Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 145, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264822

RESUMO

BACKGROUND: Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS: Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS: RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.

2.
Plant Physiol Biochem ; 151: 391-399, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32278293

RESUMO

Lily, a famous cut flower with highly fragrance, has high ornamental and economic values. Monoterpenes are the main components contributing to its fragrance, and terpene synthase (TPS) genes play critical roles in the biosynthesis of monoterpenoids. To understand the function of TPS and to explore the molecular mechanism of floral scent in cultivar Lilium 'Siberia', transcriptomes of petal at different flowering stages and leaf were obtained by RNA sequencing and three unigenes related to TPS genes were selected for further validation. Quantitative real-time PCR showed that the expression level of LiTPS2 was greater than that of the other two TPS genes. Phylogenetic analysis indicated that LiTPS2 belonged to the TPSb subfamily, which was responsible for monoterpenes synthesis. Subcellular localization demonstrated that LiTPS2 was located in the chloroplasts. Furthermore, functional characterization showed that LiTPS2 utilized both geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) to produce monoterpenoids such as linalool and sesquiterpenes like trans-nerolidol, respectively. Ectopic expression in transgenic tobacco plants suggested that the amount of linalool from the flowers of transgenic plants was 2-3 fold higher than that of wild-type plants. And the emissions of myrcene and (E)-ß-ocimene were also accumulated from the flowers of LiTPS2 transgenic lines. Surprisingly, these three compounds were the main fragrance components of oriental lily hybrids. Our results indicated that LiTPS2 contributed to the production of monoterpenes and could effectively regulate the aroma of Lilium cultivars, laying the foundation for biotechnological modification of floral scent profiles.

3.
Sci China Life Sci ; 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157557

RESUMO

Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway (PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribose. How cancer cells modulate PPP activity in response to glucose supply remains unclear. Here we show that ribose-5-phosphate isomerase A (RPIA), an enzyme in PPP, directly interacts with co-activator associated arginine methyltransferase 1 (CARM1) and is methylated at arginine 42 (R42). R42 methylation up-regulates the catalytic activity of RPIA. Furthermore, glucose deprivation strengthens the binding of CARM1 with RPIA to induce R42 hypermethylation. Insufficient glucose supply links to RPIA hypermethylation at R42, which increases oxidative PPP flux. RPIA methylation supports ROS clearance by enhancing NADPH production and fuels nucleic acid synthesis by increasing ribose supply. Importantly, RPIA methylation at R42 significantly potentiates colorectal cancer cell survival under glucose starvation. Collectively, RPIA methylation connects glucose availability to nucleotide synthesis and redox homeostasis.

4.
Funct Integr Genomics ; 20(4): 591-607, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32215772

RESUMO

Non-coding RNAs with lengths greater than 200 bp are known as long non-coding RNAs (lncRNAs), and these RNAs play important role in gene regulation and plant development. However, to date, little is known regarding the role played by lncRNAs during flowering in hickory (Carya cathayensis). Here, we performed whole transcriptome RNA-sequencing of samples from hickory female and male floral buds, in which three samples (H0311PF, H0318PF, and H0402PF) represent pre-flowering, flowering, and post-flowering, respectively, while eight male samples collected from May 8th to June 13th as this time course are the key stage for male floral bud differentiation. We identified 2163 lncRNAs in hickory during flowering, containing 213 intronic, 1488 intergenic, and 462 antisense lncRNAs. We noticed that 510 and 648 lncRNAs were differentially expressed corresponding to female and male floral buds, respectively. And some of the lncRNAs were in a tightly tissue-specific or stage-specific manner. To further understand the roles of the lncRNAs, we predicted the function of the lncRNAs in cis- and trans-acting modes. The results showed that 924 lncRNAs were cis-correlated with 1536 protein-coding genes, while 1207 lncRNAs co-expressed (trans-acting) with 7432 protein-coding genes (R > 0.95 or R < - 0.95). These lncRNAs were all enriched in flower development-associated biological processes, i.e., circadian rhythm, vernalization response, response to gibberellin, inflorescence development, floral organ development, etc. To further understand the relationships between lncRNAs and floral-core genes, we build a co-expressing lncRNA-mRNA flowering network. We classified these floral genes into different pathway (photoperiod, vernalization, gibberellin, autonomous, and sucrose pathway) according to their particular functions. We found a set of lncRNAs that preferentially expressed in these pathways. The network showed that some lncRNAs (i.e., XLOC_038669, XLOC_017938) functioned in a particular flowering time pathway, while others (i.e., XLOC_011251, XLOC_04110) were involved in multiple pathway. Furthermore, some lncRNAs (i.e., XLOC_038669, XLOC_009597, and XLOC_049539) played roles in single or multiple pathways via interaction with each other. This study provides a genome-wide survey of hickory flower-related lncRNAs and will contribute to further understanding of the molecular mechanism underpinning flowering in hickory.

6.
Sci Rep ; 10(1): 2627, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060321

RESUMO

Opisthopappus taihangensis (Ling) Shih, as a relative of chrysanthemum, mainly survives on the cracks of steep slopes and cliffs. Due to the harsh environment in which O. taihangensis lives, it has evolved strong adaptive traits to drought stress. The root system first perceives soil water deficiency, triggering a multi-pronged response mechanism to maintain water potential; however, the drought tolerance mechanism of O. taihangensis roots remains unclear. Therefore, roots were selected as materials to explore the physiological and molecular responsive mechanisms. We found that the roots had a stronger water retention capacity than the leaves. This result was attributed to ABA accumulation, which promoted an increased accumulation of proline and trehalose to maintain cell osmotic pressure, activated SOD and POD to scavenge ROS to protect root cell membrane structure and induced suberin depositions to minimize water backflow to dry soil. Transcriptome sequencing analyses further confirmed that O. taihangensis strongly activated genes involved in the ABA signalling pathway, osmolyte metabolism, antioxidant enzyme activity and biosynthesis of suberin monomer. Overall, these results not only will provide new insights into the drought response mechanisms of O. taihangensis but also will be helpful for future drought breeding programmes of chrysanthemum.

7.
Plant Mol Biol ; 103(1-2): 159-171, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088830

RESUMO

The complex capitulum of Chrysanthemum morifolium is often comprised of bilaterally symmetrical ray florets and radially symmetrical disc florets. The TCP transcription factor clade CYCLOIDEA2 (CYC2) appears to play a vital role in determining floral symmetry and in regulating floral organ development in Asteraceae. Our previous study identified six CmCYC2 genes from chrysanthemum and showed that CmCYC2c participated in the regulation of ray floret identity. However, the functions of other CmCYC2 genes and the underlying molecular mechanism of CmCYC2-mediated floral development regulation in chrysanthemums have not been elucidated. In this study, we analysed the function of CmCYC2 genes by ectopic expression of CmCYC2 in Arabidopsis. Then, we examined the protein-protein interaction using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Finally, we analysed the protein-DNA interaction using yeast one-hybrid (Y1H) and dual-luciferase reporter assays. We found that ectopic expression of CmCYC2 genes in the Arabidopsis tcp1 mutant changed its floral symmetry and flowering time. Y2H and BiFC assays confirmed three pairs of interactions between CmCYC2 proteins, that is, CmCYC2b-CmCYC2d, CmCYC2b-CmCYC2e and CmCYC2c-CmCYC2d, suggesting that heterodimeric complexes may form between CmCYC2 proteins to increase their functional specificity. The results of Y1H and dual-luciferase reporter assays indicate that CmCYC2c can bind to the promoter of ClCYC2f. Our findings provided clues that CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in C. morifolium. KEY MESSAGE: CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium.


Assuntos
Chrysanthemum/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Chrysanthemum/anatomia & histologia , Chrysanthemum/crescimento & desenvolvimento , Dimerização , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Genes de Plantas , Ligação Proteica
8.
Genes (Basel) ; 10(11)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717396

RESUMO

Prunus mume, which is a rosaceous arbor with very high ornamental, edible and medical values, has a distribution that is mainly restricted by low temperature. WRKY transcription factor genes play crucial roles in the growth, development, and stress responses of plants. However, the WRKY gene family has not been characterised in P. mume. There were 58 PmWRKYs identified from genome of P. mume. They were anchored onto eight link groups and categorised into three broad groups. The gene structure and motif composition were reasonably conservative in each group. Investigation of gene duplication indicated that nine and seven PmWRKYs were arranged in tandem and segmental duplications, respectively. PmWRKYs were discriminately expressed in different tissues (i.e., roots, stems, leaves, flowers and fruits) in P. mume. The 17 cold-related candidate genes were selected based on RNA-seq data. Further, to investigate the function of PmWRKYs in low temperatures, the expression patterns under artificial cold treatments were analysed. The results showed that the expression levels of the 12 PmWRKYs genes significantly and 5 genes slightly changed in stems. In particular, the expression level of PmWRKY18 was up-regulated after ABA treatment. In addition, the spatiotemporal expression patterns of 17 PmWRKYs were analysed in winter. These results indicated that 17 PmWRKYs were potential transcription factors regulating cold resistance in P. mume.


Assuntos
Resposta ao Choque Frio/genética , Prunus/genética , Fatores de Transcrição/genética , Cromossomos de Plantas/genética , Temperatura Baixa , Sequência Conservada/genética , Duplicação Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo
9.
Hortic Res ; 6: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666960

RESUMO

The formation of flowers in higher plants is controlled by complex gene regulatory networks. The study of floral development in Arabidopsis is promoted and maintained by transposon-tagged mutant lines. In this study, we report a CRISPR/Cas9 genome-editing system based on RNA endoribonuclease Csy4 processing to induce high-efficiency and inheritable targeted deletion of transcription factors involved in floral development in Arabidopsis. Using AP1, SVP, and TFL1 as the target genes, multisite and multiple-gene mutations were achieved with a tandemly arrayed Csy4-sgRNA architecture to express multiplexed sgRNAs from a single transcript driven by the Pol II promoter in transgenic lines. Targeted deletions of chromosomal fragments between the first exon and second exon in either one or three genes were generated by using a single binary vector. Interestingly, the efficiency of site-targeted deletion was comparable to that of indel mutation with the multiplexed sgRNAs. DNA sequencing analysis of RT-PCR products showed that targeted deletions of AP1 and TFL1 could lead to frameshift mutations and introduce premature stop codons to disrupt the open-reading frames of the target genes. In addition, no RT-PCR amplified product was acquired after SVP-targeted deletion. Furthermore, the targeted deletions resulted in abnormal floral development in the mutant lines compared to that of wild-type plants. AP1 and SVP mutations increased plant branching significantly, while TFL1 mutant plants displayed a change from indeterminate to determinate inflorescences. Thus, our results demonstrate that CRISPR/Cas9 with the RNA endoribonuclease Csy4 processing system is an efficient tool to study floral development and improve floral traits rapidly and simply.

10.
PLoS One ; 14(11): e0225241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774840

RESUMO

The prostrate cultivars of ground-cover chrysanthemum have been used in landscape gardening due to their small stature, large crown width and strong branching ability. qRT-PCR is a rapid and powerful tool for gene expression analysis, while its accuracy highly depends on the stability of reference genes. The paucity of authentic reference genes presents a major hurdle in understanding the genetic regulators of prostrate architecture. Therefore, in order to reveal the regulatory mechanism of prostrate growth of chrysanthemum stems, here, stable reference genes were selected for expression analysis of key genes involved in shoot development and graviresponse. Based on transcriptome data, eleven reference genes with relatively stable expression were identified as the candidate reference genes. After the comprehensive analysis of the stability of these reference genes with four programs (geNorm, NormFinder, BestKeeper and RefFinder), we found that TIP41 was the most stable reference gene in all of the samples. SAND was determined as a superior reference gene in different genotypes and during the process of shoot development. The optimal reference gene for gravitropic response was PP2A-1. In addition, the expression patterns of LA1 and PIN1 further verified the reliability of the screened reference genes. These results can provide more accurate and reliable qRT-PCR normalization for future studies on the expression patterns of genes regulating plant architecture of chrysanthemums.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Chrysanthemum/genética , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Padrões de Referência
11.
Genes (Basel) ; 10(10)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635348

RESUMO

Rosa chinensis, an important ancestor species of Rosa hybrida, the most popular ornamental plant species worldwide, produces flowers with diverse colors and fragrances. The R2R3-MYB transcription factor family controls a wide variety of plant-specific metabolic processes, especially phenylpropanoid metabolism. Despite their importance for the ornamental value of flowers, the evolution of R2R3-MYB genes in plants has not been comprehensively characterized. In this study, 121 predicted R2R3-MYB gene sequences were identified in the rose genome. Additionally, a phylogenomic synteny network (synnet) was applied for the R2R3-MYB gene families in 35 complete plant genomes. We also analyzed the R2R3-MYB genes regarding their genomic locations, Ka/Ks ratio, encoded conserved motifs, and spatiotemporal expression. Our results indicated that R2R3-MYBs have multiple synteny clusters. The RcMYB114a gene was included in the Rosaceae-specific Cluster 54, with independent evolutionary patterns. On the basis of these results and an analysis of RcMYB114a-overexpressing tobacco leaf samples, we predicted that RcMYB114a functions in the phenylpropanoid pathway. We clarified the relationship between R2R3-MYB gene evolution and function from a new perspective. Our study data may be relevant for elucidating the regulation of floral metabolism in roses at the transcript level.


Assuntos
Evolução Molecular , Genoma de Planta , Proteínas de Plantas/genética , Rosa/genética , Fatores de Transcrição/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Rosa/classificação , Sintenia , Fatores de Transcrição/metabolismo
12.
PLoS One ; 14(10): e0223974, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618262

RESUMO

Prunus mume, a traditional Chinese flower, is the only species of Prunus known to produce a strong floral fragrance, of which eugenol is one of the principal components. To explore the molecular mechanism of eugenol biosynthesis in P. mume, patterns of dynamic, spatial and temporal variation in eugenol were analysed using GC-MS. Coniferyl alcohol acetyltransferase (CFAT), a member of the BAHD acyltransferase family, catalyses the substrate of coniferyl alcohol to coniferyl acetate, which is an important substrate for synthesizing eugenol. In a genome-wide analysis, we found 90 PmBAHD genes that were phylogenetically clustered into five major groups with motif compositions relatively conserved in each cluster. The phylogenetic tree showed that the PmBAHD67-70 proteins were close to the functional CFATs identified in other species, indicating that these four proteins might function as CFATs. In this work, 2 PmCFAT genes, named PmCFAT1 and PmCFAT2, were cloned from P. mume 'Sanlunyudie', which has a strong fragrance. Multiple sequences indicated that PmCFAT1 contained two conserved domains, HxxxD and DFGWG, whereas DFGWG in PmCFAT2 was changed to DFGFG. The expression levels of PmCFAT1 and PmCFAT2 were examined in different flower organs and during the flowering stages of P. mume 'Sanlunyudie'. The results showed that PmCFAT1 was highly expressed in petals and stamens, and this expression increased from the budding stage to the full bloom stage and decreased in the withering stage, consistent with the patterns of eugenol synthesis and emission. However, the peak of gene expression appeared earlier than those of eugenol synthesis and emission. In addition, the expression level of PmCFAT2 was higher in pistils and sepals than in other organs and decreased from the budding stage to the blooming stage and then increased in the withering stage, which was not consistent with eugenol synthesis. Subcellular localization analysis indicated that PmCFAT1 and PmCFAT2 were located in the cytoplasm and nucleus, while enzyme activity assays showed that PmCFAT1 is involved in eugenol biosynthesis in vitro. Overall, the results suggested that PmCFAT1, but not PmCFAT2, contributed to eugenol synthesis in P. mume.


Assuntos
Acetiltransferases/genética , Eugenol/metabolismo , Prunus/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Acetiltransferases/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenóis/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo
13.
Front Plant Sci ; 10: 1098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552079

RESUMO

Petal expansion is the main process by which flower opening occurs in roses (Rosa chinensis). Although the regulation of leaf expansion has been extensively studied, little is known about the mechanisms controlling petal expansion. The regulation of leaf dorsoventral (adaxial-abaxial) polarity is important for blade expansion and morphogenesis, but the mechanisms involved adaxial-abaxial regulation in petals are unknown. We found that auxin, a key hormonal regulator of leaf adaxial-abaxial patterning, is unevenly distributed in rose petals. The transcriptomes of the adaxial and abaxial petal tissues were sequenced at three developmental stages during flower opening. Genes that were differentially expressed between the two tissues were filtered for those known to be involved in petal expansion and phytohormone biosynthesis, transport, and signaling, revealing potential roles in petal expansion, especially auxin pathway genes. Using a weighted gene coexpression network analysis (WGCNA), we identified two gene modules that may involve in adaxial-abaxial regulation, 21 and five hub genes have been found respectively. The qRT-PCR validation results were consistent with the RNA-seq data. Based on these findings, we propose a simple network of adaxial-abaxial-related genes that regulates petal expansion in R. chinensis "Old Blush." For the first time, we report the adaxial-abaxial transcriptional changes that occur during petal expansion, providing a reference for the study of the regulation of polarity in plant development.

14.
Plant Physiol Biochem ; 142: 510-518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31445476

RESUMO

As one of the most popular woody species that blooms in summer, Lagerstroemia speciosa has been used abundantly in urban landscape for its excellent floral beauty. For the first time, we discovered a double-flower variant with all petaloid stamens. To understand the molecular basis of this variation, we contrasted the transcriptomes of single- and double-flower buds at three stamen development stages. In total, 73,536 unigenes were mapped and 30,714 differently expressed genes (DEGs) were identified in the tissues. We focused on the DEGs expressing in both phenotypes and investigated the association of their expression profiles with their functions in transcription pathways. Furthermore, we performed WGCNA and identified co-expressed genes with four floral homeotic genes as hubs (MADS16, Unigene0026169; AP2, Unigene0042732; SOC1, Unigene0046314; AG, Unigene0056437). The expression of these hub genes has been conserved across the three developmental stages but significantly different between the two floral phenotypes. As a result, the robust transcriptional regulation of stamen petaloidy in double flowers was deduced. These findings will help to unravel the regulatory mechanisms of several specific genes, thereby providing a basis to study double-flower molecular breeding in L. speciosa.


Assuntos
Flores/crescimento & desenvolvimento , Lagerstroemia/crescimento & desenvolvimento , Flores/anatomia & histologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Lagerstroemia/anatomia & histologia , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
15.
PeerJ ; 7: e7499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410318

RESUMO

The homeodomain-leucine zipper (HD-Zip) gene family, a group of plant-specific transcriptional factors (TFs), participates in regulating growth, development, and environmental responses. However, the characteristics and biological functions of HD-Zip genes in Prunus mume, which blooms in late winter or early spring, have not been reported. In this study, 32 HD-Zip genes, named PmHB1-PmHB32 based on their chromosomal positions, were identified in the genome of P. mume. These genes are distributed among seven chromosomes and are phylogenetically clustered into four major groups. Gene structure and motif composition were mostly conserved in each group. The Ka/Ks ratios showed that purifying selection has played a leading role in the long-term evolution of the genes, which maintained the function of this family. MicroRNA target site prediction indicated that the genes of the HD-Zip III subfamily may be regulated by miR165/166. Expression pattern analysis showed that the 32 genes were differentially expressed across five different tissues (leaf, flower bud, stem, fruit, and root) and at different stages of stem and leaf-bud development, suggesting that 10 of the genes may play important roles in stem development. Protein-protein interaction predictions showed that the subfamily III genes may regulate vascular development and shoot apical meristem (SAM) maintenance. Promoter analysis showed that the HD-Zip III genes might be involved in responses to light, hormones, and abiotic stressors and stem development. Taken together, our results provide an overview of the HD-Zip family in P. mume and lay the foundation for the molecular breeding of woody ornamental plants.

16.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330828

RESUMO

Rosa chinensis is one of the most popular flower plants worldwide. The recurrent flowering trait greatly enhances the ornamental value of roses, and is the result of the constant formation of new flower buds. Flower bud differentiation has always been a major topic of interest among researchers. The APETALA1 (AP1) MADS-box (Mcm1, Agamous, Deficiens and SRF) transcription factor-encoding gene is important for the formation of the floral meristem and floral organs. However, research on the rose AP1 gene has been limited. Thus, we isolated AP1 from Rosa chinensis 'Old Blush'. An expression analysis revealed that RcAP1 was not expressed before the floral primordia formation stage in flower buds. The overexpression of RcAP1 in Arabidopsis thaliana resulted in an early-flowering phenotype. Additionally, the virus-induced down-regulation of RcAP1 expression delayed flowering in 'Old Blush'. Moreover, RcAP1 was specifically expressed in the sepals of floral organs, while its expression was down-regulated in abnormal sepals and leaf-like organs. These observations suggest that RcAP1 may contribute to rose bud differentiation as well as floral organ morphogenesis, especially the sepals. These results may help for further characterization of the regulatory mechanisms of the recurrent flowering trait in rose.


Assuntos
Flores/embriologia , Flores/metabolismo , Proteínas de Plantas/metabolismo , Rosa/embriologia , Rosa/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Proteínas de Plantas/genética
17.
Gigascience ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31049561

RESUMO

BACKGROUND: Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits. RESULTS: We obtained >187.22 and 178.87 gigabases of sequence, and ∼288× and 248× genome coverage, to a pecan cultivar ("Pawnee") and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives. CONCLUSIONS: Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement.


Assuntos
Carya/genética , Evolução Molecular , Genoma de Planta/genética , Nozes/genética , Anotação de Sequência Molecular , Filogenia
18.
PeerJ ; 7: e6847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31106064

RESUMO

Prunus mume is an important ornamental woody plant that grows in tropical and subtropical regions. Freezing stress can adversely impact plant productivity and limit the expansion of geographical locations. Understanding cold-responsive genes could potentially bring about the development of new ways to enhance plant freezing tolerance. Members of the serine/threonine protein kinase (CIPK) gene family play important roles in abiotic stress. However, the function of CIPK genes in P. mume remains poorly defined. A total of 16 CIPK genes were first identified in P. mume. A systematic phylogenetic analysis was conducted in which 253 CIPK genes from 12 species were divided into three groups. Furthermore, we analysed the chromosomal locations, molecular structures, motifs and domains of CIPK genes in P. mume. All of the CIPK sequences had NAF domains and promoter regions containing cis-acting regulatory elements of the related stress response. Three PmCIPK genes were identified as Pmu-miR172/167-targeted sites. Transcriptome data showed that most PmCIPK genes presented tissue-specific and time-specific expression profiles. Nine genes were highly expressed in flower buds in December and January, and 12 genes were up-regulated in stems in winter. The expression levels of 12 PmCIPK genes were up-regulated during cold stress treatment confirmed by qRT-PCR. Our study improves understanding of the role of the PmCIPK gene family in the low temperature response in woody plants and provides key candidate genes and a theoretical basis for cold resistance molecular-assisted breeding technology in P. mume.

19.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875718

RESUMO

Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry and floret identity in Asteraceae, have also been speculated to function in reproductive organs and could be an entry point for studying gynomonoecy. However, the molecular mechanism is still unclear. On the other hand, the Arabidopsis WUSCHEL (WUS) transcription factor has been proven to play a vital role in the development of reproductive organs. Here, a WUS homologue (CmWUS) in C. morifolium was isolated and characterized. Overexpression of CmWUS in A. thaliana led to shorter siliques and fewer stamens, which was similar to CYC2-like genes reported before. In addition, both CmWUS and CmCYC2 were highly expressed in flower buds during floral organ differentiation and in the reproductive organs at later development stages, indicating their involvement in the development of reproductive organs. Moreover, CmWUS could directly interact with CmCYC2d. Thus, our data suggest a collaboration between CmWUS and CmCYC2 in the regulation of reproductive organ development in chrysanthemum and will contribute to a further understanding of the gynomonoecious sexual system in Asteraceae.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Chrysanthemum/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
20.
Hortic Res ; 6: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729014

RESUMO

Prunus mume is the only plant in the genus Prunus of the Rosaceae family with a characteristic floral scent, and the main component of this scent is benzyl acetate. By contrast, benzyl acetate is not synthesized in Prunus persica flowers. Here, we searched for benzyl alcohol acetyltransferase (BEAT) genes based on genomic data from P. mume and P. persica and found 44 unique PmBEATs in P. mume. These genes, which were mainly detected in clusters on chromosomes, originated from gene duplication events during the species evolution of P. mume, and retroduplication and tandem duplication were the two dominant duplication patterns. The genes PmBEAT34, PmBEAT36 and PmBEAT37, which were generated by tandem duplication, were highly expressed in flowers, and their highest levels were detected during the blooming stage. In vitro, PmBEAT34, PmBEAT3, and PmBEAT37 all had benzyl alcohol acetyltransferase activity that was localized in the cytoplasm. Overexpression of the PmBEAT36 or PmBEAT37 genes increased benzyl acetate production in the petal protoplasts of P. mume, and interference in the expression of these genes slightly decreased the benzyl acetate content. In addition, light and temperature regulated the expression of the PmBEAT34, PmBEAT36 and PmBEAT37 genes. According to these results, we hypothesize that the expansion of the PmBEAT genes in the genome induce the characteristic floral scent of P. mume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA