Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 939
Filtrar
1.
Biosens Bioelectron ; 195: 113656, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34600203

RESUMO

Serological tests play an important role in the fight against Coronavirus Disease 2019 (COVID-19), including monitoring the dynamic immune response after vaccination, identifying past infection and determining community infection rate. Conventional methods for serological testing, such as enzyme-linked immunosorbent assays and chemiluminescence immunoassays, provide reliable and sensitive antibody detection but require sophisticated laboratory infrastructure and/or lengthy assay time. Conversely, lateral flow immunoassays are suitable for rapid point-of-care tests but have limited sensitivity. Here, we describe the development of a rapid and sensitive magnetofluidic immuno-PCR platform that can address the current gap in point-of-care serological testing for COVID-19. Our magnetofluidic immuno-PCR platform automates a magnetic bead-based, single-binding, and one-wash immuno-PCR assay in a palm-sized magnetofluidic device and delivers results in ∼30 min. In the device, a programmable magnetic arm attracts and transports magnetically-captured antibodies through assay reagents pre-loaded in a companion plastic cartridge, and a miniaturized thermocycler and a fluorescence detector perform immuno-PCR to detect the antibodies. We evaluated our magnetofluidic immuno-PCR with 108 clinical serum/plasma samples and achieved 93.8% (45/48) sensitivity and 98.3% (59/60) specificity, demonstrating its potential as a rapid and sensitive point-of-care serological test for COVID-19.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34601167

RESUMO

OBJECTIVES: This study aimed to define changes in the rat condylar cartilage and subchondral bone using the unilateral mastication model. MATERIALS AND METHODS: In this study, forty 4-week-old Wistar rats were randomly divided into experimental (n = 20) and control group (n = 20). In the experimental group, unilateral dental splints were placed on the occlusal surface of left maxillary molars. The rats were sacrificed at 1, 2, 3, and 4 weeks after placement of the splint. Micro-CT scanning and histological staining were performed to observe the changes in the mandibular condylar cartilage and subchondral bone. Levels of insulin-like growth factor-1 (IGF-1) were determined via immunohistochemistry to analyse the occurrence of osteogenic changes. RESULTS: Micro-CT scanning findings demonstrated the occurrence of asymmetric growth of condyle in the experimental group. The condylar cartilage and subchondral bone exhibited degradation on the chewing side of the experimental group and showed decreased bone mineral density, thinner cartilage thickness, and increased degree of degeneration and osteoclast activity. Compared with the control group, the expression of IGF-1 was remarkably higher on the non-chewing side. CONCLUSION: Long-term unilateral mastication can lead to the occurrence of degenerative changes in the condylar cartilage and subchondral bone during growth and development. IGF-1 may play a role in promoting the process of osteogenesis.

3.
Phys Rev Lett ; 127(14): 140601, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652178

RESUMO

We construct Brownian Sachdev-Ye-Kitaev (SYK) chains subjected to continuous monitoring and explore possible entanglement phase transitions therein. We analytically derive the effective action in the large-N limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space. In the noninteracting case with SYK_{2} chains, the model features a continuous O(2) symmetry between two replicas and a transition corresponding to spontaneous breaking of that symmetry upon varying the measurement rate. In the symmetry broken phase at low measurement rate, the emergent replica criticality associated with the Goldstone mode leads to a log-scaling entanglement entropy that can be attributed to the free energy of vortices. In the symmetric phase at higher measurement rate, the entanglement entropy obeys area-law scaling. In the interacting case, the continuous O(2) symmetry is explicitly lowered to a discrete C_{4} symmetry, giving rise to volume-law entanglement entropy in the symmetry-broken phase due to the enhanced linear free energy cost of domain walls compared to vortices. The interacting transition is described by C_{4} symmetry breaking. We also verify the large-N critical exponents by numerically solving the Schwinger-Dyson equation.

4.
Org Biomol Chem ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617555

RESUMO

A simple and mild protocol for copper-catalyzed oxidation of hydrazones at the α-position has been reported. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy provides an efficient and convenient solution for the synthesis of carbonyl hydrazone. A free radical pathway mechanism is suggested for the transformation.

5.
Nat Commun ; 12(1): 5917, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635659

RESUMO

The sintering of Supported Transition Metal Catalysts (STMCs) is a core issue during high temperature catalysis. Perovskite oxides as host matrix for STMCs are proven to be sintering-resistance, leading to a family of self-regenerative materials. However, none other design principles for self-regenerative catalysts were put forward since 2002, which cannot satisfy diverse catalytic processes. Herein, inspired by the principle of high entropy-stabilized structure, a concept whether entropy driving force could promote the self-regeneration process is proposed. To verify it, a high entropy cubic Zr0.5(NiFeCuMnCo)0.5Ox is constructed as a host model, and interestingly in situ reversible exsolution-dissolution of supported metallic species are observed in multi redox cycles. Notably, in situ exsolved transition metals from high entropy Zr0.5(NiFeCuMnCo)0.5Ox support, whose entropic contribution (TΔSconfig = T⋆12.7 J mol-1 K-1) is predominant in ∆G, affording ultrahigh thermal stability in long-term CO2 hydrogenation (400 °C, >500 h). Current theory may inspire more STWCs with excellent sintering-resistance performance.

6.
Front Pharmacol ; 12: 736655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621170

RESUMO

Objective: Adenine nucleotide translocase (ANT) can transport ADP from cytoplasm to mitochondrial matrix and provide raw materials for ATP synthesis by oxidative phosphorylation. Dysfunction of ANT leads to limitation of ADP transport and decrease of ATP production. Atractyloside (ATR) is considered as a cytotoxic competitive inhibitor binding to ANT, making ANT vulnerable to transport ADP, and reduces ATP synthesis. Moreover, the blockage of ANT by ATR may increase ADP/ATP ratio, activate AMPK-mTORC1-autophagy signaling pathway, and promote lipid degradation in steatosis hepatocytes. The present study was conducted to investigate the mechanism of ATR, regulate ANT-AMPK-mTORC1 signaling pathway to activate autophagy, and promote the degradation of lipid droplets in high-fat diet (HFD) induced liver steatosis. Methods: ICR mice were fed with HFD for 8 weeks to induce liver steatosis, and ATR solution was given by intraperitoneal injection. Intracellular triglyceride level and oil red O staining-lipid droplets (LDs) were assessed, the expression of proteins related to ANT-AMPK-mTORC1 signaling pathway and autophagy were determined, and the colocalization of LC3B and Perilipin 2 was performed. Results: ATR treatment decreased the serum AST level, relative weight of liver and epididymal fat, and body weight of HFD mice. The LDs in HFD mice livers were reduced in the presence of ATR, and the TG level in serum and liver of HFD mice was significantly reduced by ATR. In addition, ATR inhibited ANT2 expression, promoted the activation of AMPK, then increased Raptor expression, and finally decreased the mTOR activity. Furthermore, ATR increased the protein level of LC3A/B and ATG7, and a strong colocalization of LC3B and PLIN2 was observed. Conclusion: ATR treatment blocks ANT2 expression, promotes the activation of AMPK, then decreases the mTOR activity, and finally promotes autophagosomes formation, thus accelerating the degradation of HFD-induced accumulated lipids in the liver. This will provide new therapeutic ideas and experimental data for clinical prevention and treatment of non-alcoholic fatty liver disease.

7.
Front Neurol ; 12: 739109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659097

RESUMO

Background and Objective: ClinicalTrials.gov is a centralized venue for monitoring clinical research and allows access to information on publicly and privately funded studies. To better recognize influential institutions in the field of headache, we identified major organizations conducting clinical trials in migraine research. Furthermore, we examined the frequency of different study designs. Methods: Utilizing the ClinicalTrials.gov application programming interface, we extracted studies including individuals with migraine from February 29, 2000, to July 28, 2020, for the following: (1) host organization, (2) study type, (3) primary purpose, (4) intervention model, and (5) allocation. Results: We included 921 entries encompassing 423 organizations. Thirty-two organizations produced ≥5 entries each and 40.0% of all entries. Most, 86%, were interventional studies while 13.6% were observational studies. The most common study design had a randomized allocation of participants. The most frequent primary purpose was treatment (62.4%) followed by prevention (13.0%). There were 56.9% parallel assignment models, 15.2% single group assignment models, and 12.4% crossover assignment models. Conclusion: A minority of organizations contribute to a significant number of registrations of clinical migraine trials, suggesting that clinical research in migraine is oligarchic. The most common study is interventional and randomized, with parallel assignment of participants with treatment as the primary purpose. This likely reflects the need to evaluate novel putative pharmacological medications.

8.
Biofactors ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669997

RESUMO

The emerging role of FERM domain-containing protein 6 (FRMD6) in cancer progression has been revealed in several malignancies. However, its relevance on thyroid cancer is not well understood. This work evaluated the possible role and mechanism of FRMD6 in thyroid cancer. We demonstrated that FRMD6 expression was downregulated in thyroid cancer by analyzing the Cancer Genome Atlas data. Remarkable reductions in FRMD6 expression were also confirmed in the clinical specimens and cell lines of thyroid cancer. The upregulation of FRMD6 restrained the proliferation, epithelial-mesenchymal transition, and invasion of thyroid cancer. Moreover, FRMD6 overexpression significantly increased the apoptosis and cell cycle arrest. Further molecular research demonstrated that the overexpression of FRMD6 increased the phosphorylation levels of mammalian STE20-like protein kinase 1, large tumor suppressor 1, and Yes-associated protein 1 (YAP1) and prohibited the activation of YAP1. The re-expression of constitutively active YAP1 strikingly reversed FRMD6-induced tumor-inhibiting effects. Thyroid cancer cells overexpressing FRMD6 had a weakened ability to form xenograft tumors in vivo in nude mice. Overall, the overexpression of FRMD6 produces remarkable tumor-inhibiting effects in thyroid cancer by inhibiting oncogenic YAP1.

9.
Chem Commun (Camb) ; 57(80): 10399-10402, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34542548

RESUMO

A triangular metallosalen-based metallacycle was constructed in quantitative yield by the self-assembly of a 180° bis(pyridyl)salen-Al complex and a 60° diplatinum(II) acceptor in a 1 : 1 stoichiometric ratio. This metallacycle was then successfully used to cyanosilylate a wide range of benzaldehydes with trimethylsilyl cyanide.

10.
Arch Virol ; 166(11): 3127-3141, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34529151

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious infectious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which inflicts major economic losses on the global pig farming industry. Based on its similarity to highly pathogenic strains, the GDzj strain isolated in this study was predicted to be highly pathogenic. We therefore analyzed the pathogenicity of this strain experimentally in piglets. All piglets challenged with this virus experienced fever or high fever, loss of appetite, decreased food intake, daily weight loss, shortness of breath, and listlessness, and the necropsy results showed that they had experienced severe interstitial pneumonia. We then used the BAC system to construct a full-length cDNA infectious clone of GDzj, and the rescued virus displayed in vitro proliferation characteristics similar to those of the parental PRRSV strain. In summary, we successfully isolated a highly pathogenic PRRSV strain and constructed a full-length infectious cDNA clone from it, thereby providing an effective reverse genetics platform for further study of viral pathogenesis.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/etiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , Cromossomos Artificiais Bacterianos , DNA Complementar/genética , Genoma Viral , Pulmão/virologia , Linfonodos/patologia , Linfonodos/virologia , Filogenia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Suínos
11.
Med Image Anal ; 74: 102207, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34487982

RESUMO

The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.

12.
Front Immunol ; 12: 705378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526987

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is highly invasive and carries high mortality due to limited therapeutic strategies. In other solid tumors, immune checkpoint inhibitors (ICIs) target cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD1), and the PD1 ligand PD-L1 has revolutionized treatment and improved outcomes. However, the relationship and clinical significance of CTLA-4 and PD-L1 expression in ICC remains to be addressed. Deciphering CTLA-4 and PD-L1 interactions in ICC enable targeted therapy for this disease. In this study, immunohistochemistry (IHC) was used to detect and quantify CTLA-4, forkhead box protein P3 (FOXP3), and PD-L1 in samples from 290 patients with ICC. The prognostic capabilities of CTLA-4, FOXP3, and PD-L1 expression in ICC were investigated with the Kaplan-Meier method. Independent risk factors related to ICC survival and recurrence were assessed by the Cox proportional hazards models. Here, we identified that CTLA-4+ lymphocyte density was elevated in ICC tumors compared with peritumoral hepatic tissues (P <.001), and patients with a high density of CTLA-4+ tumor-infiltrating lymphocytes (TILsCTLA-4 High) showed a reduced overall survival (OS) rate and increased cumulative recurrence rate compared with patients with TILsCTLA-4 Low (P <.001 and P = .024, respectively). Similarly, patients with high FOXP3+ TILs (TILsFOXP3 High) had poorer prognoses than patients with low FOXP3+ TILs (P = .021, P = .034, respectively), and the density of CTLA-4+ TILs was positively correlated with FOXP3+ TILs (Pearson r = .31, P <.001). Furthermore, patients with high PD-L1 expression in tumors (TumorPD-L1 High) and/or TILsCTLA-4 High presented worse OS and a higher recurrence rate than patients with TILsCTLA-4 LowTumorPD-L1 Low. Moreover, multiple tumors, lymph node metastasis, and high TumorPD-L1/TILsCTLA-4 were independent risk factors of cumulative recurrence and OS for patients after ICC tumor resection. Furthermore, among ICC patients, those with hepatolithiasis had a higher expression of CTLA-4 and worse OS compared with patients with HBV infection or undefined risk factors (P = .018). In conclusion, CTLA-4 is increased in TILs in ICC and has an expression profile distinct from PD1/PD-L1. TumorPD-L1/TILsCTLA-4 is a predictive factor of OS and ICC recurrence, suggesting that combined therapy targeting PD1/PD-L1 and CTLA-4 may be useful in treating patients with ICC.

13.
Biocell ; 45(6): 1449-1451, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34539042

RESUMO

The exosome-mediated response can promote or restrain the diseases by regulating the intracellular pathways, making the exosome become an effective marker for diagnosis and therapeutic control at the single-cell level. However, real-time analysis is hard to be achieved with traditional approaches because the exosomes usually need to be enriched by ultracentrifugation for a measurable signal-to-noise ratio. Recently developed label-free single-molecule imaging approaches may become an real-time quantitative tool for the analysis of single exosomes and related secretion behaviors of single living cells owing to their extreme sensitivity.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34543723

RESUMO

Spermatogenesis is a continual process that occurs in the testes, in which diploid spermatogonial stem cells (SSCs) differentiate and generate haploid spermatozoa. This highly efficient and intricate process is orchestrated at multiple levels. N6-methyladenosine (m6A), an epigenetic modification prevalent in mRNAs, is implicated in transcriptional regulation during spermatogenesis. However, the dynamics of m6A modification in non-rodent mammalian species remains unclear. Here we systematically investigated the profile and role of m6A during spermatogenesis in pigs. By analyzing the transcriptomic distribution of m6A in spermatogonia, spermatocytes, and round spermatids, we identified a globally conserved m6A pattern between porcine and murine genes with spermatogenic function. We found that m6A was enriched in a group of genes that specifically encode the metabolic enzymes and regulators. In addition, transcriptomes in porcine male germ cells could be subjected to the m6A modification. Our data showed that m6A played the regulatory roles during spermatogenesis in pigs, which is similar to that in mice. Illustrations of this point were three genes (SETDB1, FOXO1, and FOXO3) that were crucial to the determination of the fate of SSCs. To the best of our knowledge, this study has for the first time uncovered the expression profile and role of m6A during spermatogenesis in large animals and contributes to insights into the intricate transcriptional regulation underlying the lifelong male fertility in non-rodent mammalian species.

15.
mSystems ; : e0072521, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546071

RESUMO

The neonatal period is a crucial time during development of the mammalian small intestine. Moreover, neonatal development and maturation of the small intestine are exceptionally important for early growth, successful weaning, and postweaning growth and development, in order to achieve species-specific milestones. Although several publications recently characterized intestinal epithelial cell diversity at the single-cell level, it remains unclear how differentiation and molecular interactions take place between types and subtypes of epithelial cells during the neonatal period. A single-cell RNA sequencing (scRNA-seq) survey of 40,186 ileal epithelial cells and proteomics analysis of ileal samples at 6 time points in the swine neonatal period were performed. The results revealed previously unknown developmental changes: specific increases in undifferentiated cells, unique enterocyte differentiation, and time-dependent reduction in secretory cells. Moreover, we observed specific transcriptional factors, ligand-receptor pairs, G protein-coupled receptors, transforming growth factor ß, bone morphogenetic protein signaling pathways, and gut mucosal microbiota playing vital roles in ileal development during the neonatal window. This work offers new comprehensive information regarding ileal development throughout the neonatal period. Reference to this data set may assist in the creation of novel interventions for inflammation-, metabolism-, and proliferation-related gut pathologies. IMPORTANCE We found previously unknown neonatal ileum developmental potentials: specific increases in undifferentiated cells, unique enterocyte differentiation, and time dependent reduction in secretory cells. Specific transcriptional factors (TFs), ligand-receptor pairs, G protein-coupled receptors, transforming growth factor ß, bone morphogenetic protein signaling pathways, and the gut mucosal microbiota are involved in this process. Our results may assist in the creation of novel interventions for inflammation-, metabolism-, and proliferation-related gut pathologies.

16.
Front Oncol ; 11: 705888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568032

RESUMO

Background: Lung ground-glass opacities (GGOs) are an early manifestation of lung adenocarcinoma. It is of great value to study the changes in the immune microenvironment of GGO to elucidate the occurrence and evolution of early lung adenocarcinoma. Although the changes of IL-6 and NK cells in lung adenocarcinoma have caught global attention, we have little appreciation for how IL-6 and NK cells in the lung GGO affect the progression of early lung adenocarcinoma. Methods: We analyzed the RNA sequencing data of surgical specimens from 21 patients with GGO-featured primary lung adenocarcinoma and verified the changes in the expression of IL-6 and other important immune molecules in the TCGA and GEO databases. Next, we used flow cytometry to detect the protein expression levels of important Th1/Th2 cytokines in GGO and normal lung tissues and the changes in the composition ratio of tumor infiltrating lymphocytes (TILs). Then, we analyzed the effect of IL-6 on NK cells through organoid culture and immunofluorescence. Finally, we explored the changes of related molecules and pathway might be involved. Results: IL-6 may play an important role in the tumor microenvironment of early lung adenocarcinoma. Further research confirmed that the decrease of IL-6 in GGO tissue is consistent with the changes in NK cells, and there seems to be a correlation between these two phenomena. Conclusion: The IL-6 expression status and NK cell levels of early lung adenocarcinoma as GGO are significantly reduced, and the stimulation of IL-6 can up-regulate or activate NK cells in GGO, providing new insights into the diagnosis and pathogenesis of early lung cancer.

17.
Nat Metab ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580494

RESUMO

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 is a virus-induced inflammatory disease of the airways and lungs that leads to severe multi-organ damage and death. Here we show that cellular lipid synthesis is required for SARS-CoV-2 replication and offers an opportunity for pharmacological intervention. Screening a short-hairpin RNA sublibrary that targets metabolic genes, we identified genes that either inhibit or promote SARS-CoV-2 viral infection, including two key candidate genes, ACACA and FASN, which operate in the same lipid synthesis pathway. We further screened and identified several potent inhibitors of fatty acid synthase (encoded by FASN), including the US Food and Drug Administration-approved anti-obesity drug orlistat, and found that it inhibits in vitro replication of SARS-CoV-2 variants, including more contagious new variants, such as Delta. In a mouse model of SARS-CoV-2 infection (K18-hACE2 transgenic mice), injections of orlistat resulted in lower SARS-CoV-2 viral levels in the lung, reduced lung pathology and increased mouse survival. Our findings identify fatty acid synthase inhibitors as drug candidates for the prevention and treatment of COVID-19 by inhibiting SARS-CoV-2 replication. Clinical trials are needed to evaluate the efficacy of repurposing fatty acid synthase inhibitors for severe COVID-19 in humans.

18.
J Gastrointest Oncol ; 12(4): 1363-1373, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532094

RESUMO

Background: Histone H2A and its variants have an important effect on DNA damage repair and cancer development. Protein kinase B (AKT) can regulate various cellular functions and play critical roles in the progression of different cancers. However, the interaction mechanism of H2A with AKT in gastric cancer (GC) has not been reported. A series of experiments were carried out in the present study to investigate this issue. Methods: Firstly, we used western blot and immunoprecipitation assays to determine the correlation between AKT and H2A, then detected the relationship between AKT and protein kinase CK2α that can phosphorylate H2A at Tyr57 site (H2AY57), and next examined the interaction among AKT, CK2α, and H2A in SNU-16 cells. Subsequently, the effect of these molecules on the cellular proliferation, migration, and invasion was measured by Cell Counting Kit-8 (CCK-8), wound healing, and transwell invasion assays. Results: Our study preliminarily found that AKT was negatively correlated with H2A phosphorylation at the Tyr 57 site (H2AY57p). It was revealed that AKT mediated the phosphorylation of CK2α at the T13 site, which decreased the affinity of CK2α with its substrate histone H2A and inhibited the level of H2AY57p in GC cells. Furthermore, AKT-mediated CK2α phosphorylation promoted the proliferation, migration, and invasion of SNU-16 cells possibly through downregulating H2AY57p level. Conclusions: These findings contribute to understanding the interactions among AKT, CK2α, and H2A in GC, and provide the potential biomarkers for the diagnosis and treatment of GC.

19.
J Transl Med ; 19(1): 391, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526059

RESUMO

BACKGROUND: EMT is an important biological process in the mechanism of tumor invasion and metastasis. However, there are still many unknowns about the specific mechanism of EMT in tumor. At present, a comprehensive analysis of EMT-related genes in colorectal cancer (CRC) is still lacking. METHODS: All the data were downloaded from public databases including TCGA database (488 tumor samples and 52 normal samples) as the training set and the GEO database (GSE40967 including 566 tumor samples and 19 normal samples, GSE12945 including 62 tumor samples, GSE17536 including 177 tumor samples, GSE17537 including 55 tumor samples) as the validation sets. One hundred and sixty-six EMT-related genes (EMT-RDGs) were selected from the Molecular Signatures Database. Bioinformatics methods were used to analyze the correlation between EMT-RDGs and CRC prognosis, metastasis, drug efficacy, and immunity. RESULTS: We finally obtained nine prognostic-related EMT-RDGs (FGF8, NOG, PHLDB2, SIX2, SNAI1, TBX5, TIAM1, TWIST1, TCF15) through differential expression analysis, Unicox and Lasso regression analysis, and then constructed a risk prognosis model. There were significant differences in clinical characteristics, 22 immune cells, and immune functions between the high-risk and low-risk groups and the different states of the nine prognostic-related EMT-RDGs. The methylation level and mutation status of nine prognostic-related EMT-RDGs all affect their regulation of EMT. The Cox proportional hazards regression model was also constructed by the methylation sites of nine prognostic-related EMT-RDGs. In addition, the expression of FGF8, PHLDB2, SIX2, and SNAIL was higher and the expression level of NOG and TWIST1 was lower in the non-metastasis CRC group. Nine prognostic-related EMT-RDGs also affected the drug treatment response of CRC. CONCLUSIONS: Targeting these nine prognostic-related EMT-RDGs can regulate CRC metastasis and immune, which is beneficial for the prognosis of CRC patients, improve drug sensitivity in CRC patients.

20.
Opt Lett ; 46(18): 4641, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525070

RESUMO

This publisher's note contains corrections to Opt. Lett.46, 4304 (2021)OPLEDP0146-959210.1364/OL.437851.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...