCS is analogous to the VfmIH of D. dadantii, with typical characteristics of sensor HK and RR, respectively, and sharing the same operon. Deletion of either vfmI or vfmH resulted in decreased production of zeamines and cell wall degrading enzymes (CWDEs), and alleviated virulence on rice seeds and potato tubers. In D. dadantii 3937, VfmH was shown to bind to the promoters of vfmA and vfmE, while in D. zeae EC1, VfmH could bind to the promoters of vfmA, vfmE and vfmF. RNA-seq analysis of strain EC1 and its vfmH mutant also showed that the TCS positively regulated a range of virulence genes, including zms, T1SS, T2SS, T3SS, T6SS, flagellar and CWDE genes.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30675369

RESUMO

Pseudomonas aeruginosa tends to be among the dominant species in multi-species bacterial consortia in diverse environments. To understand P. aeruginosa's physiology and interactions with co-existing bacterial species in different conditions, we established physiologically reproducible 18 species communities, and found that P. aeruginosa dominated in mixed-species biofilm communities but not in planktonic communities. P. aeruginosa's H1 type VI secretion system was highly induced in mixed-species biofilm consortia, compared with its monospecies biofilm, which was further demonstrated to play a key role in P. aeruginosa's enhanced fitness over other bacterial species. In addition, the type IV pili and Psl exopolysaccharide were required for P. aeruginosa to compete with other bacterial species in the biofilm community. Our study showed that the physiology of P. aeruginosa is strongly affected by interspecies interactions, and both biofilm determinants and type VI secretion system contribute to higher P. aeruginosa's fitness over other species in complex biofilm communities.

11.
Environ Microbiol ; 21(3): 959-971, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537399

RESUMO

The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. The formation and growth of dikaryotic hypha after sexual mating is critical for S. scitamineum pathogenicity, however regulation of S. scitimineum mating has not been studied in detail. We identified and characterized the core components of the conserved cAMP/PKA pathway in S. scitamineum by reverse genetics. Our results showed that cAMP/PKA signalling pathway is essential for proper mating and filamentation, and thus critical for S. scitamineum virulence. We further demonstrated that an elevated intracellular ROS (reactive oxygen species) level promotes S. scitamineum mating-filamentation, via transcriptional regulation of ROS catabolic enzymes, and is under regulation of the cAMP/PKA signalling pathway. Furthermore, we found that fungal cAMP/PKA signalling pathway is also involved in regulation of host ROS response. Overall, our work displayed a positive role of elevated intracellular ROS in fungal differentiation and virulence.

12.
mSystems ; 3(6)2018 Nov-Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505942

RESUMO

The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.

13.
Mycology ; 9(3): 233-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181929

RESUMO

Phytohormones (also named as plant hormones) are chemicals produced by plants in order to modulate various aspects of plant development, stress responses and defence. Recent studies revealed that fungi can also produce phytohormones or phytohormone-mimiking molecules, while it remains poorly understood about the details in the role and regulatory mechanism of such fungal produced phytohormonal molecules in plant-fungus interactions. The rice-blast fungus Magnaporthe oryzae imposes a great threat to global food security. Intensive investigation has been conducted to elucidate M. oryzae pathogenicity and rice (Oryza sativa L.) defense mechanism against blast disease, in order to provide theoretical basis and/or identify potential target(s) for developing novel disease control strategies, as well as for breeding of resistance varieties. Phytohormones have been demonstrated to play conserved and divergent roles in fine-tuning the balance of rice growth and immunity towards M. oryzae. Meanwhile, M. oryzae evolved elaborate strategy to manipulate the rice phytohormones metabolism, or even directly produce and secrete phytohormones, during their invasion process. In this review, we discuss the chemical communication in term of phytohormones in M. oryzae-rice pathosystem.

14.
Bioorg Med Chem Lett ; 28(19): 3276-3280, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30131240

RESUMO

A series of 3,5-dimethylpyrazole derivatives containing 5-phenyl-2-furan moiety were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. Bioassay results showed that the title compounds exhibited considerable inhibitory activity against PDE4B and blockade of LPS-induced TNFα release. Among the designed compounds, compound If showed the best inhibitory activity against PDE4B with the IC50 value of 1.7 µM, which also showed good in vivo activity in animal models of asthma/COPD and sepsis induced by LPS. The primary structure-activity relationship (SAR) study and docking results suggested that introduction of the substituent groups to the phenyl ring at the para-position, especially methoxy group, was helpful to enhance inhibitory activity against PDE4B.

15.
Bioorg Med Chem Lett ; 28(19): 3271-3275, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30131242

RESUMO

Tetrahydroquinoline and tetrahydroisoquinoline derivatives containing 2-phenyl-5-furan moiety were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. The bioassay results showed that title compounds showed good inhibitory activity against PDE4B and blockade of LPS (lipopolysaccharide) induced TNF-α release, which also exhibited considerable in vivo activity in animal models of asthma/COPD (chronic obstructive pulmonary disease) and sepsis induced by LPS. The bioactivity of compounds containing tetrahydroquinoline (series 4) was higher than that of tetrahydroisoquinoline derivatives (series 3). Compound 4 m with 4-methoxybenzene moiety exhibited the best potential selective activity against PDE4B. The primary structure-activity relationship study and docking results showed that the tetrahydroquinoline moiety of compound 4 m played a key role to form hydrogen bonds and π-π stacking interaction with PDE4B protein while the rest part of the molecule extended into the catalytic domain to block the access of cAMP and formed the foundation for inhibition of PDE4B. Based on LPS induced sepsis model for the measurement of TNF-α inhibition in Swiss Albino mice and neutrophilia inhibition for asthma and COPD in Sprague Dawley rats with the potential molecules, compound 4 m would be great promise as a hit inhibitor in the future study.

16.
3 Biotech ; 8(9): 380, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30148030

RESUMO

To develop a new strategy that controls vascular pathogen infections in economic crops, we examined a possible enhancer of the vascular activity of XYLOGEN PROTEIN 1 promoter (Px). This protein is specifically expressed in the vascular tissues of Arabidopsis thaliana and plays an important role in xylem development. Although Px is predicted as vascular-specific, its activity is hard to detect and highly susceptible to plant and environmental conditions. The cauliflower mosaic virus 35S promoter (35S) is highly active in directing transgene expression. To test if 35S could enhance Px activity, while vascular specificity of the promoter is retained, we examined the expression of the uidA reporter gene, which encodes ß-glucuronidase (GUS), under the control of a chimeric promoter (35S-Px) or Px by generating 35S-Px-GUS and Px-GUS constructs, which were transformed into tobacco seedlings. Both 35S-Px and Px regulated gene expression in vascular tissues. However, GUS expression driven by 35S-Px was not detected in 30- and 60-day-old plants. Quantitative real-time PCR analysis showed that GUS gene expression regulated by 35S-Px was 6.2-14.9-fold higher in vascular tissues than in leaves. Histochemical GUS staining demonstrated that 35S-Px was strongly active in the xylem and phloem. Thus, fusion of 35S and Px might considerably enhance the strength of Px and increase its vascular specificity. In addition to confirming that 35S enhances the activity of a low-level tissue-specific promoter, these findings provide information for further improving the activity of such promoters, which might be useful for engineering new types of resistant genes against vascular infections.

17.
Pestic Biochem Physiol ; 149: 89-97, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30033022

RESUMO

Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most Important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with the title compounds II-2, II-3 and II-4 resulted in significantly attenuated HR without affecting bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.


Assuntos
Antibacterianos/farmacologia , Cianamida/farmacologia , Oryza/microbiologia , Tiazolidinas/farmacologia , Sistemas de Secreção Tipo III/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos , Antibacterianos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genes Bacterianos , Genes Reguladores , Regiões Promotoras Genéticas , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray , Virulência/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/patogenicidade
18.
Microb Biotechnol ; 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29931737

RESUMO

Sexual mating of compatible sporida is essential for Sporisorium scitamineum to form dikaryotic mycelia and then cause infection on sugarcane. Our previous work identified a Pseudomonas sp. ST4 from a soil sample, which showed a promising biocontrol potential by inhibiting the mating of S. scitamineum sporida and hyphal growth. In this study, we set to isolate the active compounds from Pseudomonas sp. ST4 through solid fermentation. High-performance liquid chromatography (HPLC) separation coupling with bioassay showed that Pseudomonas sp. ST4 produced a range of antimicrobial compounds. Two of the major components were purified following acetate extraction, silica gel and HPLC separation. Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) analysis identified these active compounds are 4-hydroxybenzaldehyde and indole-3-carbaldehyde respectively. Further analysis showed that the former compound only inhibited the hyphal growth of the fungus at a concentration of 3 mM, while the latter interfered the fungal sexual mating at a concentration of 0.6 mM and affected hyphal growth at a concentration of 2 mM. Treatment of corn plants with 3 mM indole-3-carbaldehyde significantly inhibited corn smut infection, with a control rate up to 94%. Further analysis of the structure and activity relationship revealed that indole has a much stronger inhibitory activity against the fungal sexual mating than indole-3-carbaldehyde. The results from this study provide new agents for control and prevention of the sugarcane smut disease, and the active compounds could also be used to probe the molecular mechanisms of fungal sexual mating.

19.
Microb Biotechnol ; 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29761642

RESUMO

Pseudomonas aeruginosa is known to cause life-threatening infections. The previous studies showed that the type III secretion system (T3SS) of this pathogen is a key virulence determinant, which is activated by polyamines signals spermidine (Spd) and spermine (Spm) from mammalian host. To test the potential of blocking host-pathogen communication in disease control, in this study we developed a high potency mouse monoclonal antibody (Mab 4E4, IgG1 sub-isotype) by using Spm-protein conjugate as an immunogen. Antibody specificity analysis showed that the antibody specifically recognize Spd and Spm. In vitro study showed the antibody significantly protected A549 cells against P. aeruginosa infection, and this protection was achieved by blocking polyamine uptake and downregulating T3SS expression. In vivo single injection of mouse with Mab 4E4 drastically reduced the serum polyamine level, which was maintained for more than 1 week. In a murine model of P. aeruginosa acute infection, injection of Mab 4E4 protected mice from lung injury and significantly improved the survival rate of mice.

20.
Nat Commun ; 9(1): 1289, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599443

RESUMO

RNAs are well-suited to act as cellular sensors that detect and respond to metabolite changes in the environment, due to their ability to fold into complex structures. Here, we introduce a genome-wide strategy called PARCEL that experimentally identifies RNA aptamers in vitro, in a high-throughput manner. By applying PARCEL to a collection of prokaryotic and eukaryotic organisms, we have revealed 58 new RNA aptamers to three key metabolites, greatly expanding the list of natural RNA aptamers. The newly identified RNA aptamers exhibit significant sequence conservation, are highly structured and show an unexpected prevalence in coding regions. We identified a prokaryotic precursor tmRNA that binds vitamin B2 (FMN) to facilitate its maturation, as well as eukaryotic mRNAs that bind and respond to FMN, suggesting FMN as the second RNA-binding ligand to affect eukaryotic expression. PARCEL results show that RNA-based sensing and gene regulation is more widespread than previously appreciated in different organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA