Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.399
Filtrar
1.
Chemosphere ; 240: 124868, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31542583

RESUMO

Multi-soil-layering (MSL) system with brick-wall pattern structure and gravitational flow can be used for decentralized rural domestic sewage treatment. The capability of soil for contaminant removal is maximized within soil mixture blocks (SMBs). However, the performance of removing nitrate was still not ideal during operation. To improve its performance in MSL system, the relationship between biophysiological characteristics of denitrifying species and operating conditions was studied. Microbial species diversity of activated sludge and soil samples were analyzed. The significant effects of independent factors and their interactions on microbial species diversity and denitrifying species abundance were revealed on the basis of factorial analysis. The results indicated activated sludge in SMBs played a key role in increasing the richness of denitrifying species in MSL system. Slow-release poly (butylene succinate) (PBS) had the most dominant positive effect on increasing denitrifying species abundance. Submersion had significantly positive effect on species richness in SMBs. These three factors, including activated sludge, PBS in SMBs, and submersion condition had different significant effects on microbial responses. They were favorable for denitrification and ensuring a better removal efficiency of nitrate and total nitrogen. The porous zeolites were served as the habitats for most of aerobic bacteria to form biofilms, which could promote the oxygen consumption in both sewage and system to improve denitrification in SMBs. The results could help on the enhancement of denitrification in MSL system from biophysiological insights. It can provide a sound strategy for using MSL system with great performance on contaminant removal.

2.
Acta Neurochir Suppl ; 127: 105-119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31407071

RESUMO

The protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway, which is a branch of the unfolded protein response, participates in a range of pathophysiological processes of neurological diseases. However, few studies have investigated the role of the PERK in intracerebral hemorrhage (ICH). The present study evaluated the role of the PERK pathway during the early phase of ICH-induced secondary brain injury (SBI) and its potential mechanisms. An autologous whole blood ICH model was established in rats, and cultured primary cortical neurons were treated with oxyhemoglobin to mimic ICH in vitro. We found that levels of phosphorylated alpha subunit of eukaryotic translation initiation factor 2 (p-eIF2α) and activating transcription factor 4 (ATF4) increased significantly and peaked at 12 h during the early phase of the ICH. To further elucidate the role of the PERK pathway, we assessed the effects of the PERK inhibitor, GSK2606414, and the eIF2α dephosphorylation antagonist, salubrinal, at 12 h after ICH both in vivo and in vitro. Inhibition of PERK with GSK2606414 suppressed the protein levels of p-eIF2α and ATF4, resulting in increase of transcriptional activator CCAAT/enhancer-binding protein homologous protein (CHOP) and caspase-12, which promoted apoptosis and reduced neuronal survival. Treatment with salubrinal yielded opposite results, which suggested that activation of the PERK pathway could promote neuronal survival and reduce apoptosis. In conclusion, the present study has demonstrated the neuroprotective effects of the PERK pathway during the early phase of ICH-induced SBI. These findings highlight the potential value of PERK pathway as a therapeutic target for ICH.


Assuntos
Lesões Encefálicas , Hemorragia Cerebral , RNA , eIF-2 Quinase , Animais , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/metabolismo , Fator de Iniciação 2 em Eucariotos , Ratos , eIF-2 Quinase/metabolismo
3.
IEEE Trans Image Process ; 29: 237-249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31369377

RESUMO

Unsupervised video object segmentation aims to automatically segment moving objects over an unconstrained video without any user annotation. So far, only few unsupervised online methods have been reported in the literature, and their performance is still far from satisfactory because the complementary information from future frames cannot be processed under online setting. To solve this challenging problem, in this paper, we propose a novel unsupervised online video object segmentation (UOVOS) framework by construing the motion property to mean moving in concurrence with a generic object for segmented regions. By incorporating the salient motion detection and the object proposal, a pixel-wise fusion strategy is developed to effectively remove detection noises, such as dynamic background and stationary objects. Furthermore, by leveraging the obtained segmentation from immediately preceding frames, a forward propagation algorithm is employed to deal with unreliable motion detection and object proposals. Experimental results on several benchmark datasets demonstrate the efficacy of the proposed method. Compared to state-of-the-art unsupervised online segmentation algorithms, the proposed method achieves an absolute gain of 6.2%. Moreover, our method achieves better performance than the best unsupervised offline algorithm on the DAVIS-2016 benchmark dataset. Our code is available on the project website: https://www.github.com/visiontao/uovos.

4.
Nanotechnology ; 31(3): 035303, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31550688

RESUMO

Surface enhanced Raman spectroscopy (SERS) is a new and developing analytical technology in chemical and biological detection. However, traditional hard SERS substrates are struggling to meet the growing demand for flexible devices. In this work, we introduce a simple, cost-effective and large scale preparation route to form a flexible Au nanocap (AuNC) ordered array as SERS substrates via reactive ion etching (RIE) method and then Au deposition. We find RIE is an excellent method for nanoroughening the surface of polystyrene (PS) spheres. Such flexible SERS substrates exhibit high sensitivity and uniformity for detecting organic molecules. The finite-difference time-domain simulation results revealed that a strong electric field coupling effect existed not only in the gap site between the Au nanoparticles (AuNPs), but also in the connection position between the AuNCs and the single AuNP. This study not only offers a novel way for nanoroughening of PS spheres, but also acquires flexible and cheap SERS substrates for quick and sensitive detection of organic molecules.

5.
J Nanosci Nanotechnol ; 20(5): 2713-2721, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635606

RESUMO

The nanoarchitectonic composites mixed-ZnPc-fMWCNT and linked-ZnPc-fMWCNT were prepared through tetra-[α-(p-amino)benzyloxyl]phthalocyanine Zinc(II) (ZnPc) mixed and covalently linked to multiwalled carbon nanotubes (MWCNTs), respectively. Various spectroscopic methods were used to identify the nanocomposites formed between ZnPc and MWCNTs whether by π-π interaction or by covalent linking. Their photocatalytic properties were fully investigated by carrying out the photodegradation of Rhodamine B (RhB) in aqueous solution under visible light irradiation. The nanocomposites displayed excellent photocatalytic performance, with the photodegradation efficiency as high as 94% for linked-ZnPc-fMWCNT and 83% for mixed-ZnPc-fMWCNT within 3 h irradiation. The repetition test revealed that both nanocomposites have excellent stability and recyclability, and then they are promising candidates as eco-friendly photocatalysts for degradation of organic dyes in aqueous environments.

6.
Free Radic Biol Med ; 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31785331

RESUMO

The liver is the most important metabolic and detoxifying organ in the human body, and liver damage can seriously affect bodily function and potentially be life threatening. Accumulating evidence suggests that maresin 1 (MaR1) exhibits protective and anti-inflammatory effects in some diseases, such as pneumonia and colitis; however, its role in acute hepatitis remains unclear. Here, we established a concanavalin A (ConA)-induced acute liver-injury mouse model to determine whether MaR1 administration can attenuate liver damage. Our results indicate that MaR1 confers protective effects against ConA-induced acute liver injury, improves liver function and survival, and reduces histopathological damage. Additionally, MaR1 attenuated the inflammatory response and reduced hepatocyte apoptosis while increasing mouse macrophage apoptosis and markedly decreasing levels of reactive oxygen species (ROS) in macrophages. We also found that MaR1 significantly inhibited ConA-induced activation of the nuclear factor-kappaB (NF-κB) pathway. This work will contribute to a better understanding of acute liver injury (ALI) and advancement towards its treatment.

7.
Sci Rep ; 9(1): 18057, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792242

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in plant-fungi communities. It remains a central question of how the AM fungal community changes as plants grow. To establish an understanding of AM fungal community dynamics associated with Chinese fir, Chinese fir with five different growth stages were studied and 60 root samples were collected at the Jiangle National Forestry Farm, Fujian Province. A total of 76 AM fungal operational taxonomic units (OTUs) were identified by high-throughput sequencing on an Illumina Miseq platform. The genera covered by OTUs were Glomus, Archaeospora, Acaulospora, Gigaspora and Diversispora. Glomus dominated the community in the whole stage. The number and composition of OTUs varied along with the host plant growth. The number of OTUs showed an inverted V-shaped change with the host plant age, and the maximum occurred in 23-year. Overall, the basic species diversity and richness in this study were stable. Non-metric multi-dimensional scaling (NMDS) analysis based on bray-curtis distance revealed that there were remarkable differentiations between the 9-year and other stages. Besides, AM fungal community in 32-year had a significant difference with that of 23-year, while no significant difference with that of 45-year, suggesting that 32-year may be a steady stage for AM fungi associated with Chinese fir. The cutting age in 32-year may be the most favorable for microbial community. The pH, total N, total P, total K, available N, available P, available K, organic matter and Mg varied as the Chinese fir grows. According to Mantel test and redundancy analysis, available N, available P, K and Mg could exert significant influence on AM fungal communities, and these variables explained 31% of variance in the composition of AM fungal communities.

8.
Plant Cell Rep ; 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784770

RESUMO

In Materials and method section, a sweetpotato variety "Taizhong-6" (China national number 2013003) should be renamed as Ayamurasaki".

9.
Sci Total Environ ; : 134619, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31791751

RESUMO

Dissolved organic matter (DOM) released from biochar can influence the microbial community structure, but the inherent mechanism associated with the structure of biochar-derived DOM remains insufficiently elucidated. In this study, the spectroscopic characteristics and molecular structures of biochar-derived DOM were studied, and the microbial responses to biochar-derived DOM were explored. With increasing biochar pyrolysis temperature (PT), the molecular weight and proportions of aliphatic and fulvic acid-like compounds in the biochar-derived DOM decrease along with an reduction in the amount of DOM released from the biochars, but the proportions of combustion-derived condensed polycyclic aromatics and humic acid-like and soluble microbial byproduct-like compounds increased. Accordingly, the humification index, H/C and (O + N)/C values also decreased. The spectroscopic characteristics of biochar-derived DOM were distinct from those of natural substrates. Moreover, the DOM extracted from biochar raw materials contained a high proportion of aliphatic compounds, while the DOM derived from high-PT biochars (500 °C) had similar characteristics to fulvic acid-like and soluble microbial byproduct-like compounds. The microbial abundance and community structure varied in different DOM solutions. The relative abundances (RAs) of eight genera (e.g. Dyadobacter, Sphingobacterium and Novosphingobium) had significantly positive correlations with the content of aliphatic compounds, while RAs of seven genera (e.g. Methylotenera, Acinetobacter and Reyranella) had significant positive correlations with the content of high-aromatic combustion-derived condensed polycyclic aromatics. These results are helpful for obtaining a deep understanding of the potential influences of various types of biochar-derived DOM on terrestrial and aquatic microbiology.

10.
Nano Lett ; 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786926

RESUMO

Although a variety of advanced sterilization materials and treatments have emerged, the complete elimination of bacterial infection, especially drug-resistant bacterial infection, remains an immense challenge. Here, we demonstrate the use of neutrophils loaded with photocatalytic nanoparticles to reduce bacterial infection. This method activates the immune system to achieve an anti-infection response. We prepared the photocatalytic nanoparticle-laden neutrophils in vivo through neutrophil phagocytosis. The resulting loaded cells retained the cell membrane functionality of the source cell, as well as the complete immune cell function of neutrophils, particularly the ability to recruit macrophages to the target area. Photocatalytic nanoparticle-laden neutrophils can target infection sites and release reactive oxygen species to induce the secretion of chemokines, leading to the targeted recruitment of macrophages and enhancing a powerful immune cascade. In a severe mouse infection model induced by pathogenic bacteria, small doses of photocatalytic nanoparticle-laden neutrophils showed a remarkable therapeutic effect by enhancing macrophage recruitment and the immune cascade.

11.
Clin Oral Investig ; 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31788748

RESUMO

BACKGROUND AND OBJECTIVES: Liquid platelet rich fibrin (PRF; often referred to as injectable PRF) has been utilized as an injectable formulation of PRF that is capable of stimulating tissue regeneration. Our research group recently found that following standard L-PRF protocols (2700 RPM for 12 min), a massive increase in platelets and leukocytes was observed directly within the buffy-coat layer directly above the red blood cell layer. The purpose of this study was to develop a novel harvesting technique to isolate liquid PRF directly from this buffy coat layer and to compare this technique to standard i-PRF. MATERIALS AND METHODS: Standard high g-force L-PRF and low g-force i-PRF protocols were utilized to separate blood layers. Above the red blood corpuscle layer, sequential 100-µL layers of plasma were harvested (12 layers total; i.e., 1.2 mL, which represents the total i-PRF volume), and 3 layers (3 × 100 µL) were harvested from the red blood cell layer to quantify blood cells. Each layer was then sent for complete blood count (CBC) analysis, and the cell numbers were quantified including red blood cells, leukocytes, neutrophils, lymphocytes, monocytes, and platelets. The liquid PRF that was directly collected from the buffy-coat layer following L-PRF protocols was referred to as concentrated PRF (C-PRF). RESULTS: The i-PRF protocol typically yielded a 2- to 3-fold increase in platelets and a l.5-fold increase in leukocyte concentration from the 1- to 1.2-mL plasma layer compared to baseline concentrations in whole blood. While almost no cells were found in the first 4-mL layer of L-PRF, a massive accumulation of platelets and leukocytes was found directly within the buffy coat layer demonstrating extremely high concentrations of cells in this 0.3-0.5-mL layer (~ 20-fold increases). We therefore proposed harvesting this 0.3- to 0.5-mL layer directly above the red blood cell corpuscle layer as liquid C-PRF. In general, i-PRF was able to increase platelet numbers by ~ 250%, whereas a 1200-1700% increase in platelet numbers could easily be achieved by harvesting this 0.3-0.5 mL of C-PRF (total platelet concentrations of > 2000-3000 × 109 cells/L). CONCLUSION: While conventional i-PRF protocols increase platelet yield by 2-3-fold and leukocyte yield by 50%, we convincingly demonstrated the ability to concentrate platelets and leukocytes over 10-fold by harvesting the 0.3-0.5 mL of C-PRF within the buffy coat following L-PRF protocols. CLINICAL RELEVANCE: Previous studies have demonstrated only a slight increase in platelet and leukocyte concentrations in i-PRF. The present study described a novel harvesting technique with over a 10-fold increase in platelets and leukocytes that can be further utilized for tissue regeneration.

12.
Nat Commun ; 10(1): 5566, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804482

RESUMO

Overexpressed Aurora-A kinase promotes tumor growth through various pathways, but whether Aurora-A is also involved in metabolic reprogramming-mediated cancer progression remains unknown. Here, we report that Aurora-A directly interacts with and phosphorylates lactate dehydrogenase B (LDHB), a subunit of the tetrameric enzyme LDH that catalyzes the interconversion between pyruvate and lactate. Aurora-A-mediated phosphorylation of LDHB serine 162 significantly increases its activity in reducing pyruvate to lactate, which efficiently promotes NAD+ regeneration, glycolytic flux, lactate production and bio-synthesis with glycolytic intermediates. Mechanistically, LDHB serine 162 phosphorylation relieves its substrate inhibition effect by pyruvate, resulting in remarkable elevation in the conversions of pyruvate and NADH to lactate and NAD+. Blocking S162 phosphorylation by expression of a LDHB-S162A mutant inhibited glycolysis and tumor growth in cancer cells and xenograft models. This study uncovers a function of Aurora-A in glycolytic modulation and a mechanism through which LDHB directly contributes to the Warburg effect.

13.
J Exp Clin Cancer Res ; 38(1): 443, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31666112

RESUMO

In the original publication of this article [1], the author would like to revise Figure 4.

14.
J Neuroinflammation ; 16(1): 202, 2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31679515

RESUMO

BACKGROUND: The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex). METHODS: We evaluated the effects of exosomes on surface co-stimulation markers and Aire expression of different kinds of thymic stromal cells, including cTEC, mTEC, and tDCs, in EAMG rats. The isolated exosomes were examined by western blot and DLS. Immunofluorescence was used to track the exosomes in the thymus. Flow cytometry and western blot were used to analyze the expression of co-stimulatory molecules and Aire in vivo and in vitro. RESULTS: We confirmed the effects of statin-Dex in inducing Foxp3+ nTreg cells and found that both statin-Dex and DMSO-Dex could upregulate CD40 but only statin-Dex increased Aire expression in thymic stromal cells in vivo. Furthermore, we found that the role of statin-Dex and DMSO-Dex in the induction of Foxp3+ nTreg cells was dependent on epithelial cells in vitro. CONCLUSIONS: We demonstrated that statin-Dex increased expression of Aire in the thymus, which may further promote the Foxp3 expression in the thymus. These findings may provide a new strategy for the treatment of myasthenia gravis.

15.
BMC Genomics ; 20(1): 801, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684868

RESUMO

BACKGROUND: Seed germination, the foundation of plant propagation, involves a series of changes at the molecular level. Poplar is a model woody plant, but the molecular events occurring during seed germination in this species are unclear. RESULTS: In this study, we investigated changes in gene transcriptional levels during different germination periods in poplar by high-throughput sequencing technology. Analysis of genes expressed at specific germination stages indicated that these genes are distributed in many metabolic pathways. Enrichment analysis of significantly differentially expressed genes based on hypergeometric testing revealed that multiple pathways, such as pathways related to glycolysis, lipid, amino acid, protein and ATP synthesis metabolism, changed significantly at the transcriptional level during seed germination. A comparison of ΣZ values uncovered a series of transcriptional changes in biological processes related to primary metabolism during poplar seed germination. Among these changes, genes related to CHO metabolism were the first to be activated, with subsequent expression of genes involved in lipid metabolism and then those associated with protein metabolism. The pattern of metabolomic and physiological index changes further verified the sequence of some biological events. CONCLUSIONS: Our study revealed molecular events occurring at the transcriptional level during seed germination and determined their order. These events were further verified by patterns of changes of metabolites and physiological indexes. Our findings lay a foundation for the elucidation of the molecular mechanisms responsible for poplar seed germination.

16.
Mediators Inflamm ; 2019: 5869257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31686983

RESUMO

Background: T-helper type 1 (Th1) cells and Th1-produced cytokines play essential roles in the immune response to foreign pathogens, such as Brucella spp. The aim of this study was to evaluate the dynamic changes of Th1 cells and Th1-produced cytokines in patients with acute brucellosis and their impact on clinical decision-making. Methods: Fifty-one individuals with acute brucellosis and 17 healthy subjects were enrolled in this study. The brucellosis patients were diagnosed based on clinical symptoms, laboratory tests, and clinical examination. The levels of serum gamma-interferon (IFN-γ) and tumor necrosis factor-alpha (TNF-α), along with the percentage of Th1 cells, were determined by flow cytometry bead arrays (CBA). Results: The frequency of Th1 cells, along with the levels of IFN-γ and TNF-α, was negatively correlated with the clinical parameters. The mean serum levels of IFN-γ and TNF-α and the frequency of Th1 cells were significantly higher in the brucellosis patients in comparison with the healthy subjects (p < 0.05). Besides, the cytokine levels were not significantly different between the positive and negative blood culture groups. IFN-γ levels significantly decreased from 6 months to 12 months post treatment (p < 0.05). However, the IFN-γ levels remained higher than those of the healthy subjects by 12 months post treatment (p < 0.05). The IFN-γ/TNF-α ratio was significantly higher in severe cases than in nonsevere cases (p < 0.05). Conclusions: The IFN-γ levels secreted by Th1 cells remain significantly higher than those of healthy subjects more than 12 months after treatment with antibiotics. This finding is different from similar studies. The IFN-γ/TNF-α ratio may be a feasible parameter for assessing clinical severity, yet further longitudinal studies of the immunization and inflammatory reaction of brucellosis are needed in larger patient populations.

17.
BMC Anesthesiol ; 19(1): 200, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690285

RESUMO

BACKGROUND: Previous studies have demonstrated that the common laryngoscopic approach (right-sided) and midline approach are both used for endotracheal intubation by direct laryngoscopy. Although the midline approach is commonly recommended for video laryngoscopy (VL) in the clinic, there is a lack of published evidences to support this practice. This study aimed to evaluate the effects of different video laryngoscopic approaches on intubation. METHODS: Two hundred sixty-two patients aged 18 years who underwent elective surgery under general anaesthesia and required endotracheal intubation were included in the present prospective, randomized, controlled study. The participants were randomly and equally allocated to the right approach (Group R) or midline approach (Group M). All the intubations were conducted by experienced anaesthetists using GlideScope video laryngoscopy. The primary outcomes were Cormack-Lehane laryngoscopic views (CLVs) and first-pass success (FPS) rates. The secondary outcomes were the time to glottis exposure, time to tracheal intubation, haemodynamic responses and other adverse events. Comparative analysis was performed between the groups. RESULTS: Finally, 262 patients completed the study, and all the tracheas were successfully intubated. No significant differences were observed in the patient characteristics and airway assessments (P > 0.05). Compared with Group R, Group M had a better CLV (χ2 = 14.706, P = 0.001) and shorter times to glottis exposure (8.82 ± 2.04 vs 12.38 ± 1.81; t = 14.94; P < 0.001) and tracheal intubation (37.19 ± 5.01 vs 45.23 ± 4.81; t = 13.25; P < 0.001), but no difference was found in the FPS rate (70.2% vs 71.8%; χ2 = 0.074; P = 0.446) and intubation procedure time (29.86 ± 2.56 vs 30.46 ± 2.97, t = 1.75, P = 0.081). Between the groups, the rates of hoarseness or sore throat, minor injury, hypoxemia and changes in SBP and HR showed no significant difference (P > 0.05). CONCLUSION: Although the FPS rate did not differ based on the laryngoscopic approach, the midline approach could provide better glottis exposure and shorter times to glottis exposure and intubation. The midline approach should be recommended for teaching in VL-assisted endotracheal intubation. TRIAL REGISTRATION: The study was registered on May 18, 2019 in the Chinese Clinical Trial Registry ( ChiCTR1900023252 ).

18.
Artigo em Inglês | MEDLINE | ID: mdl-31697830

RESUMO

CONTEXT: Individuals with cystic fibrosis (CF) develop a distinct form of diabetes characterized by ß-cell dysfunction and islet amyloid accumulation similar to type 2 diabetes (T2D) but generally normal insulin sensitivity. CF-related diabetes (CFRD) risk is determined by both CFTR, the gene responsible for CF, and other genetic variants. OBJECTIVE: To identify genetic modifiers of CFRD and determine the genetic overlap with other types of diabetes. DESIGN AND PATIENTS: A genome-wide association study was conducted for CFRD onset on 5740 individuals with CF. Weighted polygenic risk scores (PRSs) for T1D, T2D and diabetes endophenotypes were tested for association with CFRD. RESULTS: Genome-wide significance was obtained for variants at a novel locus (PTMA) and two known CFRD genetic modifiers (TCF7L2 and SLC26A9). PTMA and SLC26A9 variants were CF-specific; TCF7L2 variants also associated with T2D. CFRD was strongly associated with PRSs for T2D, insulin secretion, post-challenge glucose concentration and fasting plasma glucose, and less strongly with T1D PRSs. CFRD was inconsistently associated with PRSs for insulin sensitivity and was not associated with a PRS for islet autoimmunity. A CFRD PRS comprised of variants selected from these PRSs (with FDR p-value<0.1) and the genome-wide significant variants was associated with CFRD in a replication population. CONCLUSIONS: CFRD and T2D have more etiologic and mechanistic overlap than previously known, aligning along pathways involving ß-cell function rather than insulin sensitivity. Two CFRD risk loci are unrelated to T2D and may affect multiple aspects of CF. An 18-variant PRS stratifies risk of CFRD in an independent population.

19.
Artigo em Inglês | MEDLINE | ID: mdl-31702861

RESUMO

The synthesis and structure of atomically precise Au130-x Agx (average x=98) alloy nanoclusters protected by 55 ligands of 4-tert-butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag-rich sites is found, which is enclosed by a Marks decahedral cage of Au-rich sites. The surface is exclusively Ag-SR; X-ray absorption fine structure analysis supports the absence of Au-S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non-plasmon nature. The non-metallicity of the Au130-x Agx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic-level insights into the Au-Ag bonds in bimetallic nanoclusters.

20.
World Neurosurg ; 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31715409

RESUMO

OBJECTIVE: To assess the dynamic change of the dural sac size in patients with lumbar spinal stenosis (LSS) from supine to standing position and their correlations with clinical symptoms. METHODS: A final of 110 patients with LSS were prospectively enrolled to undergo both supine (0°) and standing (78°) MRI. Dural sac cross sectional area (DCSA) and dural sac anteroposterior diameter (DAPD) at the most constricted spinal level in supine and standing MRI were measured and compared. The clinical symptoms were assessed by duration of disease, claudication distance, visual analogue scale (VAS) of leg pain, and Chinese Oswestry Disability Index (ODI) score of low back pain. The correlation between the above parameters and clinical symptoms were analyzed by Pearson correlation coefficients (r). RESULTS: Mean minimum DCSA and DAPD in standing position were significantly (both p values < 0.01) smaller than that in supine position. DCSA and DAPD in standing MRI and their changes had better correlation with the intermittent claudication distance and VAS score of leg pain than that in supine position. A more than 15 mm2 reduction of DSCA was observed in patients with shorter claudication distance and severer VAS of leg pain (both p values < 0.01). CONCLUSIONS: Dural sac size on MRI was reduced significantly from supine to standing position. Standing MRI and the changes of DCSA significantly correlated with claudication distance and VAS of leg pain in LSS patients. Therefore, standing MRI provides more radiologic information correlating with clinical symptoms in LSS patients than supine MRI does.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA