Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Brain Lang ; 224: 105050, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34861608

RESUMO

Chinese is one of many languages that can drop subjects. We report an fMRI study of language comprehension processes in these "zero pronoun" cases. The fMRI data come from Chinese speakers who listened to an audiobook. We conducted both univariate GLM and multivariate pattern analysis (MVPA) on these data. We found increased left Temporal Lobe activity for zero pronouns compared to overt subjects, suggesting additional effort searching for an antecedent during zero pronoun resolution. MVPA further revealed that the intended referent of a zero pronoun can be decoded in the Parahippocampal Gyrus and the Precuneus shortly after its presentation. This highlights the role of memory and discourse-level processing in resolving referential expressions, including unspoken ones, in naturalistic language comprehension.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34780340

RESUMO

In this paper, we propose an end-to-end deep learning architecture, referred as MCG-Net, integrating convolutional neural network (CNN) with transformer-based global context block for fine-grained delineation and diagnostic classification of four cardiac events from magnetocardiogram (MCG) data, namely Q-, R-, S- and T-waves. MCG-Net} takes advantage of a multi-resolution CNN backbone as well as the state-of-the-art (SOTA) transformer encoders that facilitate global temporal feature aggregation. Besides the novel network architecture, we introduce a multi-task learning scheme to achieve simultaneous delineation and classification. Specifically, the problem of MCG delineation is formulated as multi-class heatmap regression. Meanwhile, a binary diagnostic classification label as well as a duration are jointly estimated for each cardiac event using features that are temporally aligned by event heatmaps. The framework is evaluated on a clinical MCG dataset, containing data collected from 270 subjects with cardiac anomalies and 108 control subjects. We designed and conducted a two-fold cross-validation study to validate the proposed method and to compare its performance with the SOTA methods. Experimental results demonstrated that our method outperformed counterparts on both event delineation and diagnostic classification tasks, achieving respectively an average ECG-F1 of 0.987 and an average Event-F1 of 0.975 for MCG delineation, and an average accuracy of 0.870, an average sensitivity of 0.732, an average specificity of 0.914 and an average AUC of 0.903 for diagnostic classification. Comprehensive ablation experiments are additionally performed to investigate effectiveness of different network components.

3.
Emerg Microbes Infect ; 10(1): 2090-2097, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34689717

RESUMO

Since December 2019, coronavirus disease 2019 (COVID-19) caused by SARS coronavirus 2 (SARS-CoV-2) has spread and threatens public health worldwide. The recurrence of SARS-CoV-2 RNA detection in patients after discharge from hospital signals a risk of transmission from such patients to the community and challenges the current discharge criteria of COVID-19 patients. A wide range of clinical specimens has been used to detect SARS-CoV-2. However, to date, a consensus has not been reached regarding the most appropriate specimens to use for viral RNA detection in assessing COVID-19 patients for discharge. An anal swab sample was proposed as the standard because of prolonged viral detection. In this retrospective longitudinal study of viral RNA detection in 60 confirmed COVID-19 patients, we used saliva, oropharyngeal/nasopharyngeal swab (O/N swab) and anal swab procedures from admission to discharge. The conversion times of saliva and anal swab were longer than that of O/N swab. The conversion time of hyper sensitive-CRP was the shortest and correlated with that of CT scanning and viral detection. Some patients were found to be RNA-positive in saliva while RNA-negative in anal swab while the reverse was true in some other patients, which indicated that false negatives were inevitable if only the anal swab is used for evaluating suitability for discharge. These results indicated that double-checking for viral RNA using multiple and diverse specimens was essential, and saliva could be a candidate to supplement anal swabs to reduce false-negative results and facilitate pandemic control.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Adulto , Canal Anal/virologia , Reações Falso-Negativas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Orofaringe/virologia , Alta do Paciente , RNA Viral/análise , Estudos Retrospectivos , Adulto Jovem
4.
Artigo em Inglês | MEDLINE | ID: mdl-34686911

RESUMO

Citronellyl acetate as an important flavor, can be effectively synthesized by lipase catalysis in nonaqueous system. But lipases usually behave low catalytic activity due to aggregation and denaturation of them in organic phase. To enhance the nonaqueous catalysis, based on the mechanism of lipases activated at water/oil (organic phase) interface, the inexpensive race straw was processed into powder and filaments on which Pseudomonas fluorescens lipase was immobilized by physical adsorption, used for synthesis of citronellyl acetate via transesterification of citronellol and vinyl acetate. Results showed that the desired loading was 10 mg lipase immobilized on 30 mg rice straw filaments or 25 mg rice straw powder. When the two immobilized lipases were employed in the reaction system consisted of 1-mL citronellol and 2-mL vinyl acetate at 37 â„ƒ and 160 rpm, the conversions all reached 99.8% after 12 h. Under the reaction condition, the conversion catalyzed by 10 mg native lipase was 85.1%. Undergoing six times of 8-h reuses in the organic system, the filament and power immobilized lipases had weak activity attenuation rates 0.36 and 0.32% h-1, lower than 1.52% h-1 of native lipase. Even at the room temperature and the static state without shaking and stirring, the rice straw filaments immobilized lipase could brought conversion 62.9% after 10 h but the native lipase only gave 37.0%. Obviously, the rice straw, especially its filaments, is an inexpensive and available natural material to prepare immobilized lipase with desired catalysis in organic phase, meant significant potential in flavor industry.

5.
Neoplasma ; 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34648299

RESUMO

This study aimed to measure the expression of SAA2 in plasma and to assess its diagnostic efficacy as a biomarker for non-small cell lung cancer (NSCLC). The gene expression of SAA2 in NSCLC was analyzed based on a database. Then, SAA2 expression was detected by immunohistochemistry in lung tissue and by enzyme-linked immunosorbent assay in 90 patients with NSCLC and 61 normal controls. Finally, the diagnostic performance was assessed in terms of accuracy, sensitivity, and specificity. At the gene and protein levels, the SAA2 expression was significantly higher in the NSCLC group than in the control group (p < 0.01). It was higher in lung squamous carcinoma than in lung adenocarcinoma and in males than in females, and this trend was also observed in the lung squamous carcinoma group. Of note, the expression of SAA2 increased with increasing disease stage. Receiver operating characteristic (ROC) curve analysis revealed that the sensitivity of SAA2 was 83.61%, the specificity was 91.11%, and the area under the curve (AUC) was 0.9252. Its accuracy was 68.89%, which was higher than that of other conventional diagnostic biomarkers, and the combined application can effectively improve the diagnostic efficiency. Based on the results, SAA2 expression was positively correlated with the disease stage of NSCLC. Notably, SAA2 is more concerning in male patients with lung squamous carcinoma, and it can help in the screening and diagnosis of NSCLC. SAA2 may represent a novel diagnostic biomarker in NSCLC.

6.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572750

RESUMO

The purpose of this study was to determine the frequency of clinically actionable treatment-relevant germline pharmacogenomic variants in patients with cancer and assess the real-world clinical utility of universal screening using whole-exome sequencing in this population. Cancer patients underwent research-grade germline whole-exome sequencing as a component of sequencing for somatic variants. Analysis in a clinical bioinformatics pipeline identified clinically actionable pharmacogenomic variants. Clinical Pharmacogenetics Implementation Consortium guidelines defined clinical actionability. We assessed clinical utility by reviewing electronic health records to determine the frequency of patients receiving pharmacogenomically actionable anti-cancer agents and associated outcomes. This observational study evaluated 291 patients with cancer. More than 90% carried any clinically relevant pharmacogenetic variant. At least one disease-relevant variant impacting anti-cancer agents was identified in 26.5% (77/291). Nine patients with toxicity-associated pharmacogenomic variants were treated with a relevant medication: seven UGT1A1 intermediate metabolizers were treated with irinotecan, one intermediate DPYD metabolizer was treated with 5-fluorouracil, and one TPMT poor metabolizer was treated with mercaptopurine. These individuals were more likely to experience treatment-associated toxicities than their wild-type counterparts (p = 0.0567). One UGT1A1 heterozygote died after a single dose of irinotecan due to irinotecan-related adverse effects. Identifying germline pharmacogenomic variants was feasible using whole-exome sequencing. Actionable pharmacogenetic variants are common and relevant to patients undergoing cancer treatment. Universal pharmacogenomic screening can be performed using whole-exome sequencing data originally obtained for quality control purposes and could be considered for patients who are candidates for irinotecan, 5-fluorouracil, capecitabine, and mercaptopurine.

7.
Appl Microbiol Biotechnol ; 105(19): 7395-7410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34536105

RESUMO

In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae. KEY POINTS: • Momyo1 is required for vegetative growth and pigmentation of M. oryzae. • Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae. • Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.


Assuntos
Ascomicetos/patogenicidade , Endocitose , Miosinas , Ascomicetos/crescimento & desenvolvimento , Miosinas/genética , Virulência
9.
Sci Rep ; 11(1): 14194, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244539

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is endemic in Pakistan. Resistance to both firstline rifampicin and isoniazid drugs (multidrug-resistant TB; MDR-TB) is hampering disease control. Rifampicin resistance is attributed to rpoB gene mutations, but rpoA and rpoC loci may also be involved. To characterise underlying rifampicin resistance mutations in the TB endemic province of Khyber Pakhtunkhwa, we sequenced 51 M. tuberculosis isolates collected between 2016 and 2019; predominantly, MDR-TB (n = 44; 86.3%) and lineage 3 (n = 30, 58.8%) strains. We found that known mutations in rpoB (e.g. S405L), katG (e.g. S315T), or inhA promoter loci explain the MDR-TB. There were 24 unique mutations in rpoA, rpoB, and rpoC genes, including four previously unreported. Five instances of within-host resistance diversity were observed, where two were a mixture of MDR-TB strains containing mutations in rpoB, katG, and the inhA promoter region, as well as compensatory mutations in rpoC. Heteroresistance was observed in two isolates with a single lineage. Such complexity may reflect the high transmission nature of the Khyber Pakhtunkhwa setting. Our study reinforces the need to apply sequencing approaches to capture the full-extent of MDR-TB genetic diversity, to understand transmission, and to inform TB control activities in the highly endemic setting of Pakistan.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Modelos Moleculares , Mutação/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/genética , Paquistão/epidemiologia , Filogenia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
10.
Microb Biotechnol ; 14(4): 1827-1838, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34173722

RESUMO

Discovering new serological markers of Mycobacterium tuberculosis (MTB) infection and establishing a rapid and efficient detection technology is of great significance for the prevention and control of tuberculosis. In this study, we established an exponentially modified protein abundance index (emPAI) value-assisted strategy to investigate and improve the screening efficiency of serological biomarkers of tuberculosis. First, we used LC-MS/MS to analyse MTB culture filtrate proteins (MTB-CFPs), and 632 MTB proteins were identified. Then, the characteristic values of MTB-CFPs - including emPAI value, molecular weight (Mw), isoelectric point (pI), grand average of hydropathy (GRAVY), transmembrane domain (TMD) and functional groups were calculated. Next, we successfully prepared 10 MTB proteins with emPAI value > 1.0 and recombinantly expressed these proteins in Escherichia coli. At the same time, 3 MTB proteins with emPAI between 0.1 and 0.5 were randomly selected as the control groups, and the immunogenicity of the recombinant MTB proteins was detected using ELISA. The sensitivity and receiver operating characteristic (ROC) curves were calculated for each recombinant MTB protein. The results showed that the areas under the curve (AUC) value of Rv2031c, Rv0577, Rv0831c, Rv0934 and Rv3248c were all higher than those of Rv3875 (AUC, 0.6643). Further analysis of the relationship between emPAI value and antibody sensitivity, AUC value and antibody affinity in mice immunized with recombinant MTB protein showed that emPAI values were positively correlated with them, and R-squared value ranged from 0.64 to 0.79. The only exception was ESAT-6 (encoded by the Rv3875 gene), which AUC value was relatively low owing to its strong immunosuppressive properties. This study provides a rationale for the serological marker screening of emPAI-assisted tuberculosis clinical test. The results also provide new technical support for the screening of candidate serological markers of infectious diseases in the future.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antígenos de Bactérias , Proteínas de Bactérias/genética , Biomarcadores , Cromatografia Líquida , Camundongos , Mycobacterium tuberculosis/genética , Espectrometria de Massas em Tandem , Tuberculose/diagnóstico
11.
mSphere ; : e0011821, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190584

RESUMO

As the causal agent of the blast disease, Magnaporthe oryzae is one of the most destructive fungal pathogens of rice. Histone acetylation/deacetylation is important for remodeling of chromatin superstructure and thus altering gene expression. In this study, two genes encoding histone deacetylases, namely, MoRPD3 and MoHST4, were identified and functionally characterized in M. oryzae. MoHst4 was required for proper mycelial growth and pathogenicity, whereas overproduction of MoRpd3 led to loss of pathogenicity, likely due to a block in conidial cell death and restricted invasive growth within the host plants. Green fluorescent protein (GFP)-MoRpd3 localized to the nucleus and cytoplasm in vegetative hyphae and developing conidia. By comparative transcriptomics analysis, we identified potential target genes epigenetically regulated by histone deacetylases (HDACs) containing MoRpd3 or MoHst4, which may contribute to conidia formation and/or conidial cell death, which is a prerequisite for successful appressorium-mediated host invasion. Taken together, our results suggest that histone deacetylases MoRpd3 and MoHst4 differentially regulate mycelial growth, asexual development, and pathogenesis in M. oryzae. IMPORTANCE HDACs (histone deacetylases) regulate various aspects of growth, development, and pathogenesis in plant-pathogenic fungi. Most members of HDAC classes I to III have been functionally characterized, except for orthologous Rpd3 and Hst4, in the rice blast fungus Magnaporthe oryzae. In this study, we assessed the function of MoRpd3 and MoHst4 by reverse genetics and found that they differentially regulate M. oryzae vegetative growth, asexual development, and infection. Particularly, MoRpd3 negatively regulates M. oryzae pathogenicity, likely through suppression of conidial cell death, which we recently reported as being critical for appressorium maturation and functioning. Overall, this study broadens our understanding of fungal pathobiology and its critical regulation by histone modification(s) during cell death and in planta differentiation.

12.
Brief Bioinform ; 22(6)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34169968

RESUMO

BACKGROUND: There are ever increasing researches implying that noncoded RNAs (ncRNAs) specifically circular RNAs (circRNAs) and microRNAs (miRNAs) in exosomes play vital roles in respiratory disease. However, the detailed mechanisms persist to be unclear in mycobacterial infection. METHODS: In order to detect circRNAs and miRNAs expression pattern and potential biological function in tuberculosis, we performed immense parallel sequencing for exosomal ncRNAs from THP-1-derived macrophages infected by Mycobacterium tuberculosis H37Ra, Mycobacterium bovis BCG and control Streptococcus pneumonia, respectively and uninfected normal cells. Besides, THP-1-derived macrophages were used to verify the validation of differential miRNAs, and monocytes from PBMCs and clinical plasma samples were used to further validate differentially expressed miR-185-5p. RESULTS: Many exosomal circRNAs and miRNAs associated with tuberculosis infection were recognized. Extensive enrichment analyses were performed to illustrate the major effects of altered ncRNAs expression. Moreover, the miRNA-mRNA and circRNA-miRNA networks were created and expected to reveal their interrelationship. Further, significant differentially expressed miRNAs based on Exo-BCG, Exo-Ra and Exo-Control, were evaluated, and the potential target mRNAs and function were analyzed. Eventually, miR-185-5p was collected as a promising potential biomarker for tuberculosis. CONCLUSION: Our findings provide a new vision for exploring biological functions of ncRNAs in mycobacterial infection and screening novel potential biomarkers. To sum up, exosomal ncRNAs might represent useful functional biomarkers in tuberculosis pathogenesis and diagnosis.

13.
3 Biotech ; 11(5): 249, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968592

RESUMO

Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the selective oxidative cleavage steps from carotenoids to apocarotenoids, which are essential for the synthesis of biologically important molecules such as retinoids, and the phytohormones abscisic acid (ABA) and strigolactones. In addition, CCDs play important roles in plant biotic and abiotic stress responses. Till now, a comprehensive characterization of the CCD gene family in the economically important crop cotton (Gossypium spp.) is still missing. Here, we performed a genome-wide analysis and identified 33, 31, 16 and 15 CCD genes from two allotetraploid Gossypium species, G. hirsutum and G. barbadense, and two diploid Gossypium species, G. arboreum and G. raimondii, respectively. According to the phylogenetic tree analysis, cotton CCDs are classified as six subgroups including CCD1, CCD4, CCD7, CCD8, nine-cis-epoxycarotenoid dioxygenase (NCED) and zaxinone synthase (ZAS) sub-families. Evolutionary analysis shows that purifying selection dominated the evolution of these genes in G. hirsutum and G. barbadense. Predicted cis-acting elements in 2 kb promoters of CCDs in G. hirsutum are mainly involved in light, stress and hormone responses. The transcriptomic analysis of GhCCDs showed that different GhCCDs displayed diverse expression patterns and were ubiquitously expressed in most tissues; moreover, GhCCDs displayed specific inductions by different abiotic stresses. Quantitative reverse-transcriptional PCR (qRT-PCR) confirmed the induction of GhCCDs by heat stress, salinity, polyethylene glycol (PEG) and ABA application. In summary, the bioinformatics and expression analysis of CCD gene family provide evidence for the involvement in regulating abiotic stresses and useful information for in-depth studies of their biological functions in G. hirsutum. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02805-9.

14.
Infect Genet Evol ; 92: 104861, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33862292

RESUMO

Whole genome sequencing (WGS) is one of the most reliable methods for detection of drug resistance, genetic diversity in other virulence factor and also evolutionary dynamics of Mycobacterium tuberculosis complex (MTBC). First-line anti-tuberculosis drugs are the major weapons against Mycobacterium tuberculosis (MTB). However, the emergence of drug resistance remained a major obstacle towards global tuberculosis (TB) control program 2030, especially in high burden countries including Pakistan. To overcome the resistance and design potent drugs, genomic variations in drugs targets as well as in the virulence and evolutionary factors might be useful for better understanding and designing potential inhibitors. Here we aimed to find genomic variations in the first-line drugs targets, along with other virulence and evolutionary factors among the circulating isolates in Khyber Pakhtunkhwa, Pakistan. Samples were collected and drug susceptibility testing (DST) was performed as per WHO standard. The resistance samples were subjected to WGS. Among the five whole genome sequences, three samples (NCBI BioProject Accession: PRJNA629298, PRJNA629388) harbored 1997, 1162, and 2053 mutations. Some novel mutations have been detected in drugs targets. Similarly, numerous novel variants have also been detected in virulency and evolutionary factors, PE, PPE, and secretory system of MTB isolates. Exploring the genomic variations among the circulating isolates in geographical specific locations might be useful for future drug designing. To the best of our knowledge, this is the first study that provides useful data regarding the insight genomic variations in virulency, evolutionary factors including ESX and PE/PPE as well as drug targets, for better understanding and management of TB in a WHO declared high burden country.

15.
Water Sci Technol ; 83(6): 1347-1356, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767041

RESUMO

The rapid overcompensatory growth that appears when cyanobacteria are supplied with adequate resources after a period of resource deprivation might contribute to the occurrence of cyanobacterial blooms. We investigated the changing characteristics of overcompensatory growth and serine/threonine kinase (STK) genes expression of cyanobacterium Microcystis aeruginosa in response to light limitation. The results showed M. aeruginosa exhibited overcompensatory growth for 2 days after light recovery, during which the increase in growth was inversely related to light intensity. Expression of STK genes, such as spkD, was upregulated significantly at 0.5-4 h after light recovery (P < 0.05). To investigate the function of STK genes in the overcompensatory growth, M. aeruginosa spkD was heterologously expressed in Synechocystis. Transgenic Synechocystis exhibited greater and longer overcompensatory growth than wild-type Synechocystis after light recovery. Relative expression levels of STK genes in transgenic Synechocystis were significantly higher than those in wild-type Synechocystis at 24 h of light recovery (P < 0.05). Heterologous expression of Microcystis spkD might stimulate overcompensatory growth of Synechocystis by affecting its STK gene expression.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina , Synechocystis/genética , Synechocystis/metabolismo
16.
3 Biotech ; 11(2): 98, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33520584

RESUMO

Spodoptera litura is a major insect with a cosmopolitan distribution and strong resistance to multiple insecticides. Determining the molecular basis and key candidate genes of the insecticide resistance of S. litura may help in managing this insect. In this study, fifth-instar S. litura larvae were subjected to transcriptome analysis at 6, 12, 24, 48, and 72 h after feeding on an LC20 dose of avermectin. The result showed that genes responding to avermectin changed dynamically with different gene counts and resistance mechanisms at the fifth instar based on a metabolic pathway map. These responses included degrading the insecticide by a series of P450 and glutathione-S-transferase enzymes starting at the 12 h time point, with subsequent increases in the number of genes involved and shifts to TOLL and immune deficiency (IMD) pathways at 48 h after feeding the insecticide. Weighted correlation network analysis (WGCNA) determined a co-expression module related to the avermectin response at 12 and 24 h (r = 0.403, p = 0.0371; r = 0.436, p = 0.023), in which a hub gene (LOC111358940) related to metalloproteinase activity was identified. In addition, Analysis of the genes in the co-expression module further revealed that eight genes encoding UDP-glucuronosyltransferases were directly associated with insecticide response in S. litura. These results provide better understanding of the avermectin response mechanism of S. litura and may be useful in developing improved control strategies for this species. Supplementary Information: The online version of this article (10.1007/s13205-021-02651-9) contains supplementary material, which is available to authorized users.

17.
Plant Cell Environ ; 44(5): 1379-1398, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33554357

RESUMO

With diverse genetic backgrounds, soybean landraces are valuable resource for breeding programs. Herein, we apply multi-omic approaches to extensively characterize the molecular basis of drought tolerance in the soybean landrace LX. Initial screens established that LX performed better with PEG6000 treatment than control cultivars. LX germinated better than William 82 under drought conditions and accumulated more anthocyanin and flavonoids. Untargeted mass spectrometry in combination with transcriptomic analyses revealed the chemical diversity and genetic basis underlying the overall performance of LX landrace. Under control and drought conditions, significant differences in the expression of a suite of secondary metabolism genes, particularly those involved in the general phenylpropanoid pathway and flavonoid but not lignin biosynthesis, were seen in LX and William 82. The expression of these genes correlated with the corresponding metabolites in LX plants. Further correlation analysis between metabolites and transcripts identified pathway structural genes and transcription factors likely are responsible for the LX agronomic traits. The activities of some key biosynthetic genes or regulators were confirmed through heterologous expression in transgenic Arabidopsis and hairy root transformation in soybean. We propose a regulatory mechanism based on flavonoid secondary metabolism and adaptive traits of this landrace which could be of relevance to cultivated soybean.


Assuntos
Secas , Genômica , Característica Quantitativa Herdável , Soja/fisiologia , Antocianinas/biossíntese , Flavonoides/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Metaboloma/genética , Metabolômica , Fenótipo , Propanóis/metabolismo , Reprodutibilidade dos Testes , Metabolismo Secundário/genética , Soja/genética , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
18.
J Clin Endocrinol Metab ; 106(7): e2711-e2719, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33606014

RESUMO

CONTEXT: Aggrecan, encoded by the ACAN gene, is the main proteoglycan component in the extracellular cartilage matrix. Heterozygous mutations in ACAN have been reported to cause idiopathic short stature. However, the prevalence of ACAN pathogenic variants in Chinese short stature patients and clinical phenotypes remain to be evaluated. OBJECTIVE: We sought to determine the prevalence of ACAN pathogenic variants among Chinese short stature children and characterize the phenotypic spectrum and their responses to growth hormone therapies. PATIENTS AND METHODS: Over 1000 unrelated short stature patients ascertained across China were genetically evaluated by next-generation sequencing-based test. RESULT: We identified 10 novel likely pathogenic variants and 2 recurrent pathogenic variants in this cohort. None of ACAN mutation carriers exhibited significant dysmorphic features or skeletal abnormities. The prevalence of ACAN defect is estimated to be 1.2% in the whole cohort; it increased to 14.3% among those with advanced bone age and to 35.7% among those with both advanced bone age and family history of short stature. Nonetheless, 5 of 11 ACAN mutation carries had no advanced bone age. Two individuals received growth hormone therapy with variable levels of height SD score improvement. CONCLUSION: Our data suggest that ACAN mutation is 1 of the common causes of Chinese pediatric short stature. Although it has a higher detection rate among short stature patients with advanced bone age and family history, part of affected probands presented with delayed bone age in Chinese short stature population. The growth hormone treatment was moderately effective for both individuals.


Assuntos
Agrecanas/genética , Grupo com Ancestrais do Continente Asiático/genética , Estatura/genética , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/genética , Adolescente , Criança , Pré-Escolar , China/epidemiologia , Estudos de Coortes , Feminino , Transtornos do Crescimento/tratamento farmacológico , Hormônio do Crescimento/uso terapêutico , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Fenótipo , Prevalência
19.
Food Chem ; 343: 128448, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158675

RESUMO

The ability of tea polyphenols (0, 0.01, 0.02 or 0.04 w/v %) to inhibit lipid and protein oxidation in walnut oil-in-water (O/W) emulsions was examined, as well as to alter their stability to aggregation and creaming. The lipid droplets in these emulsions were coated by whey proteins. The physical stability of the emulsions during storage (50 °C, 96 h) was improved by addition of 0.01% tea polyphenols, but reduced when higher levels were added. Low levels (0.01%) of tea polyphenols inhibited lipid oxidation (lipid hydroperoxide and 2-thiobarbituric acid-reactive substance formation) and protein oxidation (carbonyl and Schiff base formation, sulfhydryl and intrinsic fluorescence loss, and molecular weight changes). However, high levels (0.04%) of tea polyphenols were less effective at inhibiting lipid oxidation, and actually promoted protein oxidation. Tea polyphenols are natural antioxidants that can enhance the quality and shelf life of emulsified polyunsaturated lipids when used at an appropriate concentration.


Assuntos
Óleos/química , Polifenóis/química , Chá/química , Água/química , Proteínas do Soro do Leite/química , Antioxidantes/química , Emulsões , Peso Molecular , Oxirredução
20.
J Pak Med Assoc ; 70 [Special Issue](9): 9-15, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33177722

RESUMO

OBJECTIVE: To study the effect of postpartum rehabilitation nursing on the management of postpartum depression. METHODS: A total of 100 primiparas were randomly selected in this study. They were divided into postpartum nursing intervention group (50 cases) and control group (50 cases). The data from prenatal and postpartum women were collected through questionnaires. The Edinburgh postpartum depression scale, social support scale, general self-efficacy scale, and mother's role adaptation questionnaire were distributed to 100 pregnant women. By collecting the results of these questionnaires, the differences between the nursing intervention group and the control group were compared. RESULTS: The results showed that the proportion of postpartum depression in 50 primiparas after postpartum rehabilitation nursing was significantly lower than that of the control group. The physiological and psychological changes of primipara after childbirth would be significant, and would be subject to tremendous pressure from all aspects. CONCLUSIONS: This change and pressure were the main causes of postpartum depression in primipara. Postpartum rehabilitation nursing can effectively alleviate primipara's postpartum depression.


Assuntos
Depressão Pós-Parto , Enfermagem em Reabilitação , Feminino , Humanos , Parto , Período Pós-Parto , Gravidez , Apoio Social , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...