Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 240: 124940, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31574446

RESUMO

Charged ultrafiltration (UF) membranes can repel electrically charged molecules that are smaller than the size of the membrane pores and display high rejection of solutes, high flux, and low operation pressures compared to uncharged UF, nanofiltration (NF) and reverse osmosis (RO). Here, a charged UF membrane composite (PANI/PVDF) was prepared and regulated via electrochemically reversible control in portions of amine/imine functional groups of PANI. As a result, the permeability and rejection ratios of CR2- on charged PANI/PVDF, with PVDF as a control, increased from 19.6 to a maximum of 183.3 L m-2 h-1 bar-1 and from 3.4% to 74%, which expands the trade-off confine benefited from surface potential change from -12.21 mV to -25.26 mV, furtherly, the rejection ratio of CR2- on PANI/PVDF reached up to 93% via the electrochemical regulation. Finally, a fixed-charge model was built that well describes the steric and electric repulsion effects on membrane performance and the important roles of the electrochemically controllable surface charge. Moreover, the contour map of rejection ratios containing the ratio of molecular size vs the average pore size of the membrane (r/R = 0.2-1.0) and the zeta potential (-10 to -60 mV) were taken into account, which can be used to visually understand the rejection performance of membranes. This model is also appropriate for varying molecular sizes and for molecules with different charges. Our work opens a new horizon for the design of electrochemically controllable charged membranes to remove charged compounds.


Assuntos
Corantes/análise , Técnicas Eletroquímicas/métodos , Ultrafiltração/métodos , Purificação da Água/métodos , Eletricidade , Membranas Artificiais , Propriedades de Superfície
2.
Environ Sci Technol ; 52(21): 12602-12611, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351032

RESUMO

The simultaneous reduction and sequestration of Cr(VI) from wastewater is desirable as a cost-effective and environmentally friendly approach. In this study, we execute a one-step facile synthesis strategy on polyaniline (PANI) composites based on aniline adsorption and polymerization on pores of millimeter-scale polystyrene balls (PANI@PS). The well-defined PANI@PS increased the removal capacity of Cr(VI) by 5.4 times, going from 43.6 (bulky PANI) to 233.7 mg g-1 near neutral pH (6.0) instead of the pH 1-3 documented in other reports, which was higher than that of many reported adsorbents due to its porous structure, numerous interaction sites, and confinement effects in the polymer. Most importantly, PANI@PS could efficiently sequester positive Cr(III) after reducing Cr(VI) to Cr(III) due to its negative surface created by confinement effects confined to the nanopores of PS. Conversely, positively charged bulky PANI repelled electrostatically positive Cr(III); thus, additional precipitation or adsorption treatments were needed in practical applications. Moreover, a coating of PANI can protect PS, as a substrate and a composite, from irreversible damage due to the strong oxidation capacity of Cr(VI), which is another major concern in adsorbing strong oxidants using polymers. A novel strategy to regenerate the exhausted PANI@PS was efficiently executed based on the electrochemical redox reversibility of PANI. Finally, the comprehensive adsorption/reduction/sequestration of Cr on PANI@PS was elucidated in detail.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Adsorção , Compostos de Anilina , Cromo
4.
J Colloid Interface Sci ; 509: 353-359, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918378

RESUMO

In this study La intercalated Li/Al layered double hydroxide (LDH) was developed for efficient water defluoridation. The La-modified material, i.e., La doped Li/Al-LDH, exhibits more preferable fluoride adsorption than Li/Al-LDH in a broad pH range of 5-9, with the working capacity twice of the latter and seven times of magnitude higher than activated alumina. The fluoride removal kinetics is well fitted by pseudo-second order model, and the adsorption isotherm is well described by Freundlich model. Effect of pH and competing ions was examined during fluoride sequestration. The underlying mechanism for such enhanced adsorption of fluoride by La doped Li/Al-LDH was further revealed based on XPS and FTIR analysis. The presence of La and Al was found to be responsible for the satisfactory defluoridation of La doped Li/Al-LDH, and chloride replacement with fluoride occurred from both LDHs during fluoride adsorption. Also, the capacity of La doped Li/Al-LDH could be refreshed by alkaline solution (pH = 12) for cyclic runs. All the results implied that La doped Li/Al-LDH could serve asa potential adsorbent for efficient fluoride removal from water.

5.
Water Res ; 102: 109-116, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27337346

RESUMO

Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application.


Assuntos
Poliestirenos , Água , Adsorção , Fluoretos , Concentração de Íons de Hidrogênio , Hidróxidos/química , Cinética , Poluentes Químicos da Água/química , Purificação da Água
6.
J Colloid Interface Sci ; 428: 179-84, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910051

RESUMO

The goal of this study is to assess the differences in As(III) removal kinetics and mechanisms between dispersed zero-valent iron (d-ZVI) and resin-supported zero-valent iron (D201-ZVI) in the presence of dissolved oxygen and hydrogen peroxide. Experimental results show that As(III) could be removed by all the studied systems (d-ZVI/O2, d-ZVI/H2O2, D201-ZVI/O2, D201-ZVI/H2O2). The d-ZVI/H2O2 system was more efficient than D201-ZVI/H2O2 for the oxidation of As(III). Similar trends were observed in O2 system for both solids. The kinetic behaviors as well as the influence of a hydroxyl radical scavenger (2-propanol) on the oxidation of As(III) at different pH suggest that the oxidation of As(III) in the d-ZVI/O2 and d-ZVI/H2O2 systems occurred mainly through Fenton-like reactions. The oxidation of As(III) in the D201-ZVI/O2 and D201-ZVI/H2O2 systems might be expected as follows: As(III) was firstly adsorbed onto the surface of the D201-ZVI, and then oxidation may proceed mainly through a non-Fenton mechanism that directly converts H2O2 into O2 and H2O. In addition, certain iron oxides in the D201-ZVI could also serve as oxidants for As(III) oxidation. The significant differences between the dispersed and supported ZVIs suggest that the supporting matrix interfered in the removal process, which deserves a further investigation.

7.
J Hazard Mater ; 276: 295-301, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910907

RESUMO

In order to accelerate the kinetics and improve the utilization of the surface active groups of chitosan (CS) for heavy metal ion removal, sub-micron-sized polystyrene supported chitosan thin-film was synthesized by the electrostatic assembly method. Glutaraldehyde was used as cross-linking agent. Chitosan thin-film was well coated onto the surface of the polystyrene (PS) beads characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Their adsorption toward Cu(II) ions was investigated as a function of solution pH, degree of cross-linking, equilibrium Cu(II) ions concentration and contact time. The maximum adsorptive capacity of PS-CS was 99.8 mg/g in the adsorption isotherm study. More attractively, the adsorption equilibrium was achieved in 10 min, which showed superior properties among similar adsorbents. Continuous adsorption-desorption cyclic results demonstrated that Cu(II)-loaded PS-CS can be effectively regenerated by a hydrochloric acid solution (HCl), and the regenerated composite beads could be employed for repeated use without significant capacity loss, indicating the good stability of the adsorbents. The XPS analysis confirmed that the adsorption process was due to surface complexes with atoms of chitosan. Generally, PS beads could be employed as a promising host to fabricate efficient composites that originated from chitosan or other bio-sorbents for environmental remediation.


Assuntos
Quitosana/química , Cobre/isolamento & purificação , Poliestirenos/química , Adsorção , Cinética , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
8.
ACS Appl Mater Interfaces ; 6(5): 3421-6, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24524391

RESUMO

In this study, magnetic chitosan (CS) beads of ∼200 nm in diameter were successfully prepared by a facile one-step method. The resultant composite Fe3O4-CS was characterized using transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). Its adsorption toward Cu(II) ions was investigated as a function of solution pH, CS dosage, Cu(II) concentration, and contact time. The maximum capacity of Fe3O4-CS was 129.6 mg of Cu(II)/g of beads (617.1 mg/g of CS). More attractively, the adsorption equilibrium could be achieved within 10 min, which showed superior properties among the available CS-based adsorbents. Continuous adsorption-desorption cyclic results demonstrated that Cu(II)-loaded Fe3O4-CS can be effectively regenerated by ethylenediaminetetraacetic acid (EDTA) solution, and the regenerated composite beads could be employed for repeated use without significant capacity loss. Additionally, Fe3O4-CS beads can be readily separated from water within 30 s under a low magnetic field (<0.035 T).


Assuntos
Quitosana/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cobre , Ácido Edético/química , Cinética , Fenômenos Magnéticos , Purificação da Água/instrumentação
9.
Environ Sci Pollut Res Int ; 21(10): 6729-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24504774

RESUMO

Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.


Assuntos
Arsênico/análise , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Cloretos/química , Compostos Férricos/química , Polímeros , Zircônio/química
10.
ACS Appl Mater Interfaces ; 5(22): 12135-42, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24168182

RESUMO

To overcome the technical bottleneck of fine hydrated Zr(IV) oxide particles in environmental remediation, we irreversibly impregnated nanosized hydrated Zr(IV) oxide inside a commercial cation exchange resin D-001 and obtained a new nanocomposite NZP. NZP exhibited efficient removal of lead and cadmium ions in a pH range of 2-6, where no Zr(IV) leaching was detected from NZP. As compared to D-001, NZP showed more preferable adsorption toward both toxic metals from the background Ca(II) solution at greater levels. The synthetic Pb(II) or Cd(II) solution containing other ubiquitous metal ions was employed as the feeding influent for column adsorption, and the results indicated that the treatable volume of NZP is around 3-4 times that of D-001 before reaching the breakthrough point set according to the effluent discharge standard of China. With respect to Pb(II) removal from an acidic mining effluent, the treatable volume of NZP was 13 times higher than that of D-001. The exhausted NZP could be effectively regenerated by HNO3-Ca(NO3)2 binary solution for repeated use without any significant capacity loss. The superior performance of NZP was attributed to the Donnan membrane effect exerted by the host D-001 as well as the impregnated HZO nanoparticles of specific interaction toward toxic metals, as confirmed by the comparative isothermal adsorption and X-ray photoelectron spectroscopic study.


Assuntos
Cádmio/química , Chumbo/química , Nanocompostos/química , Purificação da Água/métodos , Zircônio/química
11.
Water Res ; 47(16): 6064-74, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23969401

RESUMO

Bifunctional resin-supported nanosized zero-valent iron (N-S-ZVI) composite was developed by combining the oxidation properties of nZVI/O2 with adsorption features of iron oxides and anion-exchange resin N-S. In batch culture experiments, N-S and the N-S-ZVI composite were examined for As(III) and As(V). The results reveal that ZVI in the composite played a key role in enhancing As(III) removal. The N-S-ZVI composites could oxidize more toxic As(III) to less toxic As(V) with high efficiency under ambient conditions without the need of noble metals. At the same time, the oxidized As(V) could be effectively removed by adsorption onto the surface of composites. The mechanisms for the oxidation of As(III) to As(V) and the simultaneous removal of As(V) are proposed. In order to investigate the potential performance of N-S-ZVI in practical use, the effects of solution pH and coexisting anions on arsenite removal and on fixed-bed column treatment of simulated waters were studied. All the results indicated that the bifunctional composites have a great potential for As(III) removal from contaminated waters.


Assuntos
Arsenitos/química , Adsorção , Oxirredução
12.
J Hazard Mater ; 233-234: 1-6, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22795842

RESUMO

To reveal how the distribution of nanoscale zero-valent iron (nZVI) affect their reduction efficiency of its polymer-based composites and to further develop a simple strategy to tune the structure of the composites, we prepared four nZVI-polymerstyrene anion exchanger composites with similar nZVI loadings (13.5-14.4 Fe % in mass) but different distributions just through varying the concentration of NaBH(4) (0.9, 1.8, 3.6, and 7.2% in mass) solution during reduction of nZVI precursor (FeCl(4)(-) anions). As observed by SEM-EDX images, increasing the NaBH(4) concentration resulted in a more uniform nZVI distribution within the polymer, and thereto higher NH(4)(+)N production, faster reaction rate and more gaseous products during its reduction of nitrate and nitrite. nZVI distribution of the composites was suggested to greatly depend upon two processes, the hydrolyzation of anionic FeCl(4)(-) into cationic Fe(3+) and the reduction of both Fe(III) species by NaBH(4). Higher NaBH(4) concentration favored its faster diffusion into the inside polymer and in situ reduction of Fe(III) species into nZVI, causing a more uniform nZVI distribution. The results reported herein suggest that adjusting the NaBH(4) concentration was a simple and effective method to control the nZVI distribution in the supporting polymers, and indirectly tune the reactivity of the resultant nZVI hybrids.


Assuntos
Resinas de Troca de Ânions/química , Ferro/química , Nanopartículas Metálicas/química , Nitratos/química , Poluentes Químicos da Água/química , Boroidretos , Nanocompostos/química , Nitritos/química , Oxirredução , Polímeros/química , Purificação da Água/métodos
13.
J Hazard Mater ; 211-212: 317-31, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22018872

RESUMO

Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.


Assuntos
Metais/química , Nanopartículas/química , Óxidos/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
14.
Nanotechnology ; 22(30): 305707, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21719965

RESUMO

A novel nanocomposite photocatalyst, D201-CdS beads (0.70-0.80 mm in diameter), was fabricated for visible light (λ > 420 nm) photodegradation of Rhodamine B (RhB). Sphalerite CdS nanoparticles (5-15 nm) were distributed within the outer layer of D201 for favorable visible light permeation. Ultraviolet-visible spectral changes of RhB solution indicated that efficient RhB photodegradation was achieved by D201-CdS under visible light irradiation. More attractively, negligible photocorrosion of the hybrid catalyst D201-CdS was demonstrated by the constant photodegradation efficiency and negligible CdS leaching during five-cycle batch runs. Besides the higher stability, D201-CdS is superior to CdS in terms of separation. The used nanocomposite can be readily separated from solutions by a simple filtration while a high speed centrifugation is needed for the separation of CdS. The above results suggested that the resultant D201-CdS nanocomposite catalyst is promising for practical application in environmental remediation.


Assuntos
Corantes Fluorescentes/efeitos da radiação , Nanocompostos/química , Rodaminas/efeitos da radiação , Resinas de Troca de Ânions , Compostos de Cádmio , Catálise , Corrosão , Recuperação e Remediação Ambiental/métodos , Luz , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura , Nanotecnologia , Tamanho da Partícula , Processos Fotoquímicos , Espectrofotometria , Sulfetos , Difração de Raios X
15.
Environ Sci Technol ; 45(10): 4506-12, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21488665

RESUMO

A hydrophobic hypercrosslinked polymer with poly (4-tert-butylstyrene-styrene-divinylbenzene) matrix (LC-1) was prepared as adsorbent for the removal of volatile organic compounds from gas streams. The content of oxygen-containing functional groups of LC-1 was about one-fourth that of commercial hypercrosslinked polymeric adsorbent (NDA-201). The results of the water vapor adsorption experiment indicated that LC-1 had a more hydrophobic surface than NDA-201. Three chlorinated volatile organic compounds (trichloroethylene, trichloromethane, and 1, 2-dichloroethane) were used to investigate the adsorption characteristics of LC-1 under dry and humid conditions. Equilibrium adsorption data in dry streams showed that LC-1 had good adsorption abilities for three chlorinated VOCs due to its abundant micropore structure. Moreover, the presence of water vapor in the gas stream had negligible effect on breakthrough time of three chlorinated VOCs adsorption onto LC-1 when values of relative humidity were equal to or below 50%; the breakthrough time of three chlorinated VOCs decreased less than 11% even if the relative humidity was 90%. Taken together, it is expected that LC-1 would be a promising adsorbent for the removal of VOCs vapor from the humid gas streams.


Assuntos
Poluentes Atmosféricos/química , Hidrocarbonetos Clorados/química , Polímeros/química , Compostos Orgânicos Voláteis/química , Gerenciamento de Resíduos/métodos , Adsorção , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Clorofórmio/análise , Clorofórmio/química , Reagentes para Ligações Cruzadas/química , Dicloretos de Etileno/análise , Dicloretos de Etileno/química , Umidade , Hidrocarbonetos Clorados/análise , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Tricloroetileno/análise , Tricloroetileno/química , Compostos Orgânicos Voláteis/análise
16.
Water Res ; 45(6): 2191-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21316071

RESUMO

To probe the role of host chemistry in formation and properties of the inside nano-zero valent iron (nZVI), we encapsulated nZVI within porous polystyrene resins functionalized with -CH(2)Cl and -CH(2)N(+)(CH(3))(3) respectively and obtained two hybrid nZVIs denoted Cl-S-ZVI and N-S-ZVI. 14.5% (in Fe mass) of nZVI particles were distributed in N-S within a ring-like region (about 0.10 mm in thickness) of size around ∼ 5 nm, whereas only 4.0% of nZVI particles were entrapped near the outer surface of Cl-S of size > 20 nm. -CH(2)N(+)(CH(3))(3) is more favorable than -CH(2)Cl to inhibit nZVI dissolution into Fe(2+) ions under acidic pH (3.0-5.5). 97.2% of nitrate was converted into ammonium when introducing 0.12 g N-S-ZVI into 50 mL 50 mg N/L nitrate solution, while that for Cl-S-ZVI was 79.8% under identical Fe/N molar ratio. Under pH = 2 of the effectiveness of nZVI was 88.8% for nitrate reduction, whereas that for Cl-S-ZVI was only 14.6% under similar conditions. Nitrate reduction by N-S-ZVI exhibits relatively slower kinetics than Cl-S-ZVI, which may be related to different nZVI distribution of both composites. The coexisting chloride and sulfate co-ions are favorable for the reactivity enhancement of N-S-ZVI whereas slightly unfavorable for Cl-S-ZVI. The results demonstrated that support chemistry plays a significant role in formation and reactivity of the encapsulated nZVI, and may shed new light on design and fabrication of hybrid nZVIs for environmental remediation.


Assuntos
Ferro/química , Nanopartículas/química , Nitratos/química , Tamanho da Partícula , Poliestirenos/química , Resinas Sintéticas/química , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas/ultraestrutura , Oxirredução , Soluções , Propriedades de Superfície , Difração de Raios X
17.
Environ Sci Technol ; 44(8): 3130-5, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20230023

RESUMO

In the present study, a novel approach was developed to remove dimethyl phthalate (DMP), a representative phthalic acid ester (PAE) pollutant, from an aqueous solution using a macroporous OH-type strong base anion exchange resin D201-OH. As compared to the traditional catalyst aqueous NaOH, D201-OH displayed much higher catalytic efficiency for DMP hydrolytic degradation. Almost 100% of DMP was hydrolyzed to far less toxic phthalic acid (PA) in the presence of D201-OH, while only about 29% of DMP was converted to PA in the presence of NaOH under the identical amount of hydroxyl anions in the reaction system. More attractively, the hydrolysis product PA also can be simultaneously removed by the solid basic polymer D201-OH through a preferable anion exchange process, while NaOH induced hydrolysis products were still left in solution. The underlying mechanism for the hydrolytic degradation and simultaneous ion exchange removal process was proposed. Fixed-bed column hydrolytic degradation and ion exchange removal tests indicate that DMP can be completely converted to PA and subsequently removed from water without any further process, with pH values of the effluent being around 6 constantly. The exhausted D201-OH was amenable to an efficient regeneration by 3 bed volumes (BV) of NaOH solution (2 mol/L) for repeated use without any efficiency loss. The results reported herein indicated that D201-OH-induced catalytic degradation and removal is a promising approach for PAEs treatment in waters.


Assuntos
Resinas de Troca de Ânions , Ácidos Ftálicos/química , Catálise
18.
Water Res ; 44(3): 815-24, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906397

RESUMO

The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss.


Assuntos
Compostos Férricos/química , Metais Pesados/isolamento & purificação , Nanopartículas/química , Tamanho da Partícula , Espectroscopia Fotoeletrônica/métodos , Polímeros/química , Água/química , Adsorção , Cálcio/química , Cátions , Galvanoplastia , Meio Ambiente , Concentração de Íons de Hidrogênio , Resinas de Troca Iônica/química , Íons , Cinética , Nanopartículas/ultraestrutura , Soluções , Temperatura Ambiente , Fatores de Tempo , Eliminação de Resíduos Líquidos
19.
Water Sci Technol ; 60(6): 1607-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19759463

RESUMO

A spherical microporous carbon adsorbent (CR-1), which was developed by carbonization and activation of the waste polysulfonated cation-exchanger, was used to remove Dimethyl phthalate (DMP) and 2, 4-dichlorophenol (2, 4-DCP) as the model compounds of EDCs from the aqueous solution. Four adsorption isotherm models, Langmuir, Freundlich, Toth and Polanyi-Dubinin-Manes equations were tested to correlate the experimental data, Toth and Polanyi-Dubinin-Manes isotherms models provided the best correlation. The Henry's law constants calculated from Toth equation were found to be 705.957 and 6,724.713 L g(-1) for 2, 4-DCP and DMP at 298 K, respectively, and the larger exponents n of the Freundlich model were 9.011 and 9.93 for 2, 4-DCP and DMP at 298 K, respectively. The values of Henry's law constants and exponent n of the Freundlich suggested that CR-1 was an effective adsorbent for removal of low concentrations of DMP and 2, 4-DCP from aqueous solution. Moreover, the adsorption kinetics results showed that adsorption of 2, 4-DCP and DMP on CR-1 was a pseudo-second-order process controlled by intra-particle diffusion and that adsorption uptake reached quickly half of equilibrium capacities within 20 min.


Assuntos
Carbono/química , Disruptores Endócrinos/química , Disruptores Endócrinos/isolamento & purificação , Resinas de Troca Iônica/química , Polímeros/química , Água/química , Adsorção , Clorofenóis/química , Clorofenóis/isolamento & purificação , Difusão , Cinética , Modelos Químicos , Ácidos Ftálicos/química , Ácidos Ftálicos/isolamento & purificação , Porosidade
20.
Sci Total Environ ; 407(21): 5471-7, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19640564

RESUMO

In the current study, a new hybrid adsorbent HMO-001 was fabricated by impregnating nanosized hydrous manganese dioxide (HMO) onto a porous polystyrene cation exchanger resin (D-001) for enhanced lead removal from aqueous media. D-001 was selected as a support material mainly because of the potential Donnan membrane effect exerted by the immobilized negatively charged sulfonic acid groups bound to the polymeric matrix, which would result in preconcentration and permeation enhancement of lead ions prior to their effective sequestration by the impregnated HMO. HMO-001 was characterized by scanning electron micrograph (SEM), transmission electron micrograph (TEM), and X-ray diffraction (XRD). Lead adsorption onto HMO-001 was dependent upon solution pH due to the ion-exchange nature, and it can be represented by the Freundlich isotherm model and pseudo-first order kinetic model well. The maximum capacity of HMO-001 toward lead ion was about 395 mg/g. As compared to D-001, HMO-001 exhibited highly selective lead retention from waters in the presence of competing Ca(2+), Mg(2+), and Na(+) at much greater levels than the target toxic metal. Fixed-bed column adsorption of a simulated water indicated that lead retention on HMO-001 resulted in a conspicuous decrease of this toxic metal from 1 mg/L to below 0.01 mg/L (the drinking water standard recommended by WHO). The exhausted adsorbent particles are amenable to efficient regeneration by the binary NaAc-HAc solution for repeated use without any significant capacity loss. All the results validated the feasibility of HMO-001 for highly effective removal of lead from contaminated waters.


Assuntos
Chumbo/química , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Nanoestruturas , Poliestirenos/química , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA