Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Intern Med ; 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32942841

RESUMO

Background/Aims: Accumulating evidence indicates that L-carnitine (LC) protects against multiorgan damage through its antioxidant properties and preservation of the mitochondria. Little information is available about the effects of LC on renal fibrosis. This study examined whether LC treatment would provide renoprotection in a rat model of unilateral ureteral obstruction (UUO) and in vitro. Methods: Sprague-Dawley rats that underwent UUO were treated daily with LC for 7 or 14 days. The influence of LC on renal injury caused by UUO was evaluated by histopathology, and analysis of gene expression, oxidative stress, mitochondrial function, programmed cell death, and phosphatidylinositol 3-kinase (PI3K)/ AKT/forkhead box protein O 1a (FoxO1a) signaling. In addition, H2O2-exposed human kidney cells (HK-2) were treated with LC. Results: LC treatment inhibited expression of proinflammatory and profibrotic cytokines, and was followed by a significant attenuation of tubulointerstitial inflammation and fibrosis. The increased oxidative stress caused by UUO was associated with mitochondrial dysfunction and excessive apoptosis and autophagy via PI3K/AKT/FoxO1a-dependent signaling, and this was abrogated by administration of LC. In H2O2-exposed HK-2 cells, LC decreased intracellular production of reactive oxygen species, and suppressed expression of profibrotic cytokines and reduced the number of apoptotic cells. Conclusions: LC protects against the progression of tubulointerstitial fibrosis in an obstructed kidney.

2.
Acta Pharmacol Sin ; 41(12): 1597-1608, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32300244

RESUMO

Tissue kallikrein has protective function against various types of injury. In this study, we investigated whether exogenous pancreatic kininogenase (PK) conferred renoprotection in a rat model of unilateral ureteral obstruction (UUO) and H2O2-treated HK-2 cells in vitro. SD rats were subjected to UUO surgery, then PK (7.2 U/g per day, ip) was administered for 7 or 14 days. After the treatment, rats were euthanized; the obstructed kidneys were harvested for further examination. We found that PK administration significantly attenuated interstitial inflammation and fibrosis, and downregulated the expression of proinflammatory (MCP-1, TLR-2, and OPN) and profibrotic (TGF-ß1 and CTGF) cytokines in obstructed kidney. UUO-induced oxidative stress, closely associated with excessive apoptotic cell death and autophagy via PI3K/AKT/FoxO1a signaling, which were abolished by PK administration. We further showed that PK administration increased the expression of bradykinin receptors 1 and 2 (B1R and B2R) mRNA and the production of NO and cAMP in kidney tissues. Coadministration with either B1R antagonist (des-Arg9-[Leu8]-bradykinin) or B2R antagonist (icatibant) abrogated the renoprotective effects of PK, and reduced the levels of NO and cAMP in obstructed kidney. In H2O2-treated HK-2 cells, addition of PK (6 pg/mL) significantly decreased ROS production, regulated the expression of oxidant and antioxidant enzymes, suppressed the expression of TGF-ß1 and MCP-1, and inhibited cell apoptosis. Our data demonstrate that PK treatment protects against the progression of renal fibrosis in obstructed kidneys.

3.
Korean J Intern Med ; 34(5): 1078-1090, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29432674

RESUMO

BACKGROUND/AIMS: Evidence suggests that Shen-Kang (SK), a traditional Chinese herbal medicine, protects against various types of renal injury. In this study, we evaluated whether SK treatment confers renoprotection in a rat model of chronic tacrolimus (TAC) nephropathy. METHODS: Rats were treated daily with TAC (1.5mg/kg, subcutaneously) and SK (450 mg/kg, intravenously) for 4 weeks. The effects of SK on TAC-induced renal injury were assessed by measuring renal function, urine albumin excretion, histopathology, inflammatory cell infiltration, expression of profibrotic (transforming growth factor ß1 [TGF-ß1] and TGF-ß inducible gene-h3 [ßig-h3]) and proinflammatory cytokines, oxidative stress, and apoptotic cell death. RESULTS: Administration of SK preserved glomerular integrity (fractional mesangial area and Wilms tumor 1-positive glomeruli), attenuated tubulointerstitial fibrosis, and reduced the number of ectodermal dysplasia 1-positive cells, and this was paralleled by improved urine albumin excretion and renal dysfunction. At the molecular level, SK treatment suppressed expression of TGF-ß1/Smad2/3, ßig-h3, and proinflammatory cytokines. Oxidative stress and apoptotic cell death were significantly decreased with SK treatment, and apoptosis-related genes were regulated toward cell survival (active caspase-3 and the B-cell lymphoma-2/Bcl2-associated X [Bcl-2/Bax] ratio). CONCLUSION: SK protects against TAC-induced renal injury.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Tacrolimo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Citoproteção , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...