Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.922
Filtrar
1.
J Ethnopharmacol ; 318(Pt B): 117012, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567426

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhimu-Huangbo (ZB) herb pair is a common prescription drug used by physicians of all dynasties, and has significant neuroprotective effect, such as the ZB can significantly promote neuronal cell regeneration, repair neuronal damage, and improve cognitive disorders. However, its ingredients are urgently needed to be identified and mechanisms is remained unclear. AIM OF THE STUDY: Using ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), the study of neuroprotective mechanism of Zhimu-Huangbo extract (ZBE) is investigated, and the network pharmacology technology and experimental validation is also performed. MATERIAL AND METHODS: Firstly, UPLC-Q-TOF-MS technology was used to characterize the chemical components contained in the ZBE. After that, the TCMSP database and the Swiss Target Prediction method were used to search for potential target genes for ZBE compounds. At the same time, the OMIM and GeneCards disease databases were used to search for Alzheimer's disease (AD) targets and expanded with the GEO database. Then, GO and KEGG enrichment analysis was performed using OECloud tools. Subsequently, the potential mechanism of ZBE therapeutic AD predicted by network pharmacological analysis was experimentally studied and verified in vitro. RESULTS: In the UPLC-Q-TOF-MS analysis of the ZBE, a total of 39 compounds were characterized including Neomangiferin, Oxyberberine, Timosaponin D, Berberine, Timosaponin A-III, Anemarsaponin E, Timosaponin A-I, Smilagenin and so on. A total of 831 potential targets and 13995 AD-related target genes were screened. A further analysis revealed the number of common targets between ZBE and AD is 698. Through GO and KEGG enrichment analysis, we found that ZBE's anti-AD targets were significantly enriched in autophagy and mitochondrial autophagy related pathways. The results of cell experiments also confirmed that ZBE can promote mitochondrial autophagy induced by D-galactose (D-gal) HT22 cells through the PTEN-induced kinase 1/Parkin (PINK1/Parkin) pathway. CONCLUSION: ZBE can promote autophagy of mitochondria and play a protective role on damaged neurons.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Galactose , Neuroproteção , Autofagia , Mitocôndrias , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
2.
J Ethnopharmacol ; 318(Pt A): 116873, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419225

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Several children with pneumonia (especially severe cases) have symptoms of cough and expectoration during the recovery stage after standard symptomatic treatment, which eventually results in chronic lung injury. Danggui yifei Decoction (DGYFD), a traditional Chinese formula, has shown clinical promise for the treatment of chronic lung injury during the recovery stage of pneumonia, however, its mechanism of action is yet to be deciphered. AIM OF THIS STUDY: To investigate the therapeutic mechanism of DGYFD for the treatment of chronic lung injury by integrating network pharmacology and transcriptomics. MATERIALS AND METHODS: BALB/c mice were used to establish the chronic lung injury mouse model by intratracheal instillation of lipopolysaccharide (LPS). Pathological analysis of lung tissue, lung injury histological score, lung index, protein levels in bronchoalveolar lavage fluid (BALF), immunohistochemical staining, blood rheology, inflammatory cytokines, and oxidative stress levels were used to evaluate the pharmacological effects of DGYFD. Chemical components of DGYFD were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Integrated network pharmacology together with transcriptomics was used to predict potential biological targets. Western blot analysis was used to verify the results. RESULTS: In this study, we demonstrated that DGYFD could improve lung injury pathological changes, decreases lung index, down-regulate NO and IL-6 levels, and regulate blood rheology. In addition, DGYFD was able to reduce the protein levels in BALF, up-regulate the expression levels of occludin and ZO-1, improve the ultrastructure of lung tissues, and reverse the imbalance of AT I and AT II cells to repair the alveolar-capillary permeability barrier. Twenty-nine active ingredients of DGYFD and 389 potential targets were identified by UPLC-MS/MS and network pharmacology, and 64 differentially expressed genes (DEGs) were identified using transcriptomics. GO and KEGG analysis revealed that the MAPK pathway may be the molecular target. Further, we found that DGYFD inhibits phosphorylation levels of p38 MAPK and JNK in chronic lung injury mouse models. CONCLUSIONS: DGYFD could regulate the imbalance between the excessive release of inflammatory cytokines and oxidative stress, repair the alveolar-capillary permeability barrier and improve the pathological changes during chronic lung injury by regulating the MAPK signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Lesão Pulmonar , Animais , Camundongos , Cromatografia Líquida , Farmacologia em Rede , Transcriptoma , Espectrometria de Massas em Tandem , Citocinas/genética , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
ACS Biomater Sci Eng ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698556

RESUMO

Soft materials with tunable properties are valuable for applications such as tissue engineering, electronic skins, and human-machine interfaces. Materials that are nature-derived offer additional advantages such as biocompatibility, biodegradability, low-cost sourcing, and sustainability. However, these materials often have contrasting properties that limit their use. For example, silk fibroin (SF) has high mechanical strength but lacks processability and cell-adhesive domains. Gelatin, derived from collagen, has excellent biological properties, but is fragile and lacks stability. To overcome these limitations, composites of gelatin and SF have been explored. However, mechanically robust self-supported matrices and electrochemically active or micropatterned substrates were not demonstrated. In this study, we present a composite of photopolymerizable SF and photogelatin, termed photofibrogel (PFG). By incorporating photoreactive properties in both SF and gelatin, control over material properties can be achieved. The PFG composite can be easily and rapidly formed into free-standing, high-resolution architectures with tunable properties. By optimizing the ratio of SF to gelatin, properties such as swelling, mechanical behavior, enzymatic degradation, and patternability are tailored. The PFG composite allows for macroscale and microscale patterning without significant swelling, enabling the fabrication of structures using photolithography and laser cutting techniques. PFG can be patterned with electrically conductive materials, making it suitable for cell guidance and stimulation. The versatility, mechanical robustness, bioactivity, and electrochemical properties of PFG are shown for skeletal muscle tissue engineering using C2C12 cells as a model. Overall, such composite biomaterials with tunable properties have broad potential in flexible bioelectronics, wound healing, regenerative medicine, and food systems.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37698607

RESUMO

Pullulan is a polymer produced by Aureobasidium spp. The yield of pullulan production can be impacted by the cellular differentiation of Aureobasidium spp., which changes with alterations in the growth environment. To improve pullulan yield, identifying key factors that regulate cellular differentiation is crucial. In this study, the main form of pullulan synthesis in Aureobasidium pullulans NG was through swollen cells (SC). The results showed that citric acid (CA) can regulate the cellular differentiation of Aureobasidium pullulans NG by accumulating higher levels of CA in the cells to maintain growth in SC form and increase pullulan production. The addition of 1.0% CA to Aureobasidium pullulans NG for 96 h resulted in a significant increase in pullulan production, producing 18.32 g/l compared to the control group which produced 10.23 g/l. Our findings suggest that controlling cellular differentiation using CA is a promising approach for enhancing pullulan production in Aureobasidium pullulans. KEY POINTS: • The regulation of cell differentiation in Aureobasidium pullulans NG is demonstrated to be influenced by citric acid. • Intracellular citric acid levels in Aureobasidium pullulans NG have been shown to support the growth of swollen cells. • Citric acid has been found to increase pullulan production in Aureobasidium pullulans NG.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37694844

RESUMO

Manganese-based layered oxides are prospective cathode materials for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. The biphasic intergrowth structure of layered cathode materials is essential for improving the sodium storage performance, which is attributed to the synergistic effect between the two phases. However, the in-depth formation mechanism of biphasic intergrowth materials remains unclear. Herein, the layered/tunnel intergrowth Na0.6MnO2 (LT-NaMO) as a model material was successfully prepared, and their formation processes and electrochemical performance were systematically investigated. In situ high-temperature X-ray diffraction displays the detailed evolution process and excellent thermal stability of the layered/tunnel intergrowth structure. Furthermore, severe structural strain and large lattice volume changes are significantly mitigated by the interlocking effect between the phase interfaces, which further enhances the structural stability of the cathode materials during the charging/discharging process. Consequently, the LT-NaMO cathode displays fast Na+ transport kinetics with a remarkable capacity retention of ∼70.5% over 300 cycles at 5C, and its assembled full cell with hard carbon also exhibits high energy density. These findings highlight the superior electrochemical performance of intergrowth materials due to interlocking effects between layered and tunnel structures and also provide unique insights into the construction of intergrowth cathode materials for SIBs.

6.
Front Endocrinol (Lausanne) ; 14: 1158581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664843

RESUMO

Background: The management guidelines of radioactive Iodine (RAI) therapy for distinct types of differentiated thyroid carcinoma (DTC) were the same in clinical practice. However, in distinct types DTC, differences in RAI avidity and response existed and the effect of RAI therapy could not be equated. Methods: DTC patients' data in SEER database were extracted to perform retrospective analysis. The differences between case group and control group were compared by chi-square tests. We used Kaplan-Meier statistics and Cox regression analyses to investigate cancer-specific survival (CSS). Propensity score-matched was performed to make 1:1 case-control matching. Results: 105195 patients who receiving total thyroidectomy were identified in SEER database. Compared to papillary thyroid carcinoma (PTC) (52.3%), follicular thyroid carcinoma (FTC) (63.8%) and oncocytic carcinoma of thyroid (OCA) (64.4%) had higher rates of RAI therapy. In the multivariable Cox regression model, RAI therapy was independent prognosis factor in PTC but not in OCA and FTC. In subgroup analysis, RAI therapy could improve prognosis in PTC when gross extrathyroidal extension or lymph node metastases or early survival when distant metastases (DM) were presented. However, OCA and FTC patients with DM rather than regional lesions only could benefit from RAI therapy. High-risk patients receiving RAI therapy showed a better prognosis in PTC but not in OCA and FTC. Conclusion: RAI therapy was an effective treatment for DTC and should be considered individually in PTC, OCA and FTC patients. Our results provided further guideline for treatment selection in DTC.


Assuntos
Adenocarcinoma Folicular , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/cirurgia , Radioisótopos do Iodo/uso terapêutico , Pontuação de Propensão , Estudos Retrospectivos , Adenocarcinoma Folicular/radioterapia , Adenocarcinoma Folicular/cirurgia , Câncer Papilífero da Tireoide/radioterapia
7.
Nat Commun ; 14(1): 5434, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669927

RESUMO

Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Qualidade de Vida , Sono , Globo Pálido , Gânglios da Base
8.
Nat Commun ; 14(1): 5701, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709753

RESUMO

Data recovery from monolithic storage devices (MSDs) is in high demand for legal or business purposes. However, the conventional data recovery methods are destructive, complicated, and time-consuming. We develop a robotic-arm-assisted optical coherence tomography (robotic-OCT) for non-destructive inspection of MSDs, offering ~7 µm lateral resolution, ~4 µm axial resolution and an adjustable field-of-view to accommodate various MSD sizes. Using a continuous scanning strategy, robotic-OCT achieves automated volumetric imaging of a micro-SD card in ~37 seconds, significantly faster than the traditional stop-and-stare scanning that typically takes tens of minutes. We also demonstrate the robotic-OCT-guided laser ablation as a microsurgical tool for targeted area removal with precision of ±10 µm and accuracy of ~50 µm, eliminating the need to remove the entire insulating layer and operator intervention, thus greatly improving the data recovery efficiency. This work has diverse potential applications in digital forensics, failure analysis, materials testing, and quality control.

9.
Hortic Res ; 10(9): uhad148, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37691966

RESUMO

Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.

10.
Appl Opt ; 62(17): 4505-4511, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707143

RESUMO

A high-energy and high-average-power pulsed fiber laser has been investigated in a master oscillator power amplifier (MOPA) configuration seeding with a diode laser at a programmed pulse duration of ∼250ns. The fiber amplifier successfully demonstrates the pulse with 21.4 mJ at the repetition rate of 50 kHz and a maximum average output power of 1535 W with a slope efficiency of 81.6% at 250 kHz. To overcome fiber nonlinearities such as stimulated Raman scattering (SRS) and self-phase modulation (SPM), extra-large mode area ytterbium (Yb)-doped step-index dual cladding fiber has been utilized as gain fiber in the MOPA laser system. The gain saturation effect in the power amplifier was greatly mitigated by the programmed seed signal. This pulse-shaped MOPA system can provide practical applications in many fields such as laser cleaning, paint stripping, and other applications requiring special pulse shapes.

11.
Appl Opt ; 62(19): 5151-5158, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707218

RESUMO

We provide a broadband channeled, modulated full polarization imaging technology based on dispersion-compensation Savart plates in 2020. It has the advantages of being compact, using the snapshot method, and having a bandwidth of 0.132 µm. It is thus invaluable for applications in diverse fields, including remote sensing, biomedicine, and military science. However, there are a lot of angle restrictions in the system. In practice, these angles cannot achieve such high machining precision, and we use the tolerance or compensation method of errors to analyze the influence of the angle deviation. This analysis will help the system achieve better compactness and stability and provide analysis methods for systems that use crystals as its key elements.

12.
Sci Total Environ ; : 166876, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37709089

RESUMO

Ammonia nitrogen, as a water environmental toxin, poses a potential threat to aquatic animals. Although NH4Cl stress is known to cause immunotoxicity, mechanistic pathways linking stress networks in the neuroendocrine system to immunotoxicity remain poorly understood. In this study, firstly, using transcriptome analysis of cerebral ganglion and eyestalk in shrimp, we identified significant changes in genes related to biogenic amines, acetylcholine, crustacean hyperglycemic hormones, and neuropeptide F. Additionally, expression patterns of neuroendocrine factors in different tissues of shrimp were evaluated to explore the sources of these factors. Here, we showed that NH4Cl exposure activates acetylcholine (ACh) neurons in cerebral ganglion of shrimp and dramatically upregulates high affinity choline transporter 1 (ChT1) gene expression. The knockdown of ChT1 gene enhanced the immunity of haemocytes in shrimp compared with saline and GFP dsRNA groups. And after eyestalk ablation, the levels of neuroendocrine factors in the cerebral ganglion and thoracic ganglion were disturbed, and haemocytes parameters induced by NH4Cl were significantly decreased. Combined with different doses of NH4Cl exposure experiments, we demonstrated that: (1) In a short period of NH4Cl exposure, the neuroendocrine factors CRH-ACTH-cortisol and 5-HT-DA in the cerebral ganglion-eyestalk axis of shrimp play a major role in regulating haemocytes immunity; (2) With the prolongation of exposure, the immunotoxicity induced by NH4Cl was mainly due to the release of more ACh in the cerebral ganglion, which promoted the release of NPF in the thoracic ganglion, and CHH and NPF in the eyestalk, as well as weakened the effect of biogenic amines. Subsequently, these neuroendocrine factors regulate immunity through intracellular signaling pathways. Collectively, these results established a new mechanism that NH4Cl might directly regulate haemocytes immunotoxicity through the cerebral ganglion and thoracic ganglion; or through the cerebral ganglion-eyestalk axis or cerebral ganglion-thoracic ganglion axis cause haemocytes immunotoxicity.

13.
Opt Express ; 31(18): 29934-29941, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710782

RESUMO

We report on a simple method for reduction of the depolarization loss in an end-pumped Tm:Y2O3 ceramic laser by using a near-field ring-shaped pump beam. Initially, we theoretically derive the expression of the depolarization loss in a bulk laser end-pumped with a near-field flat-top-hat or ring-shaped beam, where a significant reduction of depolarization loss in the latter case is presented. Experimental verification is thereafter carried out with a Tm:Y2O3 ceramic laser employing these two different pump configurations. It shows that the experimentally measured depolarization losses are close to the simulated values; the loss in the case of the annular-beam pump is almost 18 times lower than that with a quasi-top-hat beam at a same absorption pump power of 7.4 W. This work, as a proof-of-principle study, indicates that depolarization loss in the end-pumped bulk lasers can be significantly reduced simply by using a ring-shaped pump beam.

14.
Front Immunol ; 14: 1199751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675119

RESUMO

Background: Dysregulated inflammation is associated with many skeletal diseases and disorders, such as osteolysis, non-union of fractures, osteonecrosis, osteoarthritis and orthopaedic infections. We previously showed that continuous infusion of lipopolysaccharide (LPS) contaminated polyethylene particles (cPE) caused prolonged inflammation and impaired bone formation. However, the metabolic and bioenergetic processes associated with inflammation of bone are unknown. Mitochondria are highly dynamic organelles that modulate cell metabolism and orchestrate the inflammatory responses that involve both resident and recruited cells. Glycolytic reprogramming, the shift from oxidative phosphorylation (OXPHOS) to glycolysis causes inappropriate cell activation and function, resulting in dysfunctional cellular metabolism. We hypothesized that impaired immunoregulation and bone regeneration from inflammatory states are associated with glycolytic reprogramming and mitochondrial dysfunction in macrophages (Mφ) and mesenchymal stromal cells (MSCs). Methods: We used the Seahorse XF96 analyzer and real-time qPCR to study the bioenergetics of Mφ and MSCs exposed to cPE. To understand the oxygen consumption rate (OCR), we used Seahorse XF Cell Mito Stress Test Kit with Seahorse XF96 analyzer. Similarly, Seahorse XF Glycolytic Rate Assay Kit was used to detect the extracellular acidification rate (ECAR) and Seahorse XF Real-Time ATP Rate Assay kit was used to detect the real-time ATP production rates from OXPHOS and glycolysis. Real-time qPCR was performed to analyze the gene expression of key enzymes in glycolysis and mitochondrial biogenesis. We further detected the gene expression of proinflammatory cytokines in Mφ and genes related to cell differentiation in MSC during the challenge of cPE. Results: Our results demonstrated that the oxidative phosphorylation of Mφ exposed to cPE was significantly decreased when compared with the control group. We found reduced basal, maximal and ATP-production coupled respiration rates, and decreased proton leak in Mφ during challenge with cPE. Meanwhile, Mφ showed increased basal glycolysis and proton efflux rates (PER) when exposed to cPE. The percentage (%) of PER from glycolysis was higher in Mφ exposed to cPE, indicating that the contribution of the glycolytic pathway to total extracellular acidification was elevated during the challenge of cPE. In line with the results of OCR and ECAR, we found Mφ during cPE challenge showed higher glycolytic ATP (glycoATP) production rates and lower mitochondrial ATP (mitoATP) production rates which is mainly from OXPHOS. Interestingly, MSCs showed enhanced glycolysis during challenge with cPE, but no significant changes in oxygen consumption rates (OCR). In accordance, seahorse assay of real-time ATP revealed glycoATP rates were elevated while mitoATP rates showed no significant differences in MSC during challenge with cPE. Furthermore, Mφ and MSCs exposed to cPE showed upregulated gene expression levels of glycolytic regulators and Mφ exposed to cPE expressed higher levels of pro-inflammatory cytokines. Conclusion: This study demonstrated the dysfunctional bioenergetic activity of bone marrow-derived Mφ and MSCs exposed to cPE, which could impair the immunoregulatory properties of cells in the bone niche. The underlying molecular defect related to disordered mitochondrial function could represent a potential therapeutic target during the resolution of inflammation.


Assuntos
Células-Tronco Mesenquimais , Prótons , Humanos , Glicólise , Inflamação , Macrófagos , Citocinas , Trifosfato de Adenosina
15.
Acc Chem Res ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712744

RESUMO

ConspectusThe central theme of this Account is the development of intensified and sustainable chemical processes for the sequestration of CO2 in synergism with the utilization of wastes of industrial, urban, and agricultural origins. A challenge when working with solid waste-fluid reactions is that mass transfer limitations across solid-liquid, solid-gas, and gas-liquid interfaces and unfavorable thermodynamics lead to slow reaction rates, incomplete reaction conversions, high energy expenditure and processing costs, and inadequate product properties. The traditional macroscale approaches to overcoming slurry reaction limitations can be effective; however, they come at a cost to the environment. In the treatment or valorization of low-grade and waste resources, such conventional approaches are often unfeasible on an industrial scale. Sustainable solutions are thus needed.In the last six years, we have been exploring and developing approaches to overcoming reaction rate limitations of slurry reactions of environmental relevance by concurrently applying process intensification strategies and multiscale engineering approaches. The scientific approach has relied on laboratory-scale experiments to test and refine the devised multiscale process intensification strategies, with thermodynamic and computational modeling work supporting the experimental work and with advanced characterization techniques being used to elucidate reaction and transport mechanisms and aid the development of nanoscale reaction models and micro- and macroscale process models. The research streams, associated with the four key references, discussed next are (a) brine carbonation; (b) mineral carbonation and enhanced weathering; (c) process intensification and integration; and (d) characterization techniques.Within the four research streams, a number of mineral carbonation processes have been investigated and can be classified as (i) ambient weathering and carbonation; (ii) gas-(wet) solid accelerated carbonation; (iii) aqueous accelerated carbonation; (iv) supercritical accelerated carbonation; and (v) CO2 mineralization from brine. In some cases, the research was aimed at producing valuable products with reduced environmental risk or a reduced carbon footprint, such as an organomineral fertilizer and zeolites. In other cases, the aim was to assess the reactivity of minerals to match the right feedstock with the right carbonation process, in view of maximizing net carbon sequestration. There were also cases where the carbonation process was reimagined by the use of innovative reaction conditions, reactors, and reagents. The experience with accelerated weathering and carbonation in engineered processes has been translated into the field of enhanced rock weathering (ERW) in agriculture, where the multidisciplinary approach used has served to advance ERW science and technology in ways that have had a resounding effect on recent commercial deployment.The completed research serves to encourage the adoption of process intensification technologies in place of conventional processes, in industry and among the research community, and to catalyze the development of the types of sustainable processes required by the chemical, metallurgical, and minerals industries (which are critical to the green transition) to reduce their environmental impact and carbon emissions. Moreover, the multiscale process intensification approaches developed may also be extended to other industrial, urban, and agricultural processes where the reduction of energy intensity, carbon intensity, and environmental footprint could be achieved.

17.
J Colloid Interface Sci ; 653(Pt A): 296-307, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37717430

RESUMO

Transition metal single atom catalysts (TM SACs) are the most promising oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) and metal-air batteries. However, the low density of M-Nx active sites seriously hinders further improvement of the ORR electrocatalytic activity. Here, a strategy for encapsulating nitrogen-rich guest molecules (triethylenediamine cobalt complex, [Co(en)3]3+) was proposed to construct a high-performance cobalt single-atom catalyst (Co-encapsulated SAC/NC). With this strategy, the guest molecules are encapsulated into metal-organic framework (MOF) cages as an additional cobalt source to boost cobalt loading, while abundant nitrogen from guest molecules contributes to the formation of Co-N4 active sites. Remarkably, the resulting Co-encapsulated SAC/NC has a high cobalt loading amount of 4.03 wt%, and spherical aberration-corrected transmission electron microscopy (AC-TEM) has confirmed that most cobalt exists in a single-atom state. As a result, the Co-encapsulated SAC/NC exhibits excellent ORR catalytic performance with a half-wave potential of 0.88 V. Furthermore, Zn-air batteries employing Co-encapsulated SAC/NC as air cathode show high peak power density and excellent cycling stability. Density functional theory (DFT) calculations reveal that adjacent active sites have different rate-determining steps and lower reaction energy barriers than a single active site.

18.
Anal Bioanal Chem ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682312

RESUMO

The quantitative analysis of respiratory viruses is of great importance for rapid diagnosis, precision medicine, and prognosis. Several current quantitative analysis systems have been proposed and commercialized. Although they have been proven in trials, quantitative analyzes based on real samples are still complex, time-consuming, and expensive. Therefore, they are not able to directly quantify real samples. In this work, we presented a lab-on-a-chip platform combined with an automated control system to achieve quantitative analysis from samples to results. We developed a multilayer integrated chip to rapidly extract and quantify RNA of coronavirus disease 2019 (COVID-19) pseudovirus from large-volume nasal swab samples. The dependence of the magnetic bead size and the interfacial effect was studied for the first time, and the conditions of immiscible filtration assisted by surface tension (IFAST) method for nucleic acid extraction were optimized to increase the nucleic acid recovery rate up to 85%. Inside the chip, a pneumatic valve was developed for automatic opening and closing of the liquid channel. The integrated chip platform and automatic control system presented here are advantageous for use in resource-limited settings (RLS). In addition, our method can be extended to other respiratory viruses and other sample types.

19.
Front Cardiovasc Med ; 10: 1150324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719981

RESUMO

Background: Myeloperoxidase (MPO), released by activated neutrophils, is significantly increased in atrial fibrillation (AF). MPO may play a role in the progression of atrial fibrillation and further involved in AF recurrence after catheter ablation. We compared plasma MPO levels in paroxysmal and persistent AF and explored their role in AF recurrence after catheter ablation. Methods: Plasma MPO levels were measured in consecutive patients with paroxysmal AF (n = 225) and persistent AF (n = 106). Samples of patients were collected from the femoral vein during catheter ablation and all patients included were followed up after catheter ablation. Results: Plasma MPO levels increased from paroxysmal AF to persistent AF patients (56.31 [40.33-73.51] vs. 64.11 [48.65-81.11] ng/ml, p < 0.001). MPO significantly correlated with left atrium volume (LAV) and there existed a significant interaction between the two in relation to AF recurrence (p for interaction <0.05). During a median follow-up of 14 months, 28 patients with paroxysmal AF (12.44%) and 27 patients with persistent AF (25.47%) presented with recurrence after catheter ablation. The percentage of recurrence increased stepwise with increasing tertiles of MPO levels in both paroxysmal AF and persistent AF. MPO levels remained independently associated with AF recurrence after adjusting for potential confounding variables. Conclusion: MPO levels were higher in persistent AF than in paroxysmal AF and MPO was positively correlated with LAV in AF. Elevated MPO levels may predispose a switch in AF phenotype and AF recurrence after catheter ablation.

20.
Med Rev (Berl) ; 3(1): 1-3, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724109
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...