Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Comp Biochem Physiol B Biochem Mol Biol ; 243-244: 110434, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32201355

RESUMO

Histone demethylation modification is an important means of gene expression regulation and is widely involved in biological processes such as animal reproduction and development. Histone lysine demethylases (Kdm) plays an important role in the demethylation of histones. To understand the role of histone demethylation in scallops, we identified the Kdm gene family of the Yesso scallop Patinopecten yessoensis, and analyzed its expression during the gonad and early development. The results showed that the P. yessoensis has a complete Kdm family including seventeen members that belong to sixteen subfamilies (Hif1an, Hspbap1, Jarid2, Jmjd4, Jmjd6, Jmjd7, Jmjd8, Kdm1, Kdm2, Kdm3, Kdm4, Kdm5, Kdm6, Kdm7, Kdm8 and Kdm9). The Kdm genes showed five different expression patterns in the early development of scallop, with some of them (e.g. Jmjd7, Jmjd8 and Kdm8) being highly expressed in only one or two stage and the others (e.g. Kdm1A, Kdm9, Jmjd4 and Jmjd6) in several consecutive stages. During gonadal development, the Kdm genes also display various expression patterns. Some genes (e.g. Kdm2, Kdm4 and Jmjd7) display preferential expression in the testis, and the others have no obvious sex bias but show stage preference (resting, proliferative, growing or maturation stage). These results suggest that various histone demethylation modifications (e.g. H3K4, H3K9 and H3K27) may participate in the regulation of gametogenesis and early development of Yesso scallop. It will facilitate a better understanding of the epigenetic contributions to mollusk development.

3.
Life Sci ; 249: 117498, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32142765

RESUMO

AIMS: Doxorubicin (DOX) is an effective anthracycline anticancer drug. However, the clinical usage of it is limited due to its severe cardiotoxicity side effects. Metformin (Met) is a kind of first-line antihyperglycemic drug which has a potential protective effect on the heart,it is often used for oral treatment of type 2 diabetes. In this study, we explored whether Met could attenuate cardiotoxicity induced by DOX. MATERIALS AND METHODS: For the sake of exploring the Met protective effect and mechanism, we established the DOX-induced cardiotoxicity models both in H9C2 cells incubated with 5 µM DOX in vitro and Sprague-Dawley rats treated with 20 mg/kg cumulative dose of DOX. KEY FINDINGS: Met is able to inhibit growth inhibition and apoptosis of H9C2 cells induced by DOX. The heart indexes of rats were examined to evaluate the Met cardiotoxicity protection. Met improved the abnormal indexes, serum markers of cardiac heart injury, echocardiography, electrocardiogram, cardiac pathology, cardiomyocyte apoptosis, and oxidative stress markers induced by DOX. Furthermore, in vivo and in vitro studies demonstrated that Met protected against DOX-induced increasing cleaved caspase-3 and Bax. Met also prevented the downregulation of Bcl-2, activated the AMPK pathway, and inhibited the MAPK pathway. SIGNIFICANCE: Met showed protective effects on DOX-induced cardiotoxicity by reducing oxidative stress and apoptosis, as well as regulating AMPK and MAPK signaling pathways.

4.
Phytother Res ; 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115816

RESUMO

Sleep deprivation has been widely reported to cause cognitive dysfunction, and elevation in oxidative stress and inflammation in the body, including the brain, have been suggested as the main factors. Genistein (GE) is an isoflavone widely present in leguminous plants, and it was found to exert a wide spectrum of biological activities, including antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, and antimetastatic effects. In this study, the protective effect of GE on chronic sleep deprivation (CSD)-induced cognitive dysfunction was investigated. The mice were subjected to the sleep interruption apparatus and continuously sleep deprived for 25 days. GE was orally administrated (10, 20, and 40 mg/kg) during the sleep deprivation process totally for 25 days. Cognitive behavioral tests were conducted to study the learning and memory using the object location recognition (OLR) task, novel object recognition (NOR) test, and the Morris water maze (MWM) task. Additionally, the cortex and hippocampus were dissected to measure the oxidative stress markers and the antioxidant element nuclear erythroid-2-related factor 2 (Nrf2) and its downstream targets, including glutamate cysteine ligase catalytic, glutamate cysteine ligase modifier, heme oxygenase 1, and quinone oxidoreductase 1, as well as nuclear factor kappa B (NF-κB) p65, nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) protein expression. Moreover, the pro-inflammatory cytokines (TNF-α, interleukin [IL]-6, and IL-1ß) level was examined in the serum. The current results showed that GE could dose-dependently ameliorate the cognitive deficits of CSD-treated mice in the OLR, NOR, and MWM tasks. In addition, GE treatment significantly elevated the activities of total antioxidant capacity and superoxide dismutase and the level of glutathione and lowered the content of malondialdehyde in the cortex and hippocampus of CSD-treated mice. Furthermore, GE administration effectively activated the antioxidant element Nrf2 and its downstream targets in the cortex and hippocampus of CSD-treated mice. Moreover, GE treatment significantly suppressed CSD-induced NF-κB p65, iNOS, and COX-2 activation in the cortex and hippocampus, as well as inhibited CSD-induced pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) release in the serum. Taken together, all these results suggested that GE has substantial potential as a therapeutic intervention for the alleviation of CSD-induced deleterious effects.

5.
Plant Biol (Stuttg) ; 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160384

RESUMO

Phosphorus is an important nutrient factor to restricts plant growth. However, the influence of phosphorus deficiency on elemental homeostasis and the application of growth rate hypothesis in higher plants remain to be assessed. Two shrubs, Zygophyllum xanthoxylum and Nitraria tangutorum, were used as experiment materials and subjected to five P addition treatments: 0,17.5, 35, 52.5 and 70mg P kg-1 soil. The biomass and relative growth rate of Z. xanthoxylum did not change with altered P supplies. There was no significant difference in P concentration among the treatments for Z. xanthoxylum, but N. tangutorum showed an upward trend. P stoichiometric homeostasis of Z. xanthoxylum was higher than N. tangutorum. For Z. xanthoxylum, available P in rhizosphere were improved significantly under extreme P deficiency conditions and P concentrations in all treatments were lower than N. tangutorum, showing that Z. xanthoxylum had stronger P absorption and P utilization capabilities. Relationships between growth rate and C:N:P ratios were not found in Z. xanthoxylum. The strong P efficiencies, high and stable dry matter accumulation are likely contributors for maintaining stoichiometric homeostasis. Additionally, the relatively high biomass accumulation and high P utilization efficiency for Z. xanthoxylum does not support growth rate hypothesis for this species.

6.
Radiol Med ; 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048155

RESUMO

PURPOSE: The pathological risk degree of gastrointestinal stromal tumors (GISTs) has become an issue of great concern. Computed tomography (CT) is beneficial for showing adjacent tissues in detail and determining metastasis or recurrence of GISTs, but its function is still limited. Radiomics has recently shown a great potential in aiding clinical decision-making. The purpose of our study is to develop and validate CT-based radiomics models for GIST risk stratification. METHODS: Three hundred and sixty-six patients clinically suspected of primary GISTs from January 2013 to February 2018 were retrospectively enrolled, among which data from 140 patients were eventually analyzed after exclusion. Data from patient CT images were partitioned based on the National Institutes of Health Consensus Classification, including tumor segmentation, radiomics feature extraction and selection. A radiomics model was then proposed and validated. RESULTS: The radiomics signature demonstrated discriminative performance for advanced and nonadvanced GISTs with an area under the curve (AUC) of 0.935 [95% confidence interval (CI) 0.870-1.000] and an accuracy of 90.2% for validation cohort. The radiomics signature demonstrated favorable performance for the risk stratification of GISTs with an AUC of 0.809 (95% CI 0.777-0.841) and an accuracy of 67.5% for the validation cohort. Radiomics analysis could capture features of the four risk categories of GISTs. Meanwhile, this CT-based radiomics signature showed good diagnostic accuracy to distinguish between nonadvanced and advanced GISTs, as well as the four risk stratifications of GISTs. CONCLUSION: Our findings highlight the potential of a quantitative radiomics analysis as a complementary tool to achieve an accurate diagnosis for GISTs.

7.
Trials ; 21(1): 48, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915046

RESUMO

BACKGROUND: No treatment has convincingly been proven to be beneficial for microvascular obstruction (MVO) in patients with ST-elevation myocardial infarction (STEMI). Several studies have described the effects of Danhong Injection. However, evidence of a rigorously designed verification study is still lacking, and the intervention timing of Danhong Injection is uncertain. METHODS: The DIRECTION study is a multicenter, prospective, randomized, evaluator-blind study. A total of 336 patients with STEMI receiving percutaneous coronary intervention (PCI) will be randomly assigned to conventional treatment, the preoperative Danhong Injection, or the postoperative Danhong Injection. The primary outcome is rate of ST-segment resolution (STR) ≥ 70% at 90 min after PCI. The secondary outcomes are the degree of STR, Thrombolysis in Myocardial Infarction (TIMI) flow grade, TIMI myocardial perfusion grade, left ventricular ejection fraction, N-terminal prohormone brain natriuretic peptide, high-sensitivity C-reactive protein, and infarct size expressed as area under the curve for cardiac troponin I (cTnI) and for creatine kinase MB. The major adverse cardiovascular events and hospital readmission events will be recorded. Health quality will be assessed with the 12-item Short Form Health Survey. The safety outcomes include bleeding events, adverse events, and abnormal changes in routine blood tests. Psychological status and dietary patterns will be evaluated using Hamilton Depression Rating Scale and Food Frequency Questionnaire as the relevant indicators. DISCUSSION: This trial will evaluate the efficacy and safety of Danhong Injection, as well as its optimal timing of intervention to prevent MVO in patients with STEMI. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900021440. Registered on February 21, 2019.

8.
Theor Appl Genet ; 133(2): 491-502, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773176

RESUMO

KEY MESSAGE: Two novel midge resistance QTL were mapped to a 4.9-Mb interval on chromosome arm 4AL based on the genetic maps constructed with SNP markers. Orange wheat blossom midge (OWBM) is a devastating insect pest affecting wheat production. In order to detect OWBM resistance genes and quantitative trait loci (QTL) for wheat breeding, two recombinant inbred line (RIL) populations were established and used for molecular mapping. A total of seven QTL were detected on chromosomes 2D, 4A, 4D and 7D, respectively, of which positive alleles were all from the resistant parents except for the QTL on 7D. Two stable QTL (QSm.hbau-4A.2-1 and QSm.hbau-4A.2-2) were detected in both populations with the LOD scores ranging from 5.58 to 29.22 under all three environments, and they explained a combined phenotypic variation of 24.4-44.8%. These two novel QTL were mapped to a 4.9-Mb physical interval. The single-nucleotide polymorphism (SNP) markers AX-109543456, AX-108942696 and AX-110928325 were closely linked to the QTL and could be used for marker-assisted selection (MAS) for OWBM resistance in wheat breeding programs.

9.
J Drug Target ; : 1-16, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31868032

RESUMO

Because the induction of strong host antitumor responses plays a very important role in antitumor therapy, identifying effective approaches to elicit immunogenic cell death could have important implications. RIP3-dependent necroptotic cancer cells have been reported to release damage-associated molecular patterns and enhance antitumor immunity. In this study, hyaluronic acid-conjugated cationic liposomes (DOTAP/DOPE/PEG-DSPE/CHOL) (HA-P-LP) were prepared as a vector for mRIP3-pDNA overexpression in tumours. Compared with standard cationic liposomes, this vector markedly increased cellular gene internalisation in vitro, enhanced the tumour-targeting effect in vivo and exhibited a significant antitumor effect in combination with adjuvant chloroquine. Considering the dramatic increase in RIP3 under the pathological condition of pancreatitis and the correlation between pancreatitis and necroptosis, non-HA-conjugated liposomes with the same formulation loaded with shRNA mRIP3-pDNA effectively controlled the disease by decreasing the serum amylase concentration and inflammatory cell infiltration. The versatile cationic liposomes loaded with plasmids with opposing functions in this study provide a new concept and method for both tumour therapy and pancreatitis therapy.

10.
BMC Plant Biol ; 19(1): 481, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703625

RESUMO

BACKGROUND: Linoleic acid is an important polyunsaturated fatty acid, required for all eukaryotes. Microsomal delta-12 (Δ12) oleate desaturase (FAD2) is a key enzyme for linoleic acid biosynthesis. Desert shrub Artemisia sphaerocephala is rich in linoleic acid, it has a large FAD2 gene family with twenty-six members. The aim of this work is to unveil the difference and potentially functionality of AsFAD2 family members. RESULTS: Full-length cDNAs of twenty-one AsFAD2 genes were obtained from A. sphaerocephala. The putative polypeptides encoded by AsFAD2 family genes showed a high level of sequence similarity and were relatively conserved during evolution. The motif composition was also relatively conservative. Quantitative real-time PCR analysis revealed that the AsFAD2-1 gene was strongly expressed in developing seeds, which may be closely associated with the high accumulating ability of linoleic acid in A. sphaerocephala seeds. Although different AsFAD2 family members showed diverse response to salt stress, the overall mRNA levels of the AsFAD2 family genes was stable. Transient expression of AsFAD2 genes in the Nicotiana benthamiana leaves revealed that the encoded proteins were all located in the endoplasmic reticulum. Heterologous expression in Saccharomyces cerevisiae suggested that only three AsFAD2 enzymes, AsFAD2-1, - 10, and - 23, were Δ12 oleate desaturases, which could convert oleic acid to linoleic acid, whereas AsFAD2-1 and AsFAD2-10 could also produce palmitolinoleic acid. CONCLUSIONS: This research reported the cloning, expression studies, subcellular localization and functional identification of the large AsFAD2 gene family. These results should be helpful in understanding fatty acid biosynthesis in A. sphaerocephala, and has the potential to be applied in the study of plant fatty acids traits.


Assuntos
Artemisia/genética , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Estresse Salino/genética , Artemisia/enzimologia , Artemisia/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo
11.
Int J Biol Macromol ; 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31751716

RESUMO

Egg fertilization is a dynamic process, including varieties of biochemical changes. To better understand the molecular mechanisms during the egg embryo development, the objective of this study was to quantify protein expression changes between fertilized and unfertilized Beijing-You chicken eggs using label-free liquid chromatography-tandem mass spectrometry method. The results showed that a total of 1241 proteins were identified from fertilized and unfertilized eggs, 229 proteins were observed difference in fertilized eggs (p < 0.05) compared with that in unfertilized eggs. The expressions of 86 proteins were up-regulated and 48 proteins were down-regulated in fertilized eggs. STRING database analysis and Gene Ontology analysis results showed that these differentially expressed proteins significantly interacted and were involved in lipid transport and inflammatory response biological processes. The mRNA and protein expression levels of most differentially expressed proteins Apolipoprotein B, Fibrinogen alpha chain, Transferrin receptor protein 1, Phospholipid transfer protein and Vimentin were validated by RT-PCR and western blot. These results could provide possible novel insights for the molecular mechanism of egg fertilization.

12.
Complement Ther Med ; 47: 102209, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31780034

RESUMO

BACKGROUND AND AIM: Despite optimal secondary preventive treatment, patients with stable coronary artery disease (SCAD) remain at high risk of cardiovascular events. This multicenter, double-blinded, randomized trial sought to determine whether the addition of Qing-Xin-Jie-Yu Granule (QXJYG), a traditional Chinese medicine prescription, to standard therapy would further reduce risk of cardiovascular events in patients with SCAD. METHODS: A total of 1500 patients with documented SCAD were randomly assigned in a 1:1 ratio to QXJYG or placebo for 6 months, and followed up for another 6 months. The primary outcome was a composite of cardiovascular death, nonfatal myocardial infarction (MI) and coronary revascularization. Near the end of the trial, but before unblinding, a commonly used composite 'hard' endpoint composed of cardiovascular death, nonfatal myocardial infarction and ischemic stroke was additionally analyzed. RESULTS: During a median follow-up of 12 months, no significant difference of the primary outcome between the two groups was observed (1.59% vs. 1.62%; hazard ratio, 0.41; 95% CI, 0.13-1.28). However, absolute risk of the composite 'hard' endpoint was reduced by 0.99% (0.31% vs. 1.30%; hazard ratio, 0.06; 95%CI, 0.01 to 0.53). No difference of adverse events between the two groups was observed. CONCLUSION: In patients with SCAD, the addition of QXJYG to standard therapy was associated with reduced risk of nonfatal MI and the composite 'hard' endpoint of cardiovascular death, nonfatal MI and stroke. (http://www.chictr.org.cn/showproj.aspx?proj=5200, ChiCTR-TRC-13004370).

13.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661772

RESUMO

Our previous research has shown that a fungal immunomodulatory protein from Nectria haematococca (FIP-nha) possesses a wide spectrum of anti-tumor activities, and FIP-nha induced A549 apoptosis by negatively regulating the PI3K/Akt signaling pathway based on comparative quantitative proteomics. This study further confirmed that the anti-lung cancer activity of FIP-nha was significantly stronger than that of the reported LZ-8 and FIP-fve. Subsequently, 1H NMR-based metabolomics was applied to comprehensively investigate the underlying mechanism, and a clear separation of FIP-nha-treated and untreated groups was achieved using pattern recognition analysis. Four potential pathways associated with the anti-tumor effect of FIP-nha on A549 cells were identified, and these were mainly involved in glycolysis, taurine and hypotaurine metabolism, fructose and mannose metabolism, and glycerolipid metabolism. Metabolic pathway analysis demonstrated that FIP-nha could induce A549 cell apoptosis partly by regulating the p53 inhibition pathway, which then disrupted the Warburg effect, as well as through other metabolic pathways. Using RT-PCR analysis, FIP-nha-induced apoptosis was confirmed to occur through upregulation of p53 expression. This work highlights the possible use of FIP-nha as a therapeutic adjuvant for lung cancer treatment.

14.
Theor Appl Genet ; 132(11): 3201-3221, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31501915

RESUMO

KEY MESSAGE: Five putative candidate genes for OWBM resistance in Chinese winter wheat 'Jimai 24' were identified via BSR-seq and differential expression analyses. Orange wheat blossom midge (OWBM), Sitodiplosis mosellana, is one of the most serious threats to wheat production worldwide. Conventional gene mapping methods to identify genes require significant amounts of financial support and time. Here, bulked segregant RNA-seq (BSR-seq) was applied to profile candidate genes and develop associated markers for OWBM resistance. Previously, we identified a major QTL (QSm.hebau-4A) for OWBM resistance on the long arm of chromosome 4A. In this study, we aimed at screening differentially expressed resistance genes associated with this QTL. Twelve differentially expressed genes (DEGs) were obtained based on BSR-seq and differential expression analyses. Among them, four were confirmed to be associated with OWBM resistance via quantitative reverse transcription PCR, using an additional set of wheat samples subjected to OWBM invasion. One SPI-like gene and one Malectin-like gene were revealed by gene annotation, respectively. Sequencing results confirmed that the four DEGs and the SPI gene had SNP polymorphisms between wheat parents. All these five resistance-related genes for OWBM were located in the same genomic region with QSm.hebau-4A. Furthermore, six new markers developed based on sequences of the five genes were also mapped in the same genomic region using genetic population. These five genes may be the candidate genes for OWBM resistance in Chinese wheat 'Jimai 24' and should be the targets for further positional isolation.


Assuntos
Dípteros , Genes de Plantas , Herbivoria , Triticum/genética , Animais , Mapeamento Cromossômico , Marcadores Genéticos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Transcriptoma
16.
Adv Sci (Weinh) ; 6(13): 1900583, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380193

RESUMO

The photochemical microreactor has been a burgeoning field with important application in promoting photocatalytic reactions. The integration of light-converting media and microflow chemistry renders new opportunity for efficient utilization of light and high conversion rate. However, the flexibility of emission light wavelength regulation and the universality of the microreactor remain significant problems to be solved. Here, a photochemical microreactor filled with fluorescent fluid is fabricated by a 3D printing technique. The light-converting medium in the fluorescent fluid is used to collect and convert light, and then delivers light energy to the embedded continuous-flow reaction channels to promote the chemical reaction process. With the merits of flowability, different light-converting media can be replaced, making it a general tool for photocatalytic reactions in rapid screening, parameters optimization, and kinetic mechanism research.

17.
ACS Omega ; 4(1): 1549-1559, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459416

RESUMO

One-pot cascade reactions can simplify the synthetic route and reduce the use of solvents and energy. The critical part of the completion of the cascade reaction is the preparation of multifunctional catalysts. In this work, a novel and simple pathway was developed to construct multifunctional catalysts with acidic, basic, and magnetic properties at the same time. Mesoporous silica materials modified with different metal oxides were used as catalytic elements. Microspheres that assembled with catalytic components have a diameter of 150 µm and a specific surface area larger than 400 m2 g-1 and can be used as catalysts for cascade reactions. The yield of the final product in the deacetalization-Knoevenagel reaction is 92%. Microspheres integrated with Fe3O4 nanoparticles have a magnetic susceptibility of 7.2 emu g-1 and can be easily removed from the reaction system by applying an external magnetic field. This multimodule assembly method fully reflects the enormous power of complexity resulting from simplicity. This method provides a reference and practical technical support for the preparation of other multifunctional materials.

18.
PLoS One ; 14(7): e0207169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31260453

RESUMO

The traditional herb medicine Ferula sinkiangensis K. M. Shen (F. sinkiangensis) has been used to treat stomach disorders in Xinjiang District for centuries. Umbelliprenin is the effective component isolated from F. sinkiangensis which is particularly found in plants of the family Ferula. We previously reported the promising effects of Umbelliprenin against gastric cancer cells, but its anti-migration effect remained unknown. Here we investigated the anti-migration effect and mechanism of Umbelliprenin in human gastric cancer cells. In SRB assay, Umbelliprenin showed cytotoxic activities in the gastric cancer cell lines AGS and BGC-823 in a dose-and-time-dependent manner, while it showed lower cytotoxic activity in the normal gastric epithelium cell line GES-1. During transwell, scratch and colony assays, the migration of tumor cells was inhibited by Umbelliprenin treatment. In gelatin zymography assay, Umbelliprenin could inhibit the expression of MMP2 and MMP9 in tumor cells The expression levels of the Wnt-associated signaling pathway proteins were analyzed with western blots, and the results showed that Umbelliprenin decreased the expression levels of proteins of the Wnt signalling pathway, such as Wnt-2, ß-catenin, GSK-3ß, p-GSK-3ß, Survivin and c-myc. The translocation of ß-catenin to the nucleus was also inhibited by Umbelliprenin treatment. In TCF reporter assay, the transcriptional activity of T-cell factor/lymphoid enhancer factor (TCF/LEF) was decreased after Umbelliprenin treatment. The in vivo results suggested that Umbelliprenin induced little to no harm in the lung, heart and kidney. Overall, these data provided evidence that Umbelliprenin may inhibit the growth, invasion and migration of gastric cancer cells by disturbing the Wnt signaling pathway.


Assuntos
Movimento Celular/efeitos dos fármacos , Ferula/química , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas , Umbeliferonas , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Umbeliferonas/química , Umbeliferonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Cell Mol Med ; 23(8): 5063-5075, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31120192

RESUMO

Acute myocardial ischaemia/reperfusion (MI/R) injury causes severe arrhythmias with a high rate of lethality. Extensive research focus on endoplasmic reticulum (ER) stress and its dysfunction which leads to cardiac injury in MI/R Our study evaluated the effects of sulodexide (SDX) on MI/R by establishing MI/R mice models and in vitro oxidative stress models in H9C2 cells. We found that SDX decreases cardiac injury during ischaemia reperfusion and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase and reduced malondialdehyde in mice plasm, increased Bcl-2 expression, decreased BAX expression in a mouse model of MI/R. In vitro, SDX exerted a protective effect by the suppression of the ER stress which induced by tert-butyl hydroperoxide (TBHP) treatment. Both of the in vivo and in vitro effects were involved in the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. Inhibition of PI3K/Akt pathway by specific inhibitor, LY294002, partially reduced the protective effect of SDX. In short, our results suggested that the cardioprotective role of SDX was related to the suppression of ER stress in mice MI/R models and TBHP-induced H9C2 cell injury which was through the PI3K/Akt signalling pathway.

20.
Cancer Res ; 79(13): 3332-3346, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31018940

RESUMO

Copy number alterations are crucial for the development of colorectal cancer. Our whole-genome analysis identified tocopherol alpha transfer protein-like (TTPAL) as preferentially amplified in colorectal cancer. Here we demonstrate that frequent copy number gain of TTPAL leads to gene overexpression in colorectal cancer from a Chinese cohort (n = 102), which was further validated by a The Cancer Genome Atlas (TCGA) cohort (n = 376). High expression of TTPAL was significantly associated with shortened survival in patients with colorectal cancer. TTPAL promoted cell viability and clonogenicity, accelerated cell-cycle progression, inhibited cell apoptosis, increased cell migration/invasion ability in vitro, and promoted tumorigenicity and cancer metastasis in vivo. TTPAL significantly activated Wnt signaling and increased ß-catenin activation and protein expression of cyclin D1 and c-Myc. Coimmunoprecipitation followed by mass spectrometry identified thyroid receptor-interacting protein 6 (TRIP6) as a direct downstream effector of TTPAL. Depletion of TRIP6 significantly abolished the effects of TTPAL on cell proliferation and Wnt activation. Direct binding of TTPAL with TRIP6 in the cytoplasm inhibited ubiquitin-mediated degradation of TRIP6 and, subsequently, increased levels of TRIP6 displaced ß-catenin from the tumor suppressor MAGI1 via competitive binding. This sequence of events allows ß-catenin to enter the nucleus and promotes oncogenic Wnt/ß-catenin signaling. In conclusion, TTPAL is commonly overexpressed in colorectal cancer due to copy number gain, which promotes colorectal tumorigenesis by activating Wnt/ß-catenin signaling via stabilization of TRIP6. TTPAL overexpression may serve as an independent new biomarker for the prognosis of patients with colorectal cancer. SIGNIFICANCE: TTPAL, a gene preferentially amplified in colorectal cancer, promotes colon tumorigenesis via activation of the Wnt/ß-catenin pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA