Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
1.
J Pharm Biomed Anal ; 196: 113927, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33549875

RESUMO

To administer vitamin C (VC) with precision to patients with the coronavirus disease (COVID-19), we developed an ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to assess plasma VC concentrations. 31 patients with COVID-19 and 51 healthy volunteers were enrolled. VC stability was evaluated in blood, plasma, and precipitant-containing stabilizers. A proportion of 7.7 % of VC was degraded in blood at room temperature (RT) (approximately 20-25 °C) at 1.5 h post administration with respect to the proportion degraded at 0.5 h, but without statistical difference. VC was stable in plasma for 0.75 h at RT, 2 h at 4 °C, 5 days at -40 °C, and 4 h in precipitant-containing stabilizer (2 % oxalic acid) at RT. The mean plasma concentration of VC in patients with COVID-19 was 2.00 mg/L (0.5-4.90) (n = 8), which was almost 5-fold lower than that in healthy volunteers (9.23 mg/L (3.09. 35.30)) (n = 51). After high-dose VC treatment, the mean VC concentration increased to 13.46 mg/L (3.93. 34.70) (n = 36), higher than that in healthy volunteers, and was within the normal range (6-20 mg/L). In summary, we developed a simple UPLC-MS/MS method to quantify VC in plasma, and determined the duration for which the sample remained stable. VC levels in patients with COVID-19 were considerably low, and supplementation at 100 mg/kg/day is considered highly essential.

2.
Nanoscale ; 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410849

RESUMO

Using photocatalysis to produce clean H2 energy has been considered as one of the ideal strategies to alleviate the energy crisis and environmental pollution. In this work, the density functional theory (DFT) calculation was used as a guide to determine the experimental scheme of surface modification of Cu2O with Cu3P. With Cu2O as the core and Cu3P as the shell, the precursor was constructed by electrostatic self-assembly at first. After secondary calcination, Cu97P3 was formed from the compact interface between Cu2O and Cu3P, thus the 3D hierarchical structure of Cu-O-P(Cu2O@Cu97P3@Cu3P) was successfully constructed. The generation of Cu97P3 significantly increases the photocatalytic H2 production of Cu2O@Cu97P3@Cu3P under visible light irradiation. The photocatalytic activity of the composite with optimal ratio increased about 17 times as much as that of pure Cu2O. The separation and transportation efficiency of its photogenerated charges has been significantly improved. The 3D hierarchical core-shell structure is not only beneficial to strengthen the interface contact between different semiconductors but also to improve the transferability of photogenerated electrons. Through a series of experimental results, the strategy has proved to be successful that Cu3P was introduced onto the surface of the Cu2O octahedron to change the adsorption free energy of H atoms, reduce the overpotential of hydrogen evolution, and increase the active sites of hydrogen production. At the same time, the isolated interfaces are integrated by calcination to obtain Cu97P3 bridged substances derived from the interfaces. The presence of Cu97P3 establishes a new fast channel for electron flow between semiconductors, significantly accelerates the transfer of electrons, and ultimately improves the performance of photocatalytic hydrogen evolution. This work provides new insights into the design and flexible synthesis of inexpensive copper-based nano-photocatalysts.

3.
Acta Orthop ; : 1-6, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33416015

RESUMO

Background and purpose - Acetabular anteversion (AA) is related to hip function. Most previous studies were based on radiographic investigations that determine osseous acetabular anteversion (OAA). But children's acetabulum is mostly composed of cartilage; the cartilaginous acetabular anteversion (CAA) represents the real anteversion of the acetabulum. We measured OAA and CAA in children of various ages using MRI, and compared the developmental patterns between children with normal hips and those with developmental dysplasia of the hip (DDH). Patients and methods - The OAA and CAA were measured on MRI cross-sections of the hips in 293 children with normal hips (average age 8 years), and in 196 children with DDH (average age 34 months). Developmental patterns of OAA and CAA in children with normal hips were determined through age-based cross-sectional analysis. Differences in OAA and CAA between children with normal hips and those with DDH were compared. Results - Normal OAA increased from mean 8.7° (SD 3.2) to 12° (3.0) during the first 2 years of life and remained unchanged until 9 years of age. From 9 to 16 years, the OAA showed a minimal increase of 2°-3°. The normal CAA increased rapidly from a mean of 12° (3.1) to 15° (2.7) within the first 2 years of life, and remained constant at 15° (SD 3.4) until 16 years of age. The age-matched average OAA in the normal and DDH cases was 11° (3.2) and 15° (3.0), respectively (p < 0.001). The age-matched average CAA in normal and DDH cases was 17° (4.2) and 23° (4.5), respectively (p < 0.001). Similarly, there was a significant difference in OAA and CAA between the uninvolved hips in unilateral DDH and normal cases (p < 0.001). Interpretation - The CAA was fully formed at birth in normal children, and remained unchanged until adulthood, whereas the OAA increased with age. The OAA and CAA were both over-anteverted in DDH children. MRI evaluation is of importance in children during skeletal development when planning hip surgery.

4.
Sci Rep ; 11(1): 1243, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441827

RESUMO

Spikelet rot disease (SRD) is an emerging disease of the grain surface of naked oat in China that affects both grain yield and quality. The typical symptom is discoloration from the black structures of the causal fungi. Here, we investigated the fungal communities on the grain surfaces of cultivar Bayou 13 grown in ten ecological oat-producing regions of China, to identify the main pathogens of naked oat SRD. Our results showed that the growth of Alternaria spp. and Davidiella spp. exhibited a competitive relationship and was mainly affected by the elevations of all 10 ecological regions. The dominant pathogens were Davidiella spp. in Shannan Prefecture in Tibet and Haidong Prefecture in Qinghai Province and Alternaria spp. in the other eight regions. The ratios of black pathogens of interest to all pathogens in Shannan Prefecture and Haidong Prefecture were significantly lower than those of the other eight regions, thus indicating that SRD mainly occurred in regions below 2000 m (elevation). We isolated black fungal pathogens from grain surfaces and deduced that they were Alternaria spp. by sequence comparison. The blackened appearance of the grain surfaces was more evident under spray inoculation with a spore suspension of Alternaria than under the control in greenhouse experiments. The recovered pathogen was the same as the pathogen used for inoculation. We thus concluded that Alternaria alone causes naked oat SRD and mainly infects naked oat in regions below 2000 m, which provides a basis for the recognition and management of SRD of naked oat.

5.
Entropy (Basel) ; 22(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33286839

RESUMO

The present analysis deals with the entropy analysis of the blood flow through an anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and incompressible. The lubrication approach is used for the mathematical modeling. The second law of thermodynamics is used to examine the entropy generation. The exact solutions are obtained against velocity and temperature profile with the use of computational software. The results for Entropy, Velocity, Bejan number, temperature profile, and impedance profile are discussed by plotting the graphs. ZnO-NPs have promising applications in biomedical engineering due to its low toxicity, economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e., antibacterial and anticancer activity, and also beneficial in antidiabetic treatment. The monitoring of the blood temperature in the case of the tapered artery has supreme importance in controlling the temperature of blood in the living environment. The presence of a magnetic field is advantageous to manage and control the blood motion at different temperatures. The present outcomes are enriched to give valuable information for the research scientists in the field biomedical science, who are looking to examine the blood flow with stenosis conditions and also beneficial in treating multiple diseases.

6.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261127

RESUMO

6DoF object pose estimation is a foundation for many important applications, such as robotic grasping, automatic driving, and so on. However, it is very challenging to estimate 6DoF pose of transparent object which is commonly seen in our daily life, because the optical characteristics of transparent material lead to significant depth error which results in false estimation. To solve this problem, a two-stage approach is proposed to estimate 6DoF pose of transparent object from a single RGB-D image. In the first stage, the influence of the depth error is eliminated by transparent segmentation, surface normal recovering, and RANSAC plane estimation. In the second stage, an extended point-cloud representation is presented to accurately and efficiently estimate object pose. As far as we know, it is the first deep learning based approach which focuses on 6DoF pose estimation of transparent objects from a single RGB-D image. Experimental results show that the proposed approach can effectively estimate 6DoF pose of transparent object, and it out-performs the state-of-the-art baselines by a large margin.

7.
Kaohsiung J Med Sci ; 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33336500

RESUMO

Long noncoding RNA (lncRNA) Cancer Susceptibility 2 (CASC2) has been proved to contribute to the development of cancers. However, the mechanism behind the action of CASC2 in thyroid cancer is not quite clear. We demonstrated that CASC2 was downregulated in thyroid cancer. We noted that CASC2 overexpression restrained the growth, migration, and invasion of thyroid cancer cells, whereas CASC2 depletion caused opposite trends. Bioinformatics analysis predicted that hypoxia inducible factor 1 subunit alpha inhibitor (FIH-1) was potentially targeted by miR-18a-5p, which was confirmed by luciferase reporter assay. Upregulation of FIH-1 abrogated the promotive effect of miR-18a-5p on the growth and invasion of thyroid cancer cells. In addition, CASC2 serves as a competing endogenous RNA (ceRNA) and a ''sponge'' for miR-18a-5p, thereby regulating the expression of FIH-1. These data elucidated the CASC2/miR-18a-5p ceRNA network in thyroid cancer pathogenesis.

8.
Pharm Biol ; 58(1): 1229-1243, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33332219

RESUMO

CONTEXT: Xiayuxue decoction (XYXD), a traditional Chinese medicine, is used for treating liver disease. However, the potential active constituents and mechanisms are still unclear. OBJECTIVE: To explore the main active fraction extracts, active ingredients and possible mechanisms of XYXD for anti-hepatic fibrosis. MATERIALS AND METHODS: Different fractions including ethyl acetate fraction (EF) were prepared from XYXD. These fractions, especially EF, were used to evaluate cell viability, proliferation, cell cycle, cytotoxicity and activation in hepatic stellate cells (HSCs). Liver fibrosis model was established by CCl4 in C57BL/6 mice, and allocated to CCl4 group, XYXD group and EF group with normal mice as control. Further, mitochondrial apoptosis-related proteins of HSCs, destruction and angiogenesis of liver sinusoidal endothelial cells (LSECs) and active ingredients of EF were evaluated. RESULTS: The inhibition of proliferation, increase of S or/and G2/M phase population and suppression of α-SMA and COL-1 expression were obeserved in EF treated-JS1 and -LX2. Liver fibrosis-related indicators were improved by EF similar to XYXD in vivo. EF induced the apoptosis of HSCs in CCl4-induced fibrosis, and inhibited the expression of HSCs apoptosis pathway-related proteins (JNK and p38-MAPKs), and LSECs destruction and angiogenesis. Multiple ingredients (emodin, rhein, aloe-emodin, prunasin) in EF have shown inhibited the activation of JS1. DISCUSSION AND CONCLUSION: EF was the main active fraction extracts of XYXD, and the underlying mechanisms might relate to induction of HSCs apoptosis. Emodin, rhein, aloe-emodin and prunasin were main active ingredients of EF, which provides a potential drug for the treatment of liver fibrosis.

9.
PLoS One ; 15(12): e0237690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332392

RESUMO

Callus formation and adventitious shoot differentiation could be observed on the cut surface of completely decapitated tomato plants. We propose that this process can be used as a model system to investigate the mechanisms that regulate indirect regeneration of higher plants without the addition of exogenous hormones. This study analyzed the patterns of trans-zeatin and miRNA expression during in vivo regeneration of tomato. Analysis of trans-zeatin revealed that the hormone cytokinin played an important role in in vivo regeneration of tomato. Among 183 miRNAs and 1168 predicted target genes sequences identified, 93 miRNAs and 505 potential targets were selected based on differential expression levels for further characterization. Expression patterns of six miRNAs, including sly-miR166, sly-miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further validated by qRT-PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and sly-miR397 play major roles in callus formation of tomato during in vivo regeneration by regulating cytokinin, IAA, and laccase levels. Overall, our microRNA sequence and target analyses of callus formation during in vivo regeneration of tomato provide novel insights into the regulation of regeneration in higher plants.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Lycopersicon esculentum/genética , Lycopersicon esculentum/fisiologia , MicroRNAs/genética , Regeneração/genética , Zeatina/genética , Citocininas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
10.
Adv Mater ; : e2001367, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225543

RESUMO

White light-emitting diodes (WLEDs) are promising next-generation solid-state light sources. However, the commercialization route for WLED production suffers from challenges in terms of insufficient color-rendering index (CRI), color instability, and incorporation of rare-earth elements. Herein, a new two-component strategy is developed by assembling two broadband emissive materials with self-trapped excitons (STEs) for high CRI and stable WLEDs. The strategy addresses effectively the challenging issues facing current WLEDs. Based on first-principles thermodynamic calculations, copper-based ternary halides composites, CsCu2 I3 @Cs3 Cu2 I5 , are synthesized by a facile one-step solution approach. The composites exhibit an ideal white-light emission with a cold/warm white-light tuning and a robust stability against heat, ultraviolet light, and environmental oxygen/moisture. A series of cold/warm tunable WLEDs is demonstrated with a maximum luminance of 145 cd m-2 and an external quantum efficiency of 0.15%, and a record high CRI of 91.6 is achieved, which is the highest value for lead-free WLEDs. Importantly, the fabricated device demonstrates an excellent operation stability in a continuous current mode, exhibiting a long half-lifetime of 238.5 min. The results promise the use of the hybrids of STEs-derived broadband emissive materials for high-performance WLEDs.

11.
Life Sci ; : 118752, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188834

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a multi-factorial progressive vascular disease characterized by chronic inflammatory cell infiltration. We investigated the roles played by IFI16 and ASC inflammasomes in AAA development and progression. MATERIALS AND METHODS: Western blot and qRT-PCR studies were performed to analyze the expression of relative genes in AAA specimens and mouse vascular smooth muscle cells (VSMCs). The apoptosis rates and ROS levels of VSMCs were assessed by flow cytometry. Transwell assays were performed to analyze the migration ability of VSMCs. The levels of MCP-1, IL-1ß, and IL-6 in the supernatants of cultured VSMCs were analyzed by ELISA. KEY FINDINGS: Increased levels of IFI16 expression were found in AAA specimens and Ang-II-treated VSMCs. IFI16 and ASC silencing suppressed the apoptosis and migration ability of VSMCs undergoing Ang-II treatment, reduced elasticity damage to the aortic wall, and decreased the levels of MMP expression. The effect of IFI16 knockdown in Ang-II-induced VSMCs was reversed by MCPIP1 overexpression. SIGNIFICANCE: Our data suggest that an up-regulation of IFI16 and ASC expression might promote the apoptosis of VSMCs, enhance the inflammatory response, and impairs vascular wall elasticity via a MCPIP1-related mechanism. The inflammasome components IFI16 and ASC might be involved in AAA progression and serve as target molecules for diagnosing and treating AAA.

12.
Clin Cancer Res ; 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168656

RESUMO

On April 22, 2020, the FDA granted accelerated approval to sacituzumab govitecan-hziy (TRODELVY; Immunomedics, Inc.) for the treatment of patients with metastatic triple-negative breast cancer (mTNBC) who have received at least two prior therapies for metastatic disease. Approval was based on data from the IMMU-132-01 trial, a single-arm, multicohort, multicenter, Phase 1/2 trial of sacituzumab govitecan. The assessment of efficacy was based on 108 patients with mTNBC who had previously received at least two prior lines of therapy in the metastatic setting and who received sacituzumab govitecan 10 mg/kg intravenously (IV). The assessment of safety was based on 408 patients with advanced solid tumors who had received sacituzumab govitecan at doses up to 10 mg/kg IV. The primary efficacy endpoint was investigator-assessed objective response rate (ORR) and duration of response (DoR) was a key secondary endpoint. The ORR was 33.3% [36/108, 95% CI: 24.6, 43.1], and median DoR among responders was 7.7 months (95% CI: 4.9, 10.8). The most common adverse reactions occurring in ≥25% of patients were nausea, neutropenia, diarrhea, fatigue, anemia, vomiting, alopecia, constipation, rash, decreased appetite, and abdominal pain. This article summarizes the FDA review process and data supporting the approval of sacituzumab govitecan.

13.
Biofactors ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33217771

RESUMO

Fibrosis is the end stage of many chronic diseases, which results in organ function failure and high mortality. Mangiferin is a major constituent in mango and other 16 plants, and has been shown a variety of pharmacological effects, such as antioxidant, antibacterial, anti-tumor, anti-inflammation. The emerging evidence has shown that mangiferin can improve renal interstitial fibrosis, pulmonary fibrosis, myocardial fibrosis and hepatic fibrosis through the inhibition of inflammation, oxidative stress and fibrogenesis effects, indicating that mangiferin is promising therapeutic choice for organ fibrosis. The aim of this review is to summarize the therapeutic effects of mangiferin on fibrosis of various organs and the underlying mechanisms.

14.
Mol Med Rep ; 22(6): 4848-4856, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173960

RESUMO

Myocyte apoptosis and oxidative stress key critical roles in the process of doxorubicin (DOX)­induced cardiotoxicity. However, how apoptosis and oxidative stress arise in DOX­induced heart injury remains largely unknown. Cathepsin B (CTSB) is a typical lysosomal cysteine protease that is associated with apoptosis, inflammatory responses, oxidative stress and autophagy. The present study aimed to investigate the role of CTSB in DOX­induced heart injury and its potential mechanism. H9C2 cells were infected with adenovirus or transfected with small interfering RNA to overexpress or knock down CTSB, respectively, and then stimulated with DOX. DOX induced increased CTSB expression levels in H9C2 cells. DOX­induced cardiomyocyte apoptosis and oxidative stress were attenuated by CTSB knockdown but aggravated by CTSB overexpression in vitro. Mechanistically, the present study showed that CTSB activated the NF­κB pathway in response to DOX. In summary, CTSB aggravated DOX­induced H9C2 cell apoptosis and oxidative stress via NF­κB signalling. CTSB constitutes a potential therapeutic target for the treatment of DOX­induced cardiotoxicity.

15.
Transl Oncol ; 14(1): 100958, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33248413

RESUMO

OBJECTIVE: Mounting evidence demonstrates that long non-coding RNA (lncRNA) is dysregulated in breast cancers. This study was designed to detect the influences and regulatory mechanism of lncRNA PDCD4-AS1 in triple-negative breast cancer (TNBC). METHODS: qRT-PCR and Western blot were utilized to investigate the expression levels of PDCD4-AS1, miR-10b-5p and IQGAP2 in TNBC tissues and cells. Online software and luciferase reporter gene system were employed to testify the interactions among these molecules. Loss and gain of function of PDCD4-AS1, miR-10b-5p or IQGAP2 were performed before MTT and colony formation assay, TUNEL staining in addition to Transwell and scratch assays were applied to measure the cell biological functions. RESULTS: In this work, PDCD4-AS1 and IQGAP2 were lowly expressed while miR-10b-5p was strongly expressed in TNBC tissues and cells. PDCD4-AS1 or IQGAP2 overexpression effectively attenuated TNBC cell proliferation, migration and invasion, and increased the apoptosis rate, while this effect was abandoned in response to miR-10b-5p mimics transfection. miR-10b-5p bound to IQGAP2 and acted as a downstream target of PDCD4-AS1. CONCLUSION: Our findings identified lncRNA PDCD4-AS1 as a tumor suppressor in TNBC by regulating IQGAP2 expression via miR-10b-5p, giving a novel insight into the regulatory mechanism of PDCD4-AS1 in the pathogenesis of TNBC.

16.
Blood ; 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33254233

RESUMO

Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, increased immature progenitor and erythroblast. In erythroid cells of these mice, D-2-hydroxyglutarate (D-2HG), an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase (OGDH) activity and diminishes succinyl-CoA production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells (HSC), while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 (HO-1) expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species (ROS) that induce the cell death of IDH1-mutant erythroid cells. Our results clearly demonstrate the essential role of IDH1 in normal erythropoiesis and show how its mutation leads to myeloid disorders. Our data thus have important implications for the devising of new treatments for IDH-mutant tumors.

17.
ACS Omega ; 5(40): 26110-26115, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073138

RESUMO

Biomass is a renewable and clean energy. Moreover, clean heating plays a vital role in solving issues related to the heating source structures in northern China. This paper reports on our novel technology: a system of biomass (mainly fruitwood waste, referred to in short as FWW) gasification for simultaneous clean heating and fruitwood activated carbon (FAC) production. In particular, we will discuss the features of our gasification system and product characteristics, as well as energy efficiency, environmental benefits, and economic benefits. The results showed that the energy conversion from FWW gasification was as follows: 48.10% hot gas, 49.08% fruitwood gasified carbon (FGC), and 2.82% energy loss. The NO x emissions of this system were about 126 mg/Nm3. The iodine adsorption values of the derived FGC and FAC were about 550 and 1000 mg/g, respectively. The system of gasification consumed 36 t of FWW per day, obtained 10 t of FGC, and produced 5 t of FAC. The emissions of CO2 were neutral during the operation, and the clean heating area was 4100 m2/d in Chengde, Hebei, China, with the payback period under one heating season. These results show that the system is practical, economical, energy-saving, and environmentally friendly.

18.
Small ; 16(44): e2004272, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33025738

RESUMO

Multi-metallic halides of group IA and IB metals are emerged as a new class of color tunable emitters. While chalcogenides and perovskites are extensively studied, these families of materials are little explored. In comparison, herein, lead and cadmium free bimetallic Cs-Ag-X (X = Cl, Br, I) halides are reported where the larger ion Ag+ helped in incorporating all the halide ions which in turn tune their emission color in spanning from 397 nm (violet) to 820 nm (near infrared) as a function of their composition. The synthesis method adopted here is the solvent free ball milling of respective halides of Cs and Ag and took the record shortest time and in bulk scale. From decay lifetimes, emissions from these bimetallic halides are found as a result of fast recombination of self-trapped excitons, which exhibited not only reasonably high quantum yield in the range of 17-68% but also excellent stability to air and moisture under ambient conditions. These also show wide Stokes shift with relatively longer decay lifetimes ranging above the exciton and below the surface trap or dopant induced emissions of inorganic semiconductors, indicating a new class of materials having unique identity of their optical behaviors.

19.
PLoS One ; 15(10): e0239939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057425

RESUMO

To provide the general information on corneal transplantation (CT) in China, China Cornea Society designed a questionnaire on CT from 2014 to 2018 and entrusted it to 31 committee members for implementation of the survey nationwide. This article presents the results of the survey and compares the indicators used in the survey and those in the annual statistical report released by the Eye Bank Association of America (EBAA). The number of corneal transplantations completed by the 64 hospitals from 2014 to 2018 was respectively 5377, 6394, 7595, 8270 and 8980, totally 36,616 (22,959 male and 13,657 female). The five largest hospitals by the number of corneal transplantations completed 15,994 surgeries in total, accounting for 43.68% of all the surgeries performed in the 64 hospitals. The most common indication for corneal transplantations was corneal leukoma (7683, 20.98%), followed by bacterial keratitis (4209, 11.49%), corneal dystrophies (4189, 11.44%), keratoconus (3578, 9.77%) and corneal perforation (2839, 7.75%). The main surgical techniques were penetrating keratoplasty (PK) (19,896, 54.34%), anterior lamellar keratoplasty (ALK) (13,869, 37.88%). The proportion of PK decreased from 57.97% in 2014 to 52.88% in 2018 while the proportion of ALK increased from 36.04% in 2014 to 37.92% in 2018. The geographical distribution of keratoplasties performed in China is unbalanced. PK and ALK were the main techniques of CT and corneal leukoma, bacterial keratitis and corneal dystrophies were the main indications for CT in China.


Assuntos
Córnea , Doenças da Córnea , Transplante de Córnea , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , China , Córnea/patologia , Córnea/cirurgia , Doenças da Córnea/epidemiologia , Doenças da Córnea/cirurgia , Transplante de Córnea/métodos , Transplante de Córnea/estatística & dados numéricos , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Inquéritos e Questionários , Adulto Jovem
20.
Nucleic Acids Res ; 48(19): 10909-10923, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045748

RESUMO

The three-dimensional configuration of the chromatin architecture is known to be crucial for alterations in the transcriptional network; however, the underlying mechanisms of epigenetic control of senescence-related gene expression by modulating the chromatin architecture remain unknown. Here, we demonstrate frequent chromosomal compartment switching during mouse embryonic fibroblasts (MEFs) replicative senescence as characterized by senescence-inactivated (SIAEs) and -activated enhancers (SAEs) in topologically associated domains (TADs). Mechanistically, SAEs are closely correlated with senescence-associated secretory phenotype (SASP) genes, which are a key transcriptional feature of an aging microenvironment that contributes to tumor progression, aging acceleration, and immunoinflammatory responses. Moreover, SAEs can positively regulate robust changes in SASP expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is capable of enhancing SAE activity, which accelerates the emergence of SAEs flanking SASPs and the secretion of downstream factors, contributing to the progression of senescence. Our results provide novel insight into the TAD-related control of SASP gene expression by revealing hierarchical roles of the chromatin architecture, transcription factors, and enhancer activity in the regulation of cellular senescence.


Assuntos
Envelhecimento/genética , Senescência Celular , Fibroblastos/citologia , Regulação da Expressão Gênica , Animais , Células Cultivadas , Cromatina/metabolismo , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA