Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899853

RESUMO

Owing to its novel electronic and magnetic properties, two-dimensional CrI3 has great potential in the application of spintronic devices. However, as an inevitable line defect, the properties of the edges of CrI3 remain elusive. Here, via first-principles calculations with spin-orbit coupling, we investigated the thermodynamic stabilities, electronic and magnetic properties of thirteen CrI3 edges with different structures. We showed that zigzag edges are more stable than armchair edges, and a CrI3 nanoribbon can be either metallic or insulating depending on its chemical growth conditions. The edge stability and associated electronic properties can be understood in terms of the octahedron ligand field and electron counting model. In most cases, both the magnetic moment and Curie temperature can be enhanced by edges, which are in startle contrast to the surfaces of three-dimensional ferromagnetic materials, where a magnetic dead layer is often observed.

2.
ACS Nano ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33723991

RESUMO

Exploring two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials of physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) structure, a 2D vdW material which has no direct analogue to its 3D bulk and is predicted to be kinetically stable when freestanding. The structural morphology and electronic structure of the experimental 2D AlSb are characterized with spectroscopic imaging scanning tunneling microscopy and cross-sectional imaging scanning transmission electron microscopy, which compare well to the proposed DLHC structure. The 2D AlSb exhibits a band gap of 0.93 eV versus the predicted 1.06 eV, which is substantially smaller than the 1.6 eV of bulk. We also attempt the less-stable InSb DLHC structure; however, it grows into bulk islands instead. The successful growth of a DLHC material here demonstrates the feasibility for the realization of a large family of 2D DLHC traditional semiconductors with characteristic excitonic, topological, and electronic properties.

3.
Adv Mater ; 33(13): e2003327, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615589

RESUMO

The platinum single-atom-catalyst is verified as a very successful route to approach the size limit of Pt catalysts, while how to further improve the catalytic efficiency of Pt is a fundamental scientific question and is challenging because the size issue of Pt is approached at the ultimate ceiling as single atoms. Here, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual-single-atoms on titanium dioxide (TiO2 ) surfaces, which contains a fraction of nonbonding oxygen-coordinated Co-O-Pt dimers, is reported. These Co-Pt dimer sites originate from loading high-density Pt single-atoms and Co single-atoms, with them anchoring randomly on the TiO2 substrate. This dual-single-atom catalyst yields 13.4% dimer sites and exhibits an ultrahigh and stable photocatalytic activity with a rate of 43.467 mmol g-1 h-1 and external quantum efficiency of ≈83.4% at 365 nm. This activity far exceeds those of equal amounts of Pt single-atom and typical Pt clustered catalysts by 1.92 and 1.64 times, respectively. The enhancement mechanism relies on the oxygen-coordinated Co-O-Pt dimer coupling, which can mutually optimize the electronic states of both Pt and Co sites to weaken H* binding. Namely, the "mute" Co single-atom is activated by Pt single-atom and the activity of the Pt atom is further enhanced through the dimer interaction. This strategy of nonbonding interactive dimer sites and the oxygen-mediated catalytic mechanisms provide emerging rich opportunities for greatly improving the catalytic efficiency and developing novel catalysts with creating new electronic states.

4.
ACS Nano ; 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33481561

RESUMO

The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator composed of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are also epitaxially grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 Å with an insulating band gap of 6 eV. Our low-energy electron diffraction measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moiré pattern analysis shows the BeO honeycomb structure maintains long-range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complementary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single-crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring 2D electronic materials.

5.
ACS Nano ; 14(10): 13611-13618, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33054170

RESUMO

Semiconducting monolayers of a 2D material are able to concatenate multiple interesting properties into a single component. Here, by combining opto-mechanical and electronic measurements, we demonstrate the presence of a partial 2H-1T' phase transition in a suspended 2D monolayer membrane of MoS2. Electronic transport shows unexpected memristive properties in the MoS2 membrane, in the absence of any external dopants. A strong mechanical softening of the membrane is measured concurrently and may only be related to the 2H-1T' phase transition, which imposes a 3% directional elongation of the topological 1T' phase with respect to the semiconducting 2H. We note that only a few percent 2H-1T' phase switching is sufficient to observe measurable memristive effects. Our experimental results combined with first-principles total energy calculations indicate that sulfur vacancy diffusion plays a key role in the initial nucleation of the phase transition. Our study clearly shows that nanomechanics represents an ultrasensitive technique to probe the crystal phase transition in 2D materials or thin membranes. Finally, a better control of the microscopic mechanisms responsible for the observed memristive effect in MoS2 is important for the implementation of future devices.

6.
ACS Omega ; 5(30): 18579-18583, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775859

RESUMO

BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, nontoxicity with earth-abundant elements, it is thus a promising candidate for thin film solar cells. However, its reported band gap in the range of 1.7-1.8 eV is larger than the optimal value required to reach the Shockley-Queisser limit of a single-junction solar cell. Here, we report the synthesis of Ba(Zr1-x Ti x )S3 perovskite compounds with a reduced band gap. It is found that Ti-alloying is extremely effective in band gap reduction of BaZrS3: a mere 4 atom % alloying decreases the band gap from 1.78 to 1.51 eV, resulting in a theoretical maximum power conversion efficiency of 32%. Higher Ti-alloying concentration is found to destabilize the distorted chalcogenide perovskite phase.

7.
J Phys Chem Lett ; 11(16): 6544-6550, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32693591

RESUMO

Carrier dynamics across the interface of heterostructures have important technological, photovoltaic, and catalytic implications. Using first-principles time-dependent density functional theory, we have systematically investigated the charge transfer of excited carriers from CdS to MoS2 and found that two interdependent mechanisms are responsible for the transfer, one slow and one fast. While the slower process may be attributed to typical electron-phonon coupling, the interfacial dipole resulting from this transfer enables a fast secondary process involving a level crossing of the excited carrier state in CdS with receiving states in MoS2. An analysis based on the interfacial binding energy reveals that the Cd-terminated (001) interface is by far the most energetically favorable, which in addition to its calculated fast resonant electron transfer suggests it is a good candidate to explain the experimentally observed charge transfer between CdS and MoS2.

8.
Phys Rev Lett ; 124(16): 166401, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383949

RESUMO

While various excitonic insulators have been studied in the literature, due to the perceived too-small spin splitting, spin-triplet excitonic insulator is rare. In two-dimensional systems such as a semihydrogenated graphene (known as graphone), however, it is possible, as revealed by first-principles calculations coupled with Bethe-Salpeter equation. The critical temperature, given by an effective Hamiltonian, is 11.5 K. While detecting excitonic insulators is still a daunting challenge, the condensation of triplet excitons will result in spin superfluidity, which can be directly measured by a transport experiment. Nonlocal dielectric screening also leads to an unexpected phenomenon, namely, an indirect-to-direct transition crossover between single-particle band and exciton dispersion in the semihydrogenated graphene, which offers yet another test by experiment.

9.
Phys Chem Chem Phys ; 22(16): 8713-8718, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270831

RESUMO

Critical topological phases, possessing flat bands, provide a platform to study unique topological properties and transport phenomena under a many-body effect. Here, we propose that critical nodal points and nodal lines or rings can be found in Kagome lattices. After the C3 rotation symmetry of a single-layer Kagome lattice is eliminated, a quadratic nodal point splits into two critical nodal points. When the layered Kagome lattices are stacked into a three-dimensional (3D) structure, critical nodal lines or rings can be generated by tuning the interlayer coupling. Furthermore, we use Kagome graphene as an example to identify that these critical phases could be obtained in real materials. We also discuss flat-band-induced ferromagnetism. It is found that the flat band splits into two spin-polarized bands by hole-doping, and as a result the Dirac-type critical phases evolve into Weyl-type phases.

10.
Adv Mater ; 32(14): e1907565, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32091144

RESUMO

Parity-time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realization of magnetic topological DSMs remains a major issue in topological material research. Here, combining angle-resolved photoemission spectroscopy with density functional theory calculations, it is ascertained that band inversion induces a topologically nontrivial ground state in EuCd2 As2 . As a result, ideal magnetic Dirac fermions with simplest double cone structure near the Fermi level emerge in the antiferromagnetic (AFM) phase. The magnetic order breaks time reversal symmetry, but preserves inversion symmetry. The double degeneracy of the Dirac bands is protected by a combination of inversion, time-reversal, and an additional translation operation. Moreover, the calculations show that a deviation of the magnetic moments from the c-axis leads to the breaking of C3 rotation symmetry, and thus, a small bandgap opens at the Dirac point in the bulk. In this case, the system hosts a novel state containing three different types of topological insulator: axion insulator, AFM topological crystalline insulator (TCI), and higher order topological insulator. The results provide an enlarged platform for the quest of topological Dirac fermions in a magnetic system.

12.
Adv Mater ; 31(52): e1903491, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31725182

RESUMO

Metal oxides, as one of the mostly abundant and widely utilized materials, are extensively investigated and applied in environmental remediation and protection, and in energy conversion and storage. Most of these diverse applications are the result of a large diversity of the electronic states of metal oxides. Noticeably, however, many metal oxides present obstacles for applications in catalysis, mainly due to the lack of efficient active sites with desired electronic states. Here, the fabrication of single-tungsten-atom-oxide (STAO) is demonstrated, in which the metal oxide's volume reaches its minimum as a unit cell. The catalytic mechanism in the STAO is determined by a new single-site physics mechanism, named as quasi-atom physics. The photogenerated electron transfer process is enabled by an electron in the spin-up channel excited from the highest occupied molecular orbital to the lowest unoccupied molecular orbital +1 state, which can only occur in STAO with W5+ . STAO results in a record-high and stable sunlight photocatalytic degradation rate of 0.24 s-1 , which exceeds the rates of available photocatalysts by two orders of magnitude. The fabrication of STAO and its unique quasi-atom photocatalytic mechanism lays new ground for achieving novel physical and chemical properties using single-metal-atom oxides (SMAO).

13.
J Chem Phys ; 151(12): 124703, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575162

RESUMO

Improving electronic structure calculations for practical and technologically important materials has been a never-ending pursue. This is especially true for transition and post-transition metal oxides for which the current first-principles approaches still suffer various drawbacks. Here, we present a hierarchical-hybrid functional approach built on the use of pseudopotentials. The key is to introduce different amounts of exact exchange to core and valence electrons. It allows for treating the delocalization errors of sp and d electrons differently, which have been known to be an important source of error for the band structure. Using wurtzite ZnO as a prototype, we show that the approach is successful in simultaneously reproducing the bandgap and d-band position. Importantly, the same approach, without having to change the hybrid mixing parameters from those of Zn, works reasonably well for other binary 3d transition and post-transition metal oxides across board. Our findings thus point out a new direction of systematically improving the exchange functional in first-principles calculations.

14.
J Phys Chem Lett ; 10(22): 6996-7001, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31652068

RESUMO

As an intensively studied electrode material for secondary batteries, TiS2 is known to exhibit high electrical conductivity without extrinsic doping. However, the origin of this high conductivity, either being a semimetal or a heavily self-doped semiconductor, has been debated for several decades. Here, combining quasi-particle GW calculations, density functional theory (DFT) study on intrinsic defects, and scanning tunneling microscopy/spectroscopy (STM/STS) measurements, we conclude that stoichiometric TiS2 is a semiconductor with an indirect band gap of about 0.5 eV. The high conductivity of TiS2 is therefore caused by heavy self-doping. Our DFT results suggest that the dominant donor defect that is responsible for the self-doping under thermal equilibrium is Ti interstitial, which is corroborated by our STM/STS measurements.

15.
Phys Chem Chem Phys ; 21(39): 22160, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552964

RESUMO

Correction for 'Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective' by Jun Chai et al., Phys. Chem. Chem. Phys., 2019, 21, 8721-8728.

16.
Phys Rev Lett ; 122(23): 236402, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298916

RESUMO

First-principles calculations reveal an unusual electronic state (dubbed as half excitonic insulator) in monolayer 1T-MX_{2} (M=Co, Ni and X=Cl, Br). Its one spin channel has a many-body ground state due to excitonic instability, while the other is characterized by a conventional band insulator gap. This disparity arises from a competition between the band gap and exciton binding energy, which exhibits a spin dependence due to different orbital occupations. Such a state can be identified by optical absorption measurements and angle-resolved photoemission spectroscopy. Our theory not only provides new insights for the study of exciton condensation in magnetic materials but also suggests that strongly correlated materials could be fertile candidates for excitonic insulators.

17.
Nano Lett ; 19(6): 3612-3617, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31096752

RESUMO

We show that non-equilibrium dynamics plays a central role in the photoinduced 2H-to-1T' phase transition of MoTe2. The phase transition is initiated by a local ordering of Te vacancies, followed by a 1T' structural change in the original 2H lattice. The local 1T' region serves as a seed to gather more vacancies into ordering and subsequently induces a further growth of the 1T' phase. Remarkably, this process is controlled by photogenerated excited carriers as they enhance vacancy diffusion, increase the speed of vacancy ordering, and are hence vital to the 1T' phase transition. This mechanism can be contrasted to the current model requiring a collective sliding of a whole Te atomic layer, which is thermodynamically highly unlikely. By uncovering the key roles of photoexcitations, our results may have important implications for finely controlling phase transitions in transition metal dichalcogenides.

18.
Phys Chem Chem Phys ; 21(17): 8721-8728, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30968099

RESUMO

The photosynthetic protein complex, photosystem II (PSII), conducts the light-driven water-splitting reaction with unrivaled efficiency. Proton-coupled electron transfer (PCET) reactions at the redox-active tyrosine residues are thought to play a critical role in the water-splitting chemistry. Addressing the fundamental question as to why the tyrosine residue, YZ, is kinetically competent in comparison to a symmetrically placed tyrosine residue, YD, is important for the elucidation of the mechanism of PCET in the water-splitting reaction of PSII. Here, using all-quantum-mechanical calculations we study PCET at the YZ and YD residues of PSII. We find that when YZ is in its protein matrix under physiological conditions, the HOMO of YZ constitutes the HOMO of the whole system. In contrast, the HOMO of YD is buried under the electronic states localized elsewhere in the protein matrix and PCET at YD requires the transfer of the phenolic proton, which elevates the HOMO of YD to become the HOMO of the whole system. This leads to the oxidation of YD, albeit on a slower timescale. Our study reveals that the key differences between the electronic structure of YZ and YD are primarily determined by the protonation state of the respective hydrogen-bonding partners, D1-His190 and D2-His189, or more generally by the H-bonding network of the protein matrix.


Assuntos
Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Transporte de Elétrons/efeitos da radiação , Ligação de Hidrogênio/efeitos da radiação , Cinética , Oxirredução , Fotossíntese/efeitos da radiação , Conformação Proteica , Prótons , Teoria Quântica , Tirosina/química , Água/química
19.
Adv Mater ; 31(4): e1804919, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30422346

RESUMO

Phase transition is a fundamental physical phenomenon that has been widely studied both theoretically and experimentally. According to the Landau theory, the coexistence of high- and low-temperature phases is thermodynamically impossible during a second-order phase transition in a bulk single crystal. Here, the coexistence of two (α and ß) phases in wedge-shaped nanosized single-crystal Cu2 Se over a large temperature range are demonstrated. By considering the surface free-energy difference between the two phases and the shape effect, a thermodynamic model is established, which explicitly explains their coexistence. Intriguingly, it is found that with a precise control of the heating temperature, the phase boundary can be manipulated at atomic level. These discoveries extend the understanding of phase transitions to the nanoscale and shed light on rational manipulation of phase transitions in nanomaterials.

20.
Phys Rev Lett ; 121(19): 196802, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468617

RESUMO

The built-in potential is of central importance to the understanding of many interfacial phenomena because it determines the band alignment at the interface. Despite its importance, its exact sign and magnitude have generally been recognized as ill-defined quantities for more than half a century. Here, we provide a common energy reference of bulk matter which leads to an unambiguous definition of the built-in potential and innate (i.e., bulk) band alignment. Further, we find that the built-in potential is explicitly determined by the bulk properties of the constituent materials when the system is in electronic equilibrium, while the interface plays a role only in the absence of equilibrium. Our quantitative theory enables a unified description of a variety of important properties of interfaces, ranging from work functions to Schottky barriers in electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...