Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 712: 136518, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050380

RESUMO

Antibiotics used for human and veterinary purposes are released into the environment, resulting in potential adverse effects, including the development and spread of antibiotic resistant bacteria. Here we investigated the dynamic fate of 36 antibiotics in a large river basin Dongjiang in South China, and discussed their potential antibiotic resistance selection risk. Based on the usage, excretion rate, wastewater treatment rate, human population and animal numbers the emissions of 36 frequently detected antibiotics were estimated for the Dongjiang River Basin. The total usage of the 36 antibiotics in the basin was 623.4 tons, which included 37% for human use and the rest for veterinary purposes. After being metabolized and partially treated, the amount of antibiotics excreted and released into the environment decreased to 267.6 tons. By allocating the high-precision antibiotic discharge inventory to 42 sewage plants and 17 livestock farms, an improved GREAT-ER (Geography referenced Regional Exposure Assessment Tool for European Rivers) model for the Dongjiang River Basin, with a well calibration river flow network based on the SWAT (Soil and Water Assessment Tool), was established to simulate the dynamic fate of 36 antibiotics. The simulation results showed that antibiotics contaminated >50% of the river sections. The modelled concentrations in water were almost within an order of magnitude of the measured concentrations. Antibiotic contamination in the dry season was obviously higher than that in the wet season. The concentrations of the antibiotics were always higher at the discharge zones and lower reaches of the river basin than the other reaches. The antibiotic resistance risk assessment showed that 23 out of the 36 antibiotics (nearly 65%) could pose high risks in the river basin. For those river reaches with high risks, the risk levels could mostly be reduced to low risk levels with a certain distance (15 km) from the pollution source. Therefore, more attention should be paid to those impact zones in term of antibiotic resistance.

2.
Environ Int ; 136: 105458, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926439

RESUMO

Composting has been widely used to turn livestock manure into organic fertilizer. However, livestock manure contains various contaminants including antibiotics and antibiotic resistance genes (ARGs). Here we investigated the variation of antibiotic resistome and its influencing factors during a commercial livestock manure composting. The results showed that composting could effectively reduce the relative abundance of ARGs and mobile genic elements (MGEs). As the dominant phylum in the composting samples, the key potential bacterial host of ARGs were Actinobacteria such as Leucobacter, Mycobacterium and Thermomonosporaceae unclassified. Meanwhile, Legionella pneumophila, Staphylococcus saprophyticus, Haemophilus ducreyi and Siccibacter turicensis may be the key potential pathogenic host of ARGs because of their co-occurrence with ARG subtypes. Redundancy analysis showed that the dissipation of ARGs during composting was linked to various environmental factors such as moisture. Bacterial succession as well as profile of biocide and metal resistance genes (BMRGs) were the determinants which constructed the antibiotic resistome during manure composting. However, the residues of ARGs and pathogens in compost products may still pose risks to human and crops after fertilization.

3.
J Cell Physiol ; 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31907929

RESUMO

The roles of α5-nicotinic acetylcholine receptors (α5-nAChRs) in various types of solid cancer have been reported; however, its role in melanoma remains unknown. We knocked down α5-nAChR expression in melanoma cells to investigate the role of α5-nAChR in the proliferation, migration, and invasion of melanoma cells, and its effect on downstream signaling pathways. Using immunohistochemical analysis, we determined that α5-nAChR expression is significantly increased in human melanoma tissues and cell lines compared with normal human skin tissues. Knocking down α5-nAChR expression in melanoma cells in culture significantly inhibited the proliferation, migration, and invasiveness of melanoma cell lines. Specifically, knockdown of α5-nAChR inhibited PI3K-AKT and ERK1/2 signaling activity. Moreover, we confirmed that the Notch1 signaling pathway is the downstream target of α5-nAChR in melanoma. Our findings suggest that α5-nAChR plays a critical role in melanoma development and progression, and that targeting α5-nAChR may be a strategy for melanoma treatment.

4.
Sci Total Environ ; : 134859, 2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31837853

RESUMO

Decabromodiphenyl ether (BDE209) is a widely used brominated flame retardant that has become a common soil contaminant of concern due to its persistence and toxicity. However, little is known about molecular-level effects of BDE209 on soil invertebrates. Here, we detected changes in gene transcription of the soil springtail, Folsomia candida, exposed to BDE209 (0.81 mg/kg) in soil for 2, 7 and 14 days. We identified 16 and 771 significantly differentially expressed genes after 2 and 7 days of exposure respectively, and no significantly regulated genes were shared among the two time points. No genes were affected after 14 days of exposure. According to the annotation of the significantly differently expressed genes at 2 and 7 day exposure, we found that BDE209 affected the transcription of genes involved in moulting, neural signal transmission and detoxification. Our results suggested that BDE209 could disrupt moulting of F. candida via the ecdysteroid pathway, and cause neurotoxicity through disrupting some neurotransmitter signalling pathways. This study provided insights into the toxic mechanism of BDE209 on F. candida.

5.
Environ Pollut ; : 113660, 2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31818613

RESUMO

Pesticides are widely and intensively used in the world for crops protection. High pesticide loadings can potentially pollute the water resource. However, little is known about the usage, environmental emission and fate of pesticides in river basins. Here, we firstly established a pesticide emission estimation method, and investigated the environmental fate of three commonly used pesticides (chlorpyrifos, triazophos, and isoprothiolane) in Dongjiang River basin, southern China using mathematical modelling approach in combination with field monitoring. The distributed hydrological model SWAT (Soil and Water Assessment Tool) was applied to model the emission of the target pesticides from farmland to stream water, and their fate in the basin. A satisfactory model calibration for flow and suspended sediment was obtained based on eight-year observation data of four hydrological monitoring stations in Dongjiang River basin. The differences between the simulation and observation of pesticides were almost within an order of magnitude, including more than 53% differences within 0.5 order of magnitude. In the river basin, 78860 kg of chlorpyrifos, 54990 kg of triazophos and 35320 kg of isoprothiolane were sprayed onto the crops, the estimated annual emissions of the basin come up to 1801 kg, 3779 kg, and 2330 kg under the conditions of rainfall, surface runoff and percolation. After a series of environmental processes including settlement and degradation within the channels, the predicted export masses for chlorpyrifos, triazophos and isoprothiolane were reduced to 266 kg, 1858 kg, 1350 kg, respectively. Successful prediction suggests that the reliable estimation method combing the SWAT modelling can help us understand the source, concentration levels and fate of pesticides in river basin in different scales. Combing the method of emission and fate modelling method we proposed, countries and regions lacking pesticide-application database can facilitate better management of pesticides.

6.
PLoS One ; 14(12): e0225813, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851682

RESUMO

Shift work and jet lag, characterized by circadian misalignment, can disrupt several physiological activities, but whether they affect the rhythm of glucose uptake and insulin sensitivity remain unclear. In the present study, female C57BL/6J mice were maintained for four weeks under the condition of 8-hour phase advance and delay every 3-4 days to mimic shift work. Intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) were performed repeatedly at Zeitgeber time (ZT) 0, ZT6, ZT12, and ZT18. Glucose-stimulated insulin secretion (GSIS) test was performed at ZT6. We found that the average level of daily glucose tolerance did not decrease but the phase of glucose tolerance advanced by 2.27 hours and the amplitude attenuated by 20.4% in shift work mice. At ZT6, IPITT showed blood glucose at 30 min after insulin injection decreased faster in shift work mice (-3.50±0.74mmol/L, -61.58±7.89%) than that in control mice (-2.11±1.10mmol/L, -33.72±17.24%), but IPGTT and GSIS test showed no significant difference between the two groups. Food intake monitor showed that the feeding time of shift work mice continued to advance. Restricting feed to a fixed 12-hour period alleviated the increase of insulin sensitivity induced by shift-work. We also observed that an increase of blood glucose and liver glycogen at ZT0, as well as a phase advance of liver clock genes and some glucose metabolism-related genes such as forkhead box O1 (Foxo1) and peroxisome proliferator activated receptor alpha (Pparα) in shift work mice. Our results showed that light change-simulated shift work altered insulin sensitivity during the light phase and shifted glucose tolerance rhythms in female mice, suggesting a causal association between long-term shift work and type 2 diabetes.

7.
Bioresour Technol ; 293: 122096, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493731

RESUMO

The microbial community characteristics, functional and antibiotic resistance genes (ARGs), anammox performance under individual and combined oxytetracycline (OTC) and sulfamethoxazole (SMX) were tested under environmentally relevant levels. The results showed that anammox performance was inhibited when the OTC or SMX concentration increased from 0.5 to 1.0 mg L-1. The absolute abundance of tetX in OTC (3.03 × 106 copies mg-1), SMX (2.80 × 106 copies mg-1) and OTC + SMX (2.03 × 106 copies mg-1) was the highest and one more order of magnitude higher than that of tetG, tetM, intI1, or sul2. The anammox performance in the presence of OTC or SMX was lower than that sum of their independent effects. The enrichment of sludge resistomes with prolonged exposure time and increasing OTC and SMX doses might be due to succession of bacterial hosts and potential elevation of ARGs by horizontal transfer.


Assuntos
Microbiota , Oxitetraciclina , Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos , Sulfametoxazol
8.
Yi Chuan ; 41(8): 669-676, 2019 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-31447418

RESUMO

ß-thalassemia (ß-thal) is a fatal and disabling inherited blood disorder with diverse phenotypes. The same or similar genotype of ß-thal can manifest variable clinical severities. It is the hotspot and emphasis in the field of hematopathy and genetic diseases to explore genetic modifiers that influence the phenotype of ß-thal. This review illustrates the deteriorating and amelioratig modifiers from two aspects: genotypes of α-globin and quantitative trait locus of fetal hemoglobin (Hb F). Variations of transcription factors which reactive the γ-globin gene expression and ß-globin cluster cis-acting elements were introduced emphatically. Finally, clinical applications and future development prospects of ß-thal genetic modifiers are introduced by examples.


Assuntos
Talassemia beta/genética , Hemoglobina Fetal/genética , Genótipo , Humanos , Fenótipo , Fatores de Transcrição/genética , alfa-Globinas/genética , Globinas beta/genética , gama-Globinas/genética
9.
Yi Chuan ; 41(8): 746-753, 2019 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-31447425

RESUMO

Personal genomic information benefits from accumulated big data and its application is no longer limited to scientific research. Presently, it is undergoing the transformation to daily medical practice. Systematic arrangement, archiving and rational utilization of disease-related genomic information is an important foundation of future precision medicine. Hemoglobinopathy is prevalent in southern China, but its molecular pathological basis has racial specificity. To facilitate clinical diagnosis and genetic screening of hemoglobinopathy in southern China, we established the LOVD gene data management system for the variation and phenotype spectrum of hemoglobinopathy. Then we designed an integrated and efficient on-line auxiliary accurate diagnosis and risk assessment system in order to assist clinicians to make comprehensive diagnosis and genetic counseling in a short time based on cloud standardized annotated library of specific hemoglobinopathy variants and diagnostic repository. The methodology and experience of improving the clinical decision-making efficiency of diseases with big data and artificial intelligence technology can be used as an example in the clinical and preventive application of other diseases.


Assuntos
Bases de Dados Genéticas , Sistemas de Apoio a Decisões Clínicas , Hemoglobinopatias/genética , Mutação , China , Aconselhamento Genético , Testes Genéticos , Humanos
10.
Nanomaterials (Basel) ; 9(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366027

RESUMO

Self-powered nanogenerators composed of poly(vinylidene fluoride) (PVDF) have received much attention. Solution blow spinning (SBS) is a neoteric process for preparing nanofiber mats with high efficiency and safely, and SBS is a mature fiber-forming technology that offers many advantages over conventional electrospinning methods. Herein, we adopted the SBS method to prepare independent PVDF nanofiber membranes (NFMs), and successfully employed them as nanogenerators. Finally, we tested the change in the output current caused by mechanical compression and stretching, and studied its durability and robustness by charging the capacitor, which can drive tiny electronic devices. The results show that the PVDF nanogenerators by using this SBS equipment can not only be used in wearable electronic textiles, but are also suitable for potential applications in micro-energy harvesting equipment.

11.
J Xray Sci Technol ; 27(5): 899-906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31282469

RESUMO

OBJECTIVE: To explore the difference of 18F-FDG PET/CT images between the symptomatic and asymptomatic pulmonary tuberculosis, as well as the correlation between the standard uptake value (SUV) and the symptomatic/asymptomatic pulmonary tuberculosis. METHODS: A study dataset of 57 pulmonary tuberculosis cases was retrospectively assembled and analyzed. Among these cases, 30 were diagnosed having symptomatic pulmonary tuberculosis and 27 were asymptomatic pulmonary tuberculosis. PET/CT was performed in all 57 cases. The clinical data, CT images and PET/CT radioactive uptake data were analyzed using statistical data analysis software. RESULTS: All 57 cases showed radioactively high uptake, with the maximum standard uptake value (SUVmax) of the lesion ranging from 1.60 to 27.30 and a mean value of 6.63±4.82. The symptomatic cases had an SUVmax of 8.76±4.97 and the asymptomatic cases had an SUVmax of 4.27±3.39. The SUVmax as well as singular or multiple lesions showed statistical differences between symptomatic and asymptomatic cases. CONCLUSION: The symptomatic pulmonary tuberculosis cases show significantly higher SUVmax than the asymptomatic cases. Based on the criteria of SUVmax greater than 2.0 to define active lesions, 100% of symptomatic cases might have active lesions while 70.4% of asymptomatic cases might have active lesions. Therefore, focused attention should be clinically paid on the asymptomatic cases of pulmonary tuberculosis to avoid miss diagnosis and delayed treatment.

12.
Biomed Pharmacother ; 116: 109034, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152924

RESUMO

BACKGROUND: Our previous study found that insulin-like growth factor binding protein-associated protein (IGFBPrP1) drives hepatic stellate cells (HSCs) activation, and IGFBPrP1 and transforming growth factor ß1 (TGFß1) likely interact with each other to promote HSCs activation. TGFß1 reportedly promotes autophagy and contributes to HSCs activation; however, the mechanism between IGFBPrP1 and autophagy in liver fibrogenesis is yet unknown. Moreover, long noncoding RNA (lncRNA) H19 participates in autophagy regulation and plays a crucial function in liver fibrosis. AIMS: To define the relationship between IGFBPrP1 and autophagy and the role of H19 in IGFBPrP1-induced hepatic fibrosis. METHODS: IGFBPrP1 and autophagy were detected in bile duct ligation (BDL)-induced hepatic fibrosis. Adenovirus-mediated IGFBPrP1 was transfected into mouse liver and JS-1 cells with or without LY294002 or rapamycin to examine the effects of IGFBPrP1 on HSCs activation and autophagy as well as the PI3K/AKT/mTOR pathway. lncRNA H19 in liver fibrosis tissues and JS-1 cells induced by IGFBPrP1 were detected, then autophagy and HSCs activation level were detected in JS-1 cells by IGFBPrP1 with H19 overexpression or knowdown. RESULTS: IGFBPrP1 expression and autophagy level were concomitantly increased in liver tissue with BDL-induced hepatic fibrosis. Furthermore, we found that IGFBPrP1 stimulated autophagy and HSCs activation in vivo and in vitro, and PI3K/AKT/mTOR signaling pathway was involved in the regulation of autophagy by IGFBPrP1. In addition, H19 promoted autophagy by interacting with the PI3K/AKT/mTOR pathway in IGFBPrP1-induced HSCs activation. CONCLUSIONS: IGFBPrP1 promoted autophagy and contributed to HSCs activation via mutual regulation between H19 and the PI3K/AKT/mTOR pathway.


Assuntos
Autofagia , Células Estreladas do Fígado/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Ductos Biliares/patologia , Linhagem Celular , Fígado Gorduroso/patologia , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/ultraestrutura , Ligadura , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL
13.
Sci Total Environ ; 685: 197-207, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31174117

RESUMO

Swine feedlots are recognized as a reservoir of antibiotic resistance genes (ARGs). However, the microbiome and antibiotic resistome in swine wastewater and its impact on receiving environments remain to be further explored by culture independent metagenomics. We investigated the microbial diversity of swine wastewater and the receiving environments in three swine farms by 16S rRNA gene sequencing. Metagenomic sequencing was utilized to further study the antibiotic resistome in the different depths of soils in vegetable fields, which had been fertilized with swine wastewater for at least 24 years. The 16S rRNA gene sequencing showed that the microbiome of the well water, fishpond, vegetables and the field soils was affected by the respective swine farms. Significant positive correlations were found between 20 ARGs and 41 genus of bacteria across all environmental samples. The metagenomic sequencing showed that a total of 79 types of ARGs were found in soil cores (at depth of 0-20 cm, 20-40 cm and 40-70 cm) and the irrigation water (swine wastewater). Antibiotics were detected in vertical soil profiles and wastewater. Compared with the vegetable fields without animal manure application, the soils irrigated with swine wastewater harbored higher diversity of ARGs and contained higher concentrations of antibiotics. Co-occurrence of integron-related scaffolds was found in different depths of soil cores and the swine wastewater. The results suggest that environmental microbiome was changed under the impact of swine farms, and long-term manure/wastewater application have resulted in the accumulation of ARGs in deeper soils Prudent use of antibiotics and reasonable management of animal wastes in livestock feedlots should therefore be considered to reduce the dissemination of antibiotic resistance to the environment.


Assuntos
Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Fazendas , Genes Bacterianos , Microbiologia do Solo , Animais , Gado , Suínos
14.
Cells ; 8(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242633

RESUMO

Slit2 (slit guidance ligand 2), a ligand of the Roundabout1 (Robo1) transmembrane receptor, is often overexpressed in colorectal carcinomas (CRCs). In this study, we performed data mining in the Metabolic gEne RApid Visualizer (MERAV) database and found that Slit2 and TGF-ß1 (Transforming growth factor-ß1) are highly expressed in carcinomas relative to those in tumor-free tissues from healthy volunteers or wild type mice. Furthermore, expression of Slit2 and TGF-ß1 in CRCs increases with pathological stages. Serum levels of Slit2 in patients with CRC and in ApcMin/+ mice with spontaneous intestinal adenoma were significantly increased compared with those in healthy controls. Specific blockage of Slit2 binding to Robo1 inactivated TGF-ß/Smads signaling and inhibited tumor cell migration and metastasis, which can be partially restored by treatment with TGF-ß1. However, specific inhibition of TGF-ß1/Smads signaling reduced CRC tumor cell migration and invasion without affecting cell proliferation. This study suggests that activation of Slit2/Robo1 signaling in CRC induces tumor metastasis partially through activation of the TGF-ß/Smads pathway.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Ratos
15.
Huan Jing Ke Xue ; 40(3): 1132-1142, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087959

RESUMO

Satellite and surface observed O3 concentrations were applied to analyze the spatial-temporal distribution and trends of O3 over China. The satellite and surface observations agree well, revealing that the highest concentrations of O3 are distributed in East China, and with a seasonal pattern of high in summer and low in winter. Records of the diurnal variation of O3 over the four cities of interest (Beijing, Shanghai, Guangzhou, and Chengdu) reveal that O3 peaked at 15:00-16:00 each day. Statistical analysis indicates that there is no significant difference in O3 concentration between weekends and weekdays for the cities of Beijing, Guangzhou, and Chengdu. Surface O3 over China increased dramatically from April 2013 to June 2018. The increase of the surface O3 concentration from 2014 to 2017 is significant for Beijing, Shanghai, and Chengdu, and the rates of increase were 2.36, 3.3, and 3.6 µg·(m3·a)-1, respectively. Analysis based on the daily max 8 h rolling mean O3 concentration reveals that the percentage of days with O3 concentration exceeding the national standard (160 µg·m-3) in 2014-2017 were 17.2% for Beijing, 10.7% for Shanghai, 8.8% for Guangzhou, and 11.2% for Chengdu. O3 pollution is most severe in Beijing where the highest O3 concentration occurs, along with the largest number of days with daily max 8 h rolling O3 concentration exceeding 160 µg·m-3.

16.
Cancer Res ; 79(14): 3725-3736, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142514

RESUMO

mTOR complex 1 (mTORC1) positively regulates cell invasion and metastasis by enhancing translation of Snail. A connection between mTOR complex 2 (mTORC2) and cell invasion and metastasis has also been suggested, yet the underlying biology or mechanism is largely unknown and thus is the focus of this study. Inhibition of mTOR with both mTOR inhibitors and knockdown of key components of mTORC, including rictor, Sin1, and raptor, decreased Snail protein levels. Inhibition of mTOR enhanced the rate of Snail degradation, which could be rescued by inhibition of the proteasome. Critically, inhibition of mTORC2 (by knocking down rictor) but not mTORC1 (by knocking down raptor) enhanced Snail degradation. Therefore, only mTORC2 inhibition induces Snail proteasomal degradation, resulting in eventual Snail reduction. Interestingly, inhibition of GSK3 but not SCF/ß-TrCP rescued the Snail reduction induced by mTOR inhibitors, suggesting GSK3-dependent, but SCF/ß-TrCP-independent proteasomal degradation of Snail. Accordingly, mTOR inhibitors elevated E-cadherin levels and suppressed cancer cell migration and invasion in vitro and metastasis in vivo. Collectively, this study reveals that mTORC2 positively regulates Snail stability to control cell invasion and metastasis. SIGNIFICANCE: These findings delineate a new regulation mechanism of Snail, an important master regulator of epithelial-mesenchymal transition and invasion in cancers.

17.
Sci Total Environ ; 681: 56-65, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102817

RESUMO

The inhibitory effects of oxytetracycline (OTC) on the anaerobic ammonium oxidation (anammox) performance were relieved by employing bio-augmentation (BA) tactics. However, the recovery mechanism was vague. The response of specific anammox activity (SAA), heme c, functional genes, extracellular polymeric substance (EPS) and antibiotics resistance genes (ARGs) to OTC inhibition and BA aid were traced in the present study. The results indicated that response of SAA, heme c content and functional genes, such as nirS, hzsA and hdh to OTC inhibition were not synchronous. The presence of the tetC, tetG, tetX, and intI1 genes enhanced the resistance of anammox sludge to OTC, thus accelerating the performance recovery when aided by BA. A significant correlation existed between number of anammox 16S rRNA gene copies and protein level in the soluble microbial products (SMP), between tetG gene relative abundance and polysaccharose in SMP and between tetG gene relative abundance and protein in bound EPS (EPSs). In nutshell, the current findings provide the first description of a recovery mechanism regarding OTC-inhibited anammox performance aided by BA based on functional genes and highlights the contribution of ARGs and the self-resistance ability of EPS.


Assuntos
Antibacterianos/toxicidade , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Oxitetraciclina/toxicidade , Matriz Extracelular de Substâncias Poliméricas , RNA Ribossômico 16S , Esgotos
18.
Sci Total Environ ; 665: 91-99, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772582

RESUMO

Animal manure contains various organic contaminants such as steroids. The fate of these steroids during composting is still unknown. Here we investigated the fate of androgens, progestogens, and glucocorticoids during animal manure composting and evaluated their residues in compost-applied soils. The results showed the presence of 16 steroid hormones in the initial compost with concentrations ranging from 3.26 ng/g dw (Cortisol) to 2520 ng/g dw (5α-dihydroprogesterone). The concentrations of almost all detected hormones increased on the 2nd day of composting, and some of them increased several or even dozens of times. Steroids such as hydroxyprogesterone caproate, melengestrol acetate, and methyltestosterone were not found in the initial compost but later detected during the composting process. After 171 days of composting, only 40.4% of detected steroid hormones was removed, and the total concentration of detected steroids was still as high as 3210 ng/g dw. The removal rates of some target compounds were negative, especially for the natural androgens androsta-1,4-diene-3,17-dione and the synthetic androgen 17ß-boldenone whose concentrations significantly increased by the end of composting, indicating conversion from their conjugates or transformation from other steroids. The steroid hormones were mainly eliminated in the first three weeks; prolonged composting time did not obviously promote further removal. The variations in steroid concentration were related to the changes in compost properties such as pH and temperature during the composting process. The dissipation of steroid hormones was also linked to the changes of microbial communities in the compost to some extent. Twelve steroids were detected in the compost-treated soils of a kailyard, while 26 steroid hormones were detected in the roots of Chinese cabbages grown on the soil. The results suggest that the application of manure compost product can lead to soil contamination and plant uptake.


Assuntos
Androgênios/análise , Compostagem , Glucocorticoides/análise , Progestinas/análise , Poluentes do Solo/análise , Animais , Monitoramento Ambiental , Esterco/análise
19.
Chin J Integr Med ; 25(10): 743-749, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30242590

RESUMO

OBJECTIVE: To assess the genotoxicity and embryotoxicity of bicyclol methyl ether (BME), the main impurity in bicyclol. METHODS: Five concentrations of BME (0.5, 5, 50, 500 and 5000 µg/plate) were used in the Ames test to detect gene mutation. In the chromosome aberration test, Chinese hamster lung cells were used to detect chromosomal aberration of BME (15, 30, 60, 120 µg/mL) with or without S9 mixture. Embryotoxicity test was also conducted to determine any embryotoxicity of BME (7.5, 22.5, 67.5 µg/L) using zebrafish embryos. RESULTS: No significant differences were observed in the Ames test and the chromosome aberration test in the BME groups compared with the vehicle control group. The zebrafish embryos toxicity test also showed no embryo development toxicity of BME, including hatching rate, body length, pericardial area and yolk sac area. CONCLUSIONS: Bicyclol methyl ether has no genotoxicity in vitro and embryotoxicity in zebrafish embryos, and the impurity in bicyclol is qualified.

20.
Hepatobiliary Pancreat Dis Int ; 18(1): 38-47, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30243878

RESUMO

BACKGROUND: Previous research suggested that insulin-like growth factor binding protein related protein 1 (IGFBPrP1), as a novel mediator, contributes to hepatic fibrogenesis. Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) play an essential role in hepatic fibrogenesis by regulating homeostasis and remodeling of the extracellular matrix (ECM). However, the interaction between IGFBPrP1 and MMP/TIMP is not clear. The present study was to knockdown IGFBPrP1 to investigate the correlation between IGFBPrP1 and MMP/TIMP in hepatic fibrosis. METHODS: Hepatic fibrosis was induced by thioacetamide (TAA) in mice. Knockdown of IGFBPrP1 expression by ultrasound-targeted microbubble destruction-mediated CMB-shRNA-IGFBPrP1 delivery, or inhibition of the Hedgehog (Hh) pathway by cyclopamine treatment, was performed in TAA-induced liver fibrosis mice. Hepatic fibrosis was determined by hematoxylin and eosin and Sirius red staining. Hepatic expression of IGFBPrP1, α-smooth muscle actin (α-SMA), transforming growth factor ß 1 (TGFß1), collagen I, MMPs/TIMPs, Sonic Hedgehog (Shh), and glioblastoma family transcription factors (Gli1) were investigated by immunohistochemical staining and Western blotting analysis. RESULTS: We found that hepatic expression of IGFBPrP1, TGFß1, α-SMA, and collagen I were increased longitudinally in mice with TAA-induced hepatic fibrosis, concomitant with MMP2/TIMP2 and MMP9/TIMP1 imbalance and Hh pathway activation. Knockdown of IGFBPrP1 expression, or inhibition of the Hh pathway, reduced the hepatic expression of IGFBPrP1, TGFß1, α-SMA, and collagen I and re-established MMP2/TIMP2 and MMP9/TIMP1 balance. CONCLUSIONS: Our findings suggest that IGFBPrP1 knockdown attenuates liver fibrosis by re-establishing MMP2/TIMP2 and MMP9/TIMP1 balance, concomitant with the inhibition of hepatic stellate cell activation, down-regulation of TGFß1 expression, and degradation of the ECM. Furthermore, the Hh pathway mediates IGFBPrP1 knockdown-induced attenuation of hepatic fibrosis through the regulation of MMPs/TIMPs balance.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Técnicas de Silenciamento de Genes , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Cirrose Hepática Experimental/prevenção & controle , Fígado/enzimologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Actinas/genética , Actinas/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/genética , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Transdução de Sinais , Tioacetamida , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA