Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 304: 110735, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568287

RESUMO

Alternative oxidase (AOX) is a mitochondrial enzyme encoded by a small nuclear gene family, which contains the two subfamilies, AOX1 and AOX2. In the present study on watermelon (Citrullus lanatus), only one ClAOX gene, belonging to AOX2 subfamily but having a similar gene structure to AtAOX1a, was found in the watermelon genome. The expression analysis suggested that ClAOX had the constitutive expression feature of AOX2 subfamily, but was cold inducible, which is normally considered an AOX1 subfamily feature. Moreover, one single nucleotide polymorphism (SNP) in ClAOX sequence, which led to the change from Lys (N) to Asn (K) in the 96th amino acids, was found among watermelon subspecies. Ectopic expression of two ClAOX alleles in the Arabidopsis aox1a knock-out mutant indicated that ClAOXK-expressing plants had stronger cold tolerance than aox1a mutant and ClAOXN-expressing plants. Our findings suggested watermelon genome contained a single ClAOX that possessed the expression features of both AOX1 and AOX2 subfamilies. A naturally existing SNP in ClAOX differentiated the cold tolerance of transgenic Arabidopsis plants, impling a possibility this gene might be a functional marker for stress-tolerance breeding.

2.
Commun Biol ; 3(1): 779, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328568

RESUMO

Wasabi, horseradish and mustard are popular pungent crops in which the characteristic bioactive hydrolysis of specialized glucosinolates (GSLs) occurs. Although the metabolic pathways of GSLs are well elucidated, how plants have evolved convergent mechanisms to accumulate identical GSL components remains largely unknown. In this study, we discovered that sinigrin is predominantly synthesized in wasabi, horseradish and mustard in Brassicaceae. We de novo assembled the transcriptomes of the three species, revealing the expression patterns of gene clusters associated with chain elongation, side chain modification and transport. Our analysis further revealed that several gene clusters were convergently selected during evolution, exhibiting convergent shifts in amino acid preferences in mustard, wasabi and horseradish. Collectively, our findings provide insights into how unrelated crop species evolve the capacity for sinigrin super-accumulation and thus promise a potent strategy for engineering metabolic pathways at multiple checkpoints to fortify bioactive compounds for condiment or pharmaceutical purposes.

3.
J Plant Physiol ; 254: 153264, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33032063

RESUMO

Mitochondrial F1F0-ATP synthase (F1F0-ATPase) inhibitor factor 1 (IF1) has been extensively characterized as an endogenous inhibitor that prevents the hydrolysis of adenosine-5'-triphosphate (ATP) by mitochondrial ATPases in mammals and yeasts; however, IF1's functions in plants remain unclear. Here, a comprehensive bioinformatic analysis was performed to identify plant mitochondrial F1F0-ATPase IF1 orthologs. Plant IF1s contain a conserved F1F0-ATPase inhibitory domain, but lack the antiparallel α-helical coiled-coil structure compared with mammalian IF1s. A subcellular localization analysis in Arabidopsis thaliana revealed that AtIF1-green fluorescent protein was present only in mitochondria. Additionally, AtIF1 was widely expressed in diverse organs and intense ß-glucuronidase staining was observed in reproductive tissues and germinating seeds. Compared with the wild-type and p35S:AtIF1-if1 etiolated seedlings, the ATP/ADP ratio was significantly lower in the AtIF1 T-DNA knockout seedlings (if1 mutant) growing under dark conditions, suggesting that AtIF1 can influence the energy state of cells. A significant reduction in seed yield and strong growth retardation under dark conditions were observed in the if1 mutant line. Furthermore, if1 plants exhibited a substantially decreased sensitivity to abscisic acid. Thus, the A. thaliana mitochondrial IF1, which is a conserved F1F0-ATPase inhibitor, is crucial for plant growth and responses to abscisic acid.

4.
Sci Rep ; 10(1): 14347, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873837

RESUMO

Magnon-tuning non-volatile magnetic dynamics is investigated in a CoZr/PMN-PT structure by measuring ferromagnetic resonance at room temperature. The electric-field control of ferromagnetic resonance shows loop-like behavior, which indicates non-volatile electric-field control of the magnetism. Further, fitting the curves of in-plane rotating angle versus ferromagnetic resonance field under different electric fields shows that the effective magnetic field changes in loop-like manner with the electric field. The resulting change in non-volatile saturation magnetization with electric field is consistent with that of a polarization electric field curve. A 1.04% change of saturation magnetization is obtained, which can be attributed to a magnon-driven magnetoelectric coupling at the CoZr/PMN-PT interface. This magnon-driven magnetoelectric coupling and its dynamic magnetic properties are significant for developing future magnetoelectric devices.

5.
Plant Cell Environ ; 2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32978825

RESUMO

Spontaneous fertility reversion has been documented in cytoplasmic male sterile (CMS) plants of several species, influenced in frequency by nuclear genetic background. In this study, we found that MutS HOMOLOG1 (MSH1) mediates fertility reversion via substoichiometric shifting (SSS) of the CMS-associated mitochondrial Open Reading Frame 220 (ORF220), a process that may be regulated by pollination signalling in Brassica juncea. We show that plants adjust their growth and development in response to unsuccessful pollination. Measurable decrease in MSH1 transcript levels and evidence of ORF220 SSS under non-pollination conditions suggest that this nuclear-mitochondrial interplay influences fertility reversion in CMS plants in response to physiological signals. Suppression of MSH1 expression induced higher frequency SSS in CMS plants than occurs normally. Transcriptional analysis of floral buds under pollination and non-pollination conditions, and the response of MSH1 expression to different sugars, supports the hypothesis that carbon flux is involved in the pollination signalling of fertility reversion in CMS plants. Our findings suggest that facultative gynodioecy as a reproductive strategy may incorporate environmentally responsive genes like MSH1 as an "on-off" switch for sterility-fertility transition under ecological conditions of reproductive isolation.

6.
Plant Physiol Biochem ; 155: 613-625, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853854

RESUMO

Crop plants, such as watermelon, suffer from severe Aluminum (Al3+)-toxicity in acidic soils with their primary root elongation being first arrested. However, the significance of apoplastic or symplastic Al3+-toxicity in watermelon root is scarcely reported. In this work, we identified a medium fruit type (ZJ) and a small fruit type (NBT) as Al+3-tolerant and sensitive based on their differential primary root elongation rate respectively, and used them to show the effects of symplastic besides apoplastic Al distribution in the watermelon's root. Although the Al content was higher in the root of NBT than ZJ, Al+3 allocated in their apoplast, vacuole and plastid fractions were not significantly different between the two cultivars. Thus, only a few proportion of Al+3 differentially distributed in the nucleus and mitochondria corresponded to interesting differential morphological and physiological disorders recorded in the root under Al+3-stress. The symplastic amount of Al+3 substantially induced the energy efficient catalase pathway in ZJ, and the energy consuming ascorbate peroxidase pathway in NBT. These findings coincided with obvious starch granule visibility in the root ultra-structure of ZJ than NBT, suggesting a differential energy was used in supporting the root elongation and nutrient uptake for Al+3-tolerance in the two cultivars. This work provides clues that could be further investigated in the identification of genetic components and molecular mechanisms associated with Al+3-tolerance in watermelon.

7.
Plant J ; 104(3): 706-717, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772441

RESUMO

The swollen stem is a determinant of yield for the stem-type vegetable Brassica juncea that is representative of vegetative organ formation. However, the genetic mechanism underlying swollen stem formation and its regulation remains unknown. In this study, we identified a casein kinase 2 ß subunit 1 (CK2B1) and revealed its role in swollen stem formation. Genotyping analysis revealed that a homozygous variation in the CK2B1 promoter is responsible for swollen stem formation, and the promoter activity of CK2B1 was significantly associated with the variations between swollen stem and non-swollen stem types. CK2B1 was exclusively located in the nucleus and expressed in the stem nodes of the plant. Swollen stem formation was blocked when CK2B1 expression was silenced, and induced in a backcross population carrying a swollen stem genotype, which indicates that CK2B1 is required for swollen stem formation. Cell numbers were increased during swollen stem formation and decreased in CK2B1-silenced expression plant, indicating that CK2B1 regulates swollen stem formation via cell division. CK2B1 directly interacted with E2Fa, a regulator of G1/S transition in the cell cycle, in which CK2 phosphorylates E2Fa. Our results revealed that CK2B1 affects swollen stem formation via the control of the cell cycle. These findings help to elucidate the signals that control swollen stem formation and provide a promising molecular target to enhance the yield of vegetative organ formation.

8.
iScience ; 23(8): 101422, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32798971

RESUMO

Comparative and evolutionary genomics analyses are the powerful tools to provide mechanistic insights into important agronomic traits. Here, we completed a chromosome-scale assembly of the "neglected" but vital melon subspecies Cucumis melo ssp. agrestis using single-molecule real-time sequencing, Hi-C, and an ultra-dense genetic map. Comparative genomics analyses identified two targeted genes, UDP-sugar pyrophosphorylase and α-galactosidase, that were selected during evolution for specific phloem transport of oligosaccharides in Cucurbitaceae. Association analysis of transcriptome and the DNA methylation patterns revealed the epigenetic regulation of sucrose accumulation in developing fruits. We constructed the melon recombinant inbred lines to uncover Alkaline/Neutral Invertase (CINV), Sucrose-Phosphatase 2 (SPP2), α-galactosidase, and ß-galactosidase loci related to sucrose accumulation and an LRR receptor-like serine/threonine-protein kinase associated with gummy stem blight resistance. This study provides essential genomic resources enabling functional genomics studies and the genomics-informed breeding pipelines for improving the fruit quality and disease resistance traits.

9.
3 Biotech ; 10(7): 305, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32612899

RESUMO

In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.

10.
Can J Microbiol ; 66(11): 631-640, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32619357

RESUMO

Brewer's yeast has been widely used in the food industry, and the autolysates thereof are increasingly being studied for their valuable nutritional compositions. Yeast autolysis is most affected by medium composition and temperature. In this study, a thermosensitive autolytic brewer's yeast P-510 was obtained with atmospheric and room temperature plasma mutagenesis plus 5-bromo-chloro-3-indolyl phosphate screening. The mutant rapidly autolyzed at 37 °C and the autolysates contained more active components and showed higher antioxidant activities compared with that of the parental strain, which indicated that the mutant's autolysates can potentially be used as functional food and nutritional ingredients. Transcriptomic analysis of the mutant and parental strains at 28 and 37 °C suggested that thermosensitive autolysis of P-510 was probably caused by mitochondrial disfunction, glycogen metabolic flux of glycolysis and pentose phosphate pathway disorder, as well as hexose transport inhibition. The results revealed the important role of mitochondrial metabolism and glycogen utilization regulation in heat stress response of yeast.


Assuntos
Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Saccharomyces cerevisiae/fisiologia , Antioxidantes/metabolismo , Mutagênese , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
11.
Plants (Basel) ; 9(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521755

RESUMO

Boron (B) is a microelement required in vascular plants at a high concentration that produces excess boron and toxicity in many crops. B stress occurs widely and limits plant growth and crop productivity worldwide. Salicylic acid (SA) is an essential hormone in plants and is a phenolic compound. The goal of this work is to explore the role of SA in the alleviation of excess B (10 mg L-1) in watermelon plants at a morphological and biochemical level. Excess boron altered the nutrient concentrations and caused a significant reduction in morphological criteria; chlorophyll a, b, and carotenoids; net photosynthetic rate; and the stomatal conductance and transpiration rate of watermelon seedlings, while intercellular carbon dioxide (CO2) was significantly increased compared to the control plants (0.5 mg L-1 B). Furthermore, excess boron accelerated the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and induced cellular oxidative injury. The application of exogenous SA significantly increased chlorophyll and carotenoid contents in plants exposed to excess B (10 mg L-1), in line with the role of SA in alleviating chlorosis caused by B stress. Exogenously applied SA promoted photosynthesis and, consequently, biomass production in watermelon seedlings treated with a high level of B (10 mg L-1) by reducing B accumulation, lipid peroxidation, and the generation of H2O2, while significantly increasing levels of the most reactive ROS, OH-. SA also activated antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) and protected the seedlings from an ROS induced cellular burst. In conclusion, SA can be used to alleviate the adverse effects of excess boron.

12.
J Microbiol Biotechnol ; 30(5): 668-680, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32482932

RESUMO

Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Zeicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2- arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle- 9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

13.
Oncol Lett ; 20(1): 155-164, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565943

RESUMO

Abnormal methylation of the TNFRSF10C and TNFRSF10D genes has been observed in numerous types of cancer; however, no studies have investigated the methylation of these genes in non-small cell lung cancer (NSCLC). The aim of the present study was to investigate the association between TNFRSF10C and TNFRSF10D methylation and NSCLC. Methylation levels of 44 pairs of NSCLC tumor tissues and distant non-tumor tissues were analyzed using quantitative methylation specific PCR and methylation reference percentage values (PMR). The methylation levels of the TNFRSF10C gene in NSCLC tumor tissue samples were significantly higher compared with those in the distant non-tumor tissues (median PMR, 2.73% vs. 0.75%; P=0.013). Subgroup analysis demonstrated that the methylation levels of TNFRSF10C in tumor tissues from male patients were significantly higher compared with those in distant non-tumor tissues (median PMR, 2.73% vs. 0.75%; P=0.041). The levels of TNFRSF10C methylation were also higher in the tumor tissues of patients who were non-smokers compared with their distant non-tumor tissues (median PMR, 2.50% vs. 0.63%; P=0.013). TNFRSF10C methylation levels were higher in the tumor tissues from male patients compared with those from female patients (median PMR, 2.50% vs. 0.63%; P=0.031). However, no significant differences in the methylation levels of the TNFRSF10D gene were observed between the sexes. Using the cBioPortal and The Cancer Genome Atlas lung cancer data, it was demonstrated that TNFRSF10C methylation levels were inversely correlated with TNFRSF10C mRNA expression levels (r=-0.379; P=0.008). In addition, demethylation of lung cancer cell lines A549 and NCI-H1299 using 5'-aza-deoxycytidine further confirmed that TNFRSF10C hypomethylation was associated with significant upregulation of TNFRSF10C mRNA expression levels [A549 fold-change (FC)=8; P=1.0×10-4; NCI-H1299 FC=3.163; P=1.143×10-5]. A dual luciferase reporter gene assay was also performed with the insert of TNFRSF10C promoter region, and the results revealed that the TNFRSF10C gene fragment significantly enhanced the transcriptional activity of the reporter gene compared with that in the control group (FC=1.570; P=0.032). Overall, the results of the present study demonstrated that hypermethylation of TNFRSF10C was associated with NSCLC.

14.
Biomed Res Int ; 2020: 8650957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190683

RESUMO

Paenibacillus polymyxa is a plant growth-promoting rhizobacterium that has immense potential to be used as an environmentally friendly replacement of chemical fertilizers and pesticides. In the present study, Paenibacillus polymyxa SK1 was isolated from bulbs of Lilium lancifolium. The isolated endophytic strain showed antifungal activities against important plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea, and Fusarium fujikuroi. The highest percentage of growth inhibition, i.e., 66.67 ± 2.23%, was observed for SK1 against Botryosphaeria dothidea followed by 61.19 ± 3.12%, 60.71 ± 3.53%, and 55.54 ± 2.89% against Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum, respectively. The metabolite profiling of ethyl acetate fraction was assessed through the UHPLC-LTQ-IT-MS/MS analysis, and putative identification was done with the aid of the GNPS molecular networking workflow. A total of 29 compounds were putatively identified which included dipeptides, tripeptides, cyclopeptides (cyclo-(Leu-Leu), cyclo(Pro-Phe)), 2-heptyl-3-hydroxy 4-quinolone, 6-oxocativic acid, anhydrobrazilic acid, 1-(5-methoxy-1H-indol-3-yl)-2-piperidin-1-ylethane-1,2-dione, octadecenoic acid, pyochelin, 15-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid, (Z)-7-[(2R,3S)-3-[(2Z,5E)-Undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid, arginylasparagine, cholic acid, sphinganine, elaidic acid, gossypin, L-carnosine, tetrodotoxin, and ursodiol. The high antifungal activity of SK1 might be attributed to the presence of these bioactive compounds. The isolated strain SK1 showed plant growth-promoting traits such as the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, nitrogen fixation, and phosphate solubilization. IAA production was strongly correlated with the application of exogenous tryptophan concentrations in the medium. Furthermore, inoculation of SK1 enhanced plant growth of two Lilium varieties, Tresor and White Heaven, under greenhouse condition. In the light of these findings, the P. polymyxa SK1 may be utilized as a source of plant growth promotion and disease control in sustainable agriculture.


Assuntos
Ascomicetos/fisiologia , Fusarium/fisiologia , Lilium/microbiologia , Paenibacillus polymyxa/fisiologia , Doenças das Plantas/prevenção & controle , Anti-Infecciosos/metabolismo , Carbono-Carbono Liases/metabolismo , Ácidos Carboxílicos/metabolismo , Endófitos , Ácidos Indolacéticos/metabolismo , Lilium/crescimento & desenvolvimento , Fixação de Nitrogênio , Paenibacillus polymyxa/química , Paenibacillus polymyxa/classificação , Paenibacillus polymyxa/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Espectrometria de Massas em Tandem
15.
3 Biotech ; 10(2): 75, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32051808

RESUMO

Eukaryotic translation initiation factors (eIFs) are essential protein complexes involved in the translation of mRNA into proteins. These initiation factors are generally used as targets in the control of plant RNA virus infections. In the present study, we identified a total 190 eIFs, clustered phylogenetically into 40 distinct subfamilies in the allopolyploid Brassica juncea. Extensive evolutionary duplications of the eIFs in B. juncea suggest their increased genetic diversity and wide adaptability. The induction of expressions in some of the eIFs after inoculation against Turnip mosaic virus (TuMV) provided candidate targets to be used in the control of viral infections. In addition, the expression profiles of eIFs under different temperatures suggested that the TuMV epidemic was temperature dependent. The eIFs expressions suggested that the systemic viral infections were more acute in plants grown between 20 °C and 28 °C. In addition, our results revealed that new subgroups of eIFs, eIF2ß, eIF2α, eIF2Bß, EF1A, and PABP could be represented as targets for antiviral strategies in B. juncea. In summary, our findings would be helpful in studying the complex mechanisms of eIF-mediated, temperature-dependent RNA virus control in B. juncea.

16.
Plant Biotechnol J ; 18(4): 1066-1077, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31610078

RESUMO

Fruit rind plays a pivotal role in alleviating water loss and disease and particularly in cracking resistance as well as the transportability, storability and shelf-life quality of the fruit. High susceptibility to cracking due to low rind hardness is largely responsible for severe annual yield losses of fresh fruits such as watermelon in the field and during the postharvest process. However, the candidate gene controlling the rind hardness phenotype remains unclear to date. Herein, we report, for the first time, an ethylene-responsive transcription factor 4 (ClERF4) associated with variation in rind hardness via a combinatory genetic map with bulk segregant analysis (BSA). Strikingly, our fine-mapping approach revealed an InDel of 11 bp and a neighbouring SNP in the ClERF4 gene on chromosome 10, conferring cracking resistance in F2 populations with variable rind hardness. Furthermore, the concomitant kompetitive/competitive allele-specific PCR (KASP) genotyping data sets of 104 germplasm accessions strongly supported candidate ClERF4 as a causative gene associated with fruit rind hardness variability. In conclusion, our results provide new insight into the underlying mechanism controlling rind hardness, a desirable trait in fresh fruit. Moreover, the findings will further enable the molecular improvement of fruit cracking resistance in watermelon via precisely targeting the causative gene relevant to rind hardness, ClERF4.


Assuntos
Citrullus/genética , Etilenos , Frutas , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Dureza , Fenótipo
17.
Sensors (Basel) ; 19(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835659

RESUMO

Pedestrian detection is a critical perception task for autonomous driving and intelligent vehicle, and it is challenging due to the potential variation of appearance and pose of human beings as well as the partial occlusion. In this paper, we present a novel pedestrian detection method via four-layer laser scanner. The proposed approach deals with the occlusion problem by fusing the segment classification results with past knowledge integration from tracking process. First, raw point cloud is segmented into the clusters of independent objects. Then, three types of features are proposed to capture the comprehensive cues, and 18 effective features are extracted with the combination of the univariate feature selection algorithm and feature correlation analysis process. Next, based on the segment classification at individual frame, the track classification is conducted further for consecutive frames using particle filter and probability data association filter. Experimental results demonstrate that both back-propagation neural network and Adaboost classifiers based on 18 selected features have their own advantages at the segment classification stage in terms of pedestrian detection performance and computation time, and the track classification procedure can improve the detection performance particularly for partially occluded pedestrians in comparison with the single segment classification procedure.

18.
Phys Chem Chem Phys ; 21(38): 21438-21444, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531470

RESUMO

Magnon-driven interfacial magnetoelectric coupling in Co/PMN-PT multiferroic heterostructures is investigated at room temperature. The electric field controlled ferromagnetic resonance field possesses a loop-like curve, with a large resonance field shift between positive and negative remanent polarizations, which confirms a non-volatile strong magnetoelectric coupling. However, with a non-magnetic Ta layer inserted at the Co/PMN-PT interface, a piezostrain-induced butterfly-like curve of the resonance field versus applied electric field of the Co/Ta/PMN-PT multiferroic heterostructure is observed. Further, the non-volatile behavior of the resonance field changing with the applied electric field can be obtained, consistent with the result of polarization versus applied electric field curve, which can be attributed to the magnon-driven interfacial magnetoelectric coupling, showing a strong correlation of magnetization of Co thin film and the polarization of PMN-PT. The result is promising for the design of future multiferroic devices.

19.
Dis Markers ; 2019: 9436047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481985

RESUMO

Background: MCOLN1 (mucolipin subfamily, member 1) was first identified as an autophagic regulator, which was essential for efficient fusion of both autophagosomes and late endosomes with lysosomes. This study is aimed at investigating the role of MCOLN1 in the development of pancreatic ductal adenocarcinoma (PDAC). Methods: Immunohistochemistry (IHC) assay was conducted to evaluate the expression level of MCOLN1 in 82 human PDAC tumor tissues. Overall survival (OS) and recurrence-free survival (RFS) analysis was performed to assess the prognosis of patients. Colony formation and MTT assays [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] were performed to measure the proliferation capacity of tumor cells. The expression level of related genes was measured by RT-PCR (reverse transcription polymerase chain reaction) and western blot assays. The animal model was used to examine the effects of indicated protein on tumorigenesis in vivo. Results: The results of IHC showed that a high level of MCOLN1 expression was associated with the poor clinical characteristics of PDAC patients. OS and RFS were significantly worse in patients with high MCOLN1 expression. Silencing of MCOLN1 dramatically blocked the proliferation of PDAC cells. Mechanism studies confirmed that knockdown of MCOLN1 decreased the expression of Ki67 and PCNA (proliferating cell nuclear antigen), two markers of cell proliferation. In vivo, MCOILN1 depletion reduced the formation and growth of tumors in mice. Conclusion: The high level of MCOLN1 expression was associated with poor clinical outcomes of PDAC patients. MCOLN1 ablation could inhibit PDAC proliferation of both in vitro and in vivo, which provide a new insight and novel therapeutic target for the treatment of PDAC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Canais de Receptores Transientes de Potencial/metabolismo , Idoso , Animais , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Canais de Receptores Transientes de Potencial/genética
20.
Plant Cell Rep ; 38(12): 1551-1561, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463555

RESUMO

KEY MESSAGE: The 'neglected' thermophile fruit crop of watermelon was first used as a model crop to study the PCD associated with anther dehiscence in cold-exposed condition during anther development. Anther dehiscence ensures normal pollen release and successful fertilization at fruit-setting stages in flowering plants. However, most researches pertinent to anther dehiscence are centered on model plant and/or major field crops under optimal growth condition. Due to anther indehiscence in cold condition, crop plants of thermophile tropical or subtropical fruit crops fail to accomplish timely pollination and fertilization, resulting in a great yield loss annually. Herein, we developed an ideal model crop for studying the programmed cell death (PCD) associated with anther dehiscence under low-temperature stress using the S-shaped spiral anther in watermelon as instead. Our results revealed that, including the tapetal cell layers, both cells of the interlocular septum and the stomium were blocked in PCD associated with anther dehiscence at 15 °C. Likewise, TUNEL assays visualized the evidence that low temperature at 15 °C interferes with not only the PCD of tapetal cells, but also the PCD of interlocular septum and stomium. Furthermore, the expressions of genes correlated with PCD of tapetum and stomium were significantly inhibited at 15 °C, suggesting that low temperature affects anther dehiscence by inhibiting PCD of sporophytic tissue-related gene expressions. The findings of the current research provide mechanistic insights into anther indehiscence leading to poor fruit-setting for thermophile fruit crop such as watermelon under adverse cold condition in flowering.


Assuntos
Citrullus/metabolismo , Flores/metabolismo , Apoptose/genética , Apoptose/fisiologia , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...