Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(38): 14976-14980, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31523954

RESUMO

The traditional NH3 production method (Haber-Bosch process) is currently complemented by electrochemical synthesis at ambient conditions, but the rather low selectivity (as indicated by the Faradaic efficiency) for the electrochemical reduction of molecular N2 into NH3 impedes the progress. Here, we present a powerful method to significantly boost the Faradaic efficiency of Au electrocatalysts to 67.8% for the nitrogen reduction reaction (NRR) by increasing their electron density through the construction of inorganic donor-acceptor couples of Ni and Au nanoparticles. The unique role of the electron-rich Au centers in facilitating the fixation and activation of N2 was also investigated via theoretical simulation methods and then confirmed by experimental results. The highly coupled Au and Ni nanoparticles supported on nitrogen-doped carbon are stable for reuse and long-term performance of the NRR, making the electrochemical process more sustainable for practical application.

2.
Nat Commun ; 10(1): 4380, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558716

RESUMO

Production of ammonia is currently realized by the Haber-Bosch process, while electrochemical N2 fixation under ambient conditions is recognized as a promising green substitution in the near future. A lack of efficient electrocatalysts remains the primary hurdle for the initiation of potential electrocatalytic synthesis of ammonia. For cheaper metals, such as copper, limited progress has been made to date. In this work, we boost the N2 reduction reaction catalytic activity of Cu nanoparticles, which originally exhibited negligible N2 reduction reaction activity, via a local electron depletion effect. The electron-deficient Cu nanoparticles are brought in a Schottky rectifying contact with a polyimide support which retards the hydrogen evolution reaction process in basic electrolytes and facilitates the electrochemical N2 reduction reaction process under ambient aqueous conditions. This strategy of inducing electron deficiency provides new insight into the rational design of inexpensive N2 reduction reaction catalysts with high selectivity and activity.

3.
Chem Commun (Camb) ; 55(76): 11394-11397, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31482882

RESUMO

A nitrogen-thermal approach via the reaction between transition metal species and N dopants affords us the ability to optimize the tradeoff between the number of exposed transition metal/carbon (exemplified by cobalt in this work) boundaries and the most pronounced interfacial rectifying contact to achieve the highly efficient and selective hydrogenation and dehydrogenation of N-heterocycle compounds in a reversible manner.

4.
Chem Commun (Camb) ; 55(44): 6173-6176, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31045185

RESUMO

A COOH-terminated nitrogen-doped carbon aerogel exhibited 100% selectivity to two-electron oxygen reduction, exceeding reported carbonaceous and noble metal catalysts. The optimal electrode with the synergistic effect of C-N/C-COOH resulted in a minimum ηO2/H2O2 and gave an evolution rate of 60 mg L-1 g-1 h-1 for H2O2 with satisfactory mechanical and electrochemical stability for practical applications.

5.
Huan Jing Ke Xue ; 36(11): 4202-7, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26911010

RESUMO

The water content of dewatered sewage sludge can decrease at about 80% by traditional sludge dewatering technologies. High water content has negative impacts on the sequent sludge disposal with a stricter standard. The sulfate free radical SO4(*-), generated by activated persulfate, is a powerful oxidant. This article found that it could improve sludge dewatering properties by using the Fe2+ activated sodium persulfate (SPS). The results showed that when using Fe2+ 25.88 mg x g(-1) (based on dry sludge solid) and S2 O8(2-) 80 mg x g(-1) (the mole ratio of Fe2+ to S2 O8(2-) was 1.1 : 1) for sludge conditioning, it could reduce the capillary suction time (CST) and specific resistance to filtration (RSF) of sludge, increased the protein and ploysaccharide as well as the COD concentration in the filtrate. The further research showed that this method could change the zeta potential of sludge, increased the sludge particle specific surface area, and made flocs become a loose layered structure from dense clusters, which was beneficial to improve the sludge dewaterability.


Assuntos
Esgotos/química , Compostos de Sódio/química , Sulfatos/química , Filtração , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA