Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 117: 109166, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31255993

RESUMO

BACKGROUND: Histone deacetylase 6 (HDAC6) has been considered as an important regulator in the development of inflammatory diseases. However, the mechanism of HDAC6 in regulating inflammatory responses has not been fully determined. In the present study, we aim to investigate the role and mechanisms of HDAC6 in regulating inflammation in lipopolysaccharide (LPS)-activated macrophages. METHODS: Flow cytometry was used to determine a suitable treatment dosage of ACY-1215 on lipopolysaccharide (LPS)-activated macrophages for the present study. The RAW264.7 macrophages were divided into normal, LPS-treated, and ACY-1215 treated groups, respectively. For the ACY-1215 group, ACY-1215 (10 µM) was added to the medium 2 h prior to treatment with LPS (1 µg/ml) for 24 h. In this study, ROS, inflammatory cytokines, the ultrastructure of mitochondria, mitochondrial membrane potential, RNA and protein expression assay were detected respectively. Subsequently, the effect of HDAC6 knockdown on inflammatory response in LPS-activated RAW264.7 macrophages was also detected. RESULTS: Inhibition of HDAC6 inhibited the overproduction of ROS and suppressed the expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 in LPS-activated RAW264.7 cells. Pretreatment with ACY-1215 could normalize the ultrastructure of mitochondria and mitochondrial membrane potential in LPS-activated macrophages. Moreover, the protein expression of TLR4, Nrf2, HO-1 and the activation of MAPK and NF-κB signaling pathways were normalized by the inhibition of HDAC6. CONCLUSIONS: Inhibition of HDAC6 exhibited protective role against LPS-induced inflammation in RAW264.7 cells by regulating oxidative stress and suppressing the activation of TLR4- MAPK/NF-κB signaling pathway.

2.
Biomed Res Int ; 2019: 5653212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355268

RESUMO

Objective: Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells. Methods: The expression level of CKIP-1 protein was determined in gliomas tissues and cell lines by immunohistochemistry stain and western blotting while the association of CKIP-1 expression with prognosis was analyzed by Kaplan-Meier method and compared by log-rank test. CKIP-1 was overexpressed or silenced in gliomas cell lines. CCK-8, colony formation assay, and BrdU incorporation assay were used to determine cell proliferation and DNA synthesis. Cell cycle and apoptosis rate were determined with fluorescence-activated cell sorting (FACS) method. Then, expression of key members in AKT/GSK3ß/ß-catenin pathway was detected by western blot analysis. Results: In the present study, we reported new evidence that CKIP-1 was reversely associated with the proliferation of glioma cells and survival in glioma patients. Additionally, the overexpressed CKIP-1 significantly inhibited glioma cell proliferation. Further experiments revealed that CKIP-1 functioned through its antiproliferative and proapoptotic activity in glioma cells. Importantly, mechanistic investigations suggested that CKIP-1 sharply suppressed the activity of AKT by inhibiting the phosphorylation, markedly downregulated the phosphorylated GSK3ß at Ser9, and promoted ß-catenin degradation. Conclusions: Overall, our results provided new insights into the clinical significance and molecular mechanism of CKIP-1 in glioma, which indicated CKIP1 might function as a therapeutic target for clinical treatment of glioma.

3.
Methods Mol Biol ; 2033: 287-300, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332761

RESUMO

The emergence of "molecular superglue," such as SpyTag-SpyCatcher chemistry, has tremendously expanded our capability in manipulating protein shape and architecture via conjugation. Telechelic proteins bearing the SpyTag and SpyCatcher reactive sequences can be expressed and purified for bioconjugation in vitro, giving protein conjugates, branched proteins, and circular proteins. By encoding both reactive sequences in the same construct for expression in vivo, the nascent protein undergoes programmed posttranslational modification guided by protein folding and reaction, leading to diverse nonlinear topologies in situ. In this chapter, we present the SpyTag-SpyCatcher chemistry as a versatile platform for protein bioconjugation and topology engineering.

4.
Molecules ; 24(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167411

RESUMO

In this article, we report the facile synthesis, self-assembly, and characterization of shape amphiphiles (BPOSS-PDI-X) based on isobutyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS), perylene tetracarboxylic diimide (PDI), and (60)fullerene (C60) moieties. Firstly, an asymmetrically functionalized diblock shape amphiphile precursor (BPOSS-PDI-OH) was obtained through the one-pot reaction between perylene-3,4,9,10-tetracarboxylic dianhydride and two different amines, namely BPOSS-NH2 and 3-amino-1-propanol. It was further conjugated with C60-COOH to give a tri-block shape amphiphile (BPOSS-PDI-C60). Their chemical structures were thoroughly characterized by NMR, IR and MALDI-TOF MS spectrometry. In order to gain insights on the structure-property relationship, their self-assembly in gas phase, in solution, and in solid state were characterized using traveling wave ion mobility mass spectrometry (TWIM-MS), UV/Vis absorption, fluorescence emission spectrophotometer, and transmission electron microscopy, respectively. It was found that BPOSS-PDI-OH formed more complicated dimers than BPOSS-PDI-C60. Both samples showed unique aggregation behaviors in solution with increasing concentration, which could be attributed neither to H- nor to J-type and might be related to the discrete dimers. While BPOSS-PDI-C60 could hardly crystalize into ordered structures, BPOSS-PDI-OH could form nanobelt-shaped single crystals, which may hold potential applications in microelectronics.

5.
Angew Chem Int Ed Engl ; 58(32): 11097-11104, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31218786

RESUMO

Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag-SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good-yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw-induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein-topology engineering.

6.
Oxid Med Cell Longev ; 2019: 8173016, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183000

RESUMO

The purpose of this study was to investigate the modulation of histone deacetylase 2 (HDAC2) on mitochondrial apoptosis in acute liver failure (ALF). The cellular model was established with LO2 cells stimulated by tumor necrosis factor alpha (TNF-α)/D-galactosamine (D-gal). Rats were administrated by lipopolysaccharide (LPS)/D-gal as animal model. The cell and animal models were then treated by HDAC2 inhibitor CAY10683. HDAC2 was regulated up or down by lentiviral vector transfection in LO2 cells. The mRNA levels of bcl2 and bax were detected by real-time PCR. The protein levels of HDAC2, bcl2, bax, cytochrome c (cyt c) in mitochondrion and cytosol, apoptosis protease activating factor 1 (apaf1), caspase 3, cleaved-caspase 3, caspase 9, cleaved-caspase 9, acetylated histone H3 (AH3), and histone H3 (H3) were assayed by western blot. Apoptosis was detected by flow cytometry. The serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) levels were also assayed. The openness degree of the mitochondrial permeability transition pore (MPTP) was detected by ultraviolet spectrophotometry. The apoptosis of hepatocytes in liver tissues was determined by tunnel staining. The liver tissue pathology was detected by hematoxylin eosin (HE) staining. The ultrastructure of liver tissue was observed by electron microscopy. Compared with cell and rat model groups, the bax mRNA level was decreased, and bcl2 mRNA was increased in the CAY10683 treatment group. The protein levels of HDAC2, bax, cyt c in cytosol, apaf1, cleaved-caspase 3, and cleaved-caspase 9 were decreased, and the apoptosis rate was decreased (P < 0.05), whereas the protein level of bcl2 and cyt c in the mitochondrion was elevated (P < 0.05) in the CAY10683 treatment group. In the HDAC2 down- or upregulated LO2 cells, the mitochondrial apoptosis pathway was inhibited or activated, respectively. After being treated with TNF-α/D-gal in HDAC2 down- or upregulated LO2 cells, the mitochondrial apoptosis pathway was further suppressed or activated, respectively. The MPTP value was elevated in CAY10683-treated groups compared with the rat model group (P < 0.05). Liver tissue pathological damage and apoptotic index in the CAY10683-treated group were significantly reduced. In addition, AH3 was elevated in both cell and animal model groups (P < 0.05). Downregulated or overexpressed HDAC2 could accordingly increase or decrease the AH3 level, and TNF-α/D-gal could enhance the acetylation effect. These results suggested that modulations of histone deacetylase 2 offer a protective effect through the mitochondrial apoptosis pathway in acute liver failure.

7.
Chem Commun (Camb) ; 55(45): 6425-6428, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31094365

RESUMO

We report that variation of a single regio-configuration in molecular Janus particles leads to divergent self-assembly behaviors where each isomer gives a distinct morphology as guided by their molecular symmetry. The differences in their phase diagrams were rationalized based on the proposed molecular packing and relevant interfacial energies.

8.
Life Sci ; 230: 68-75, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129140

RESUMO

AIMS: The aim of the present study was to investigate the protective effects of AGK2 as a selective SIRT2 inhibitor on thioacetamide (TAA)-induced acute liver failure (ALF) in mice and its potential mechanism. MAIN METHODS: All male C57BL/6 mice were separated into control, TAA, AGK2 + TAA, and AGK2 groups. The histological changes were observed by hematoxylin and eosin (HE) staining. The apoptosis cells of liver tissues were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were used to evaluate the damage of liver function. The inflammatory cytokines of iNOS, TNF-α, IL-1ß was detected by Western blotting and RT-PCR assay. The expression of mitogen-activated protein kinase (MAPK), NF-κB, and apoptosis pathways was determined by Western blotting. KEY FINDINGS: AGK2 improved the damage of TAA-induced liver pathology and function. AGK2 pretreatment also reduced the levels of pro-inflammatory cytokines in ALF liver tissues. AGK2 improved the TAA-induced survival rate. Moreover, AGK2 administration suppressed the increase of phosphorylation NF-κB-p65 and the activation of MAPK pathway. In addition, pretreatment alleviated TAA-induced the liver cells apoptosis. SIGNIFICANCE: AGK2 improve TAA-induced survival rate in mice with ALF, suppress the inflammatory responses by inhibition of MAPK and NF-κB signaling pathways, and decrease the hepatocyte necrosis by inhibition of apoptosis. Pharmacologic inhibition of SIRT2 may be a promising approach for the treatment of ALF.


Assuntos
Furanos/farmacologia , Falência Hepática Aguda/tratamento farmacológico , Fígado/patologia , Quinolinas/farmacologia , Alanina Transaminase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Citocinas/metabolismo , Furanos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Quinolinas/metabolismo , Transdução de Sinais , Sirtuína 2/antagonistas & inibidores , Tioacetamida/farmacologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Ther Drug Monit ; 41(5): 665-673, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31033858

RESUMO

BACKGROUND: Oxcarbazepine (OXC) is almost completely metabolized to its10-monohydroxy derivative (MHD), which is responsible for the pharmacological effects of the drug. Several studies have described the population pharmacokinetics (PPK) of MHD in pediatric patients, but little is known about its pharmacokinetics in adult patients. In addition, no study to date has proposed a model to investigate the influence of genetic polymorphisms on MHD pharmacokinetics. The aim of this study was to establish a PPK model of MHD to investigate the effects of genetic polymorphisms in UGT2B7, UGT1A9, ABCB1, and ABCB2 in adult Chinese patients with epilepsy and to develop a new dosage guideline for OXC. METHODS: Data were prospectively collected from 187 adult patients with epilepsy who were taking OXC. MHD trough concentrations were detected by enzyme-multiplied immunoassay. Patients were genotyped for 4 single nucleotide polymorphisms (UGT2B7 802T>C, UGT1A9 I399C>T, ABCB1 3435C>T, and ABCB2 1249G>A). Other covariates included sex, age, body weight (BW), hepato-renal function, and concomitant medications. Data were analyzed using the nonlinear mixed effects modelling software. RESULTS: The apparent clearance (CL) of MHD was significantly influenced by glomerular filtration rate and BW, and was unrelated to other covariates such as genetic polymorphisms and coadministration with levetiracetam, lamotrigine, and topiramate. Moreover, a new dosage guideline was proposed based on the final model to individualize OXC regimens for adult patients with varying BW and renal function. CONCLUSIONS: Glomerular filtration rate was first found as an important covariate influencing MHD CL. A PPK model was established to estimate the individual MHD CL for adult patients taking OXC and may be applied for individualizing doses in the target population.

10.
Life Sci ; 223: 1-8, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30862568

RESUMO

AIMS: The aim of this study was to investigate the relationship between anti-HBV treatment and the regulation of HDACs during HBV DNA replication. METHODS: HDAC activities and HBV DNA levels in CHB patients' sera were measured and correlation analysis was made. The changes of HDAC2, HDAC6, AH3 and histone H3 levels in normal control and 4 CHB patient liver tissue samples before and after antiviral treatment were examined. The HDAC inhibitor, TSA, anti-HBV agents, ETV and IFN-α were used to stimulate HepG2.2.15 cells. The levels of HBV DNA, pgRNA in supernatants, and cccDNA in the cells were determined by PCR. The HDAC activity, HDAC6, HDAC2, AH3 and H3 protein levels in cells were tested at days 3, 6, and 9 after treatments. KEY FINDINGS: HDAC activity was positively correlated with HBV DNA in the HBV patients' sera. The levels of HDAC2, HDAC6 and AH3 were notably decreased after antiviral treatment. When compared with antiviral treatment group, the normal liver tissue showed obviously decreased HDAC2, HDAC6 and AH3 protein levels. In vitro study, the level of HBV DNA, the HDAC activity, and the HDAC2, HDAC6 and AH3 protein levels decreased in the ETV, IFN-α and TSA groups compared with the control group. The pgRNA level in supernatants was declined in the IFN-α group and increased in the ETV and TSA groups. cccDNA expression was suppressed by IFN-α. SIGNIFICANCE: The changes of HBV replicative products during antiviral treatment are associated with histone deacetylation. Acetylated histone H3 is involved in the process of hepatitis B virus DNA replication.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Histona Desacetilases/metabolismo , Histonas/genética , Adulto , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Técnicas de Cultura de Células , Replicação do DNA/genética , Feminino , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/enzimologia , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
11.
Yonsei Med J ; 60(1): 38-47, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30554489

RESUMO

PURPOSE: Helicobacter pylori (HP)-infected gastric cancer (GC) is known to be a fatal malignant tumor, but the molecular mechanisms underlying its proliferation, invasion, and migration remain far from being completely understood. Our aim in this study was to explore miR-1915 expression and its molecular mechanisms in regulating proliferation, invasion, and migration of HP-infected GC cells. MATERIALS AND METHODS: Quantitative real-time PCR and western blot analysis were performed to determine miR-1915 and receptor for advanced glycation end product (RAGE) expression in HP-infected GC tissues and gastritis tissues, as well as human gastric mucosal cell line GES-1 and human GC cell lines SGC-7901 and MKN45. CCK8 assay and transwell assay were performed to detect the proliferation, invasion, and migration capabilities. MiR-1915 mimics and miR-1915 inhibitor were transfected into GC cells to determine the target relationship between miR-1915 and RAGE. RESULTS: MiR-1915 was under-expressed, while RAGE was over-expressed in HP-infected GC tissues and GC cells. Over-expressed miR-1915 could attenuate cellular proliferation, invasion, and migration capacities. RAGE was confirmed to be the target gene of miR-1915 by bioinformatics analysis and luciferase reporter assay. Moreover, HP-infected GC cellular proliferation, invasion, and migration were inhibited after treatment with pcDNA-RAGE. CONCLUSION: MiR-1915 exerted tumor-suppressive effects on cellular proliferation, invasion, and migration of HP-infected GC cells via targeting RAGE, which provided an innovative target candidate for treatment of HP-infected GC.


Assuntos
Movimento Celular/genética , Helicobacter pylori/fisiologia , MicroRNAs/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica/genética
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(6): 1637-1643, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30501697

RESUMO

OBJECTIVE: To investigate the expression changes of serum transferrin receptor(sTFR) and its related mechanism in children with acute leukemia(AL). METHODS: Forty-six children with acute leukemia treated in our hospital from June 2016 to June 2017 were selected and enrolled in the AL group, 40 healthy children were enrolled in the control group. The related clinical data were recorded, including age, sex and CNSL level. RNA interference technology was used to silence TFR genes of KG-1a and TCHu147 cells, MTT method and flow cytometry were used to analyze the effect of TFR gene on proliferation and cell cycle of KG-1a cells and TCHu147 cells. Western blot was used to detect the level of cyclin related to leukemic cells after siRNA interference. RESULTS: The level of sTFR in AL patients was significantly higher than that of healthy people (P<0.05). The mRNA and protein expression levels of TFR in peripheral blood leukemic cells were all higher than those in healthy people (P<0.05). The level of sTFR closely related to the white blood cell(WBC) count, the proportion and absolute number of leukemic cells, hepcidin(Hepc) level, and risk grade in AL patients (P<0.05). The proliferation ability of KG-1a and TCHu147 cells after TFR siRNA interference was significantly inhibited (P<0.05). Fow cytometry showed that after the TFR siRNA interference, the ratio of KG-1a and TCHu147 cells in G0/G1 phase was 62.51%±5.39% and 63.37%±4.27%, respectively, which increased significantly as compared with the blank and negative control group (P<0.05); the ratio of KG-1a and TCHu147 in G2/M phase was 5.74%±1.34% and 7.37%±1.56%, respectively, which significantly decreased as compared with the blank control and the negative control group (P<0.05). CONCLUSION: The peripheral blood leukemic cells of AL patients can synthesize more TFR protein, lead into the increase of sTFR level. It can effectively interfere the division of leukemia cells by downregulating the expression of TFR gene.

13.
J Am Chem Soc ; 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449090

RESUMO

Herein, we report an intrinsically disordered protein SpyStapler that can catalyze the isopeptide bond formation between two pep-tide tags, i.e. SpyTag and BDTag, both in vitro and in vivo. SpyStapler and BDTag are developed by splitting SpyCatcher-the cog-nate protein partner of SpyTag-at the more solvent exposed second loop region. Regardless of their locations in protein constructs, SpyStapler enables efficient covalent coupling of SpyTag and BDTag under a variety of mild conditions in vitro (yield ~80%). Co-expression of SpyStapler with telechelic dihydrofolate reductase (DHFR) bearing a SpyTag at N-terminus and a BDTag at C-terminus leads to direct cellular synthesis of a circular DHFR. Mechanistic studies involving circular dichroism (CD) and nuclear magnetic resonance (NMR) spectrometry reveal that SpyStapler alone is disordered in solution and forms a stable folded structure (Tm ~55 oC) in the presence of both SpyTag and BDTag upon isopeptide bonding. No ordered structure can be formed in the ab-sence of either tag. The catalytically inactive SpyStapler-EQ mutant cannot form a stable physical complex with SpyTag and BDTag, but it can fold into ordered structure in the presence of the ligated product (SpyTag-BDTag). It suggests that the isopeptide bond is important in stabilizing the complex. Given its efficiency, resilience, and robustness, SpyStapler provides new opportunities for bioconjugation and creation of complex protein architectures.

14.
Hepatobiliary Pancreat Dis Int ; 17(5): 423-429, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30249543

RESUMO

BACKGROUND: Histone deacetylases (HDACs) inhibitors are new anti-fibrotic drugs that inhibit the activity of hepatic stellate cells. The present study focused on the anti-fibrotic function of HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) by suppressing transforming growth factor-ß1 (TGF-ß1) signaling. METHODS: Male Sprague-Dawley rats were used to induce liver fibrosis with carbon tetrachloride (CCl4) and LX2 cell (human hepatic stellate cell line) was stimulated by TGF-ß1. Both animals and cells were treated with SAHA. The Smad7 and connective tissue growth factor (CTGF) mRNA levels were detected by real-time polymerase chain reaction (PCR). Western blotting was used to examine the protein levels of CTGF, Histone H3 (H3), Smad7, Smad2/3, Acetyl-Histone H3 (AH3), HDAC2, α-smooth muscle actin (α-SMA), HDAC6, p-Smad2/3 and HDAC8. In addition, the TGF-ß1 and liver enzyme levels from rat serum were detected. Histopathological changes were examined by hematoxylin and eosin (HE), Sirius red and Masson trichrome staining. The α-SMA expression was detected by immumohistochemical staining. RESULTS: Compared with control group, the TGF-ß1 and liver enzyme levels from rat serum, together with the mRNA levels of CTGF and protein levels of CTGF, HDAC2, α-SMA, HDAC6, p-Smad2/3 and HDAC8 were elevated in fibrotic rats (P < 0.01). But the Smad7 mRNA and AH3 protein levels were notably suppressed in the fibrotic rats (P < 0.01). Pathological examination showed the typical changes of liver fibrosis in the fibrotic rats. After the treatment with SAHA, the levels of liver enzymes, TGF-ß1, CTGF, HDAC2, α-SMA, HDAC6, p-Smad2/3 and HDAC8 were reduced (P < 0.01) and Smad7 and AH3 protein contents were elevated in liver fibrotic rats (P < 0.01). Moreover, immumohistochemistry showed that SAHA significantly suppressed the α-SMA protein content in fibrotic liver (P < 0.01). CONCLUSION: The HDAC inhibitor SAHA alleviated liver fibrosis by suppressing the TGF-ß1 signaling.

15.
Trends Biochem Sci ; 43(10): 806-817, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30041839

RESUMO

Chemical topology has emerged as one intriguing feature in protein engineering. Nature demonstrates the elegance and power of protein topology engineering in the unique biofunctions and exceptional stabilities of cyclotides and lasso peptides. With entangling protein motifs and genetically encoded peptide-protein chemistry, artificial proteins with complex topologies, including cyclic proteins, star proteins, and protein catenanes, have become accessible. Among them, proteins with mechanical bonds ('mechanoproteins') are of special interest, owing to their potential functional benefits such as structure stabilization, quaternary structure control, synergistic multivalency effect, and dynamic mechanical sliding/switching properties. In this review article, we summarize recent progress in the field of protein topology engineering as well as the challenges and opportunities that it holds.

16.
Med Sci Monit ; 24: 4602-4609, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29970875

RESUMO

BACKGROUND How to speed the recovery of viable myocardium in chronic total occlusion (CTO) patients after revascularization is still an unsolved problem. Breviscapine is widely used in cardiovascular diseases. However, there has been no study focused on the effect of breviscapine on viable myocardium recovery and left ventricular remodeling after CTO revascularization. MATERIAL AND METHODS We propose to recruit 78 consecutive coronary artery disease (CAD) patients with CTO during a period of 12 months. They will be randomly assigned to receive either breviscapine (40 mg) or placebo in the following 12 months. Blood tests, electrocardiogram, and Major Adverse Cardiac Events (MACE) will be collected at baseline and the follow-up visits at 1, 3, 6, 9, and 12 months. Low-dose dobutamine MRI will be applied for the assessment of viable myocardium, microcirculation perfusion, and left ventricular remodeling, and the concentrations of angiogenic cytokine, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) will be investigated at baseline and at 1- and 12-month follow-up. The recovery of viable myocardium after revascularization in CTO patients was the primary endpoint. Improvement of microcirculation perfusion, left ventricular remodeling, peripheral concentrations of VEGF and bFGF as well as MACE will be the secondary endpoints. RESULTS Breviscapine treatment obviously improve the recovery of viable myocardium, myocardial microcirculation perfusion, and left ventricular remodeling after revascularization in CTO patients, and reduce the occurrence of MACE. We also will determine if breviscapine increases the peripheral blood angiogenic cytokine concentrations of VEGF and bFGF. CONCLUSIONS This study will aim to demonstrate the effect of breviscapine on the recovery of viable myocardium and left ventricular remodeling in CTO patients after revascularization.


Assuntos
Oclusão Coronária/terapia , Flavonoides/administração & dosagem , Revascularização Miocárdica/métodos , Remodelação Ventricular/efeitos dos fármacos , Oclusão Coronária/tratamento farmacológico , Oclusão Coronária/cirurgia , Método Duplo-Cego , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Miocárdio , Estudos Prospectivos , Projetos de Pesquisa , Resultado do Tratamento , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/patologia
17.
Mediators Inflamm ; 2018: 7859601, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725271

RESUMO

The purpose of this study was to investigate the protective mechanism of HDAC2 inhibitor CAY10683 on intestinal mucosal barrier in acute liver failure (ALF). In order to establish ALF-induced intestinal epithelial barrier disruption models, D-galactosamine/LPS and LPS were, respectively, used with rats and NCM460 cell and then administrated with CAY10683. Transepithelial electrical resistance (TEER) was measured to detect the permeability of cells. Real-time PCR and Western blotting were employed to detect the key mRNA and protein levels. The intestinal epithelial tissue pathology was detected. After interfering with CAY10683, the mRNA and protein levels of TLR4, MyD88, TRIF, and TRAF6 were decreased compared with model group (P < 0.05), whereas the levels of ZO-1 and occluding were elevated (P < 0.05). The permeability was elevated in CAY10683-interfered groups, when compared with model group (P < 0.05). And the degree of intestinal epithelial tissue pathological damage in CAY10683 group was significantly reduced. Moreover, CAY10683 significantly decreased the TLR4 staining in animal tissue. The HDAC2 inhibitor CAY10683 could promote the damage of intestinal mucosal barrier in ALF through inhibiting LPS/TLR4/MyD88 pathway.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galactosamina/toxicidade , Histona Desacetilase 2/antagonistas & inibidores , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Falência Hepática Aguda/induzido quimicamente , Ratos , Reação em Cadeia da Polimerase em Tempo Real
18.
MBio ; 9(3)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739899

RESUMO

The precursors of the diffusible signal factor (DSF) family signals of Xanthomonas campestris pv. campestris are 3-hydroxyacyl-acyl carrier protein (3-hydroxyacyl-ACP) thioesters having acyl chains of 12 to 13 carbon atoms produced by the fatty acid biosynthetic pathway. We report a novel 3-oxoacyl-ACP reductase encoded by the X. campestris pv. campestris XCC0416 gene (fabG2), which is unable to participate in the initial steps of fatty acyl synthesis. This was shown by the failure of FabG2 expression to allow growth at the nonpermissive temperature of an Escherichia colifabG temperature-sensitive strain. However, when transformed into the E. coli strain together with a plasmid bearing the Vibrio harveyi acyl-ACP synthetase gene (aasS), growth proceeded, but only when the medium contained octanoic acid. In vitro assays showed that FabG2 catalyzes the reduction of long-chain (≥C8) 3-oxoacyl-ACPs to 3-hydroxyacyl-ACPs but is only weakly active with shorter-chain (C4, C6) substrates. FabG1, the housekeeping 3-oxoacyl-ACP reductase encoded within the fatty acid synthesis gene cluster, could be deleted in a strain that overexpressed fabG2 but only in octanoic acid-supplemented media. Growth of the X. campestris pv. campestris ΔfabG1 strain overexpressing fabG2 required fabH for growth with octanoic acid, indicating that octanoyl coenzyme A is elongated by X. campestris pv. campestrisfabH Deletion of fabG2 reduced DSF family signal production, whereas overproduction of either FabG1 or FabG2 in the ΔfabG2 strain restored DSF family signal levels.IMPORTANCE Quorum sensing mediated by DSF signaling molecules regulates pathogenesis in several different phytopathogenic bacteria, including Xanthomonas campestris pv. campestris DSF signaling also plays a key role in infection by the human pathogen Burkholderia cepacia The acyl chains of the DSF molecules are diverted and remodeled from a key intermediate of the fatty acid synthesis pathway. We report a Xanthomonas campestris pv. campestris fatty acid synthesis enzyme, FabG2, of novel specificity that seems tailored to provide DSF signaling molecule precursors.

19.
Biomacromolecules ; 19(7): 2700-2707, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29768002

RESUMO

Protein immobilization is critical to utilize their unique functions in diverse applications. Herein, we report that orthogonal peptide-protein chemistry enabled multilayer construction can facilitate the incorporation of various folded structural domains, including calmodulin in different states, affibody, and dihydrofolate reductase (DHFR). An extended conformation is found to be the most advantageous for steady film growth. The resulting protein thin films exhibit sensitive and selective responsive behaviors to biosignals, such as Ca2+, trifluoperazine, and nicotinamide adenine dinucleotide phosphate (NADPH), and fully maintain the catalytic activity of DHFR. The approach is applicable to different substrates such as hydrophobic gold and hydrophilic silica microparticles. The DHFR enzyme can be immobilized onto silica microparticles with tunable amounts. The multilayer setup exhibits a synergistic enhancement of DHFR activity with increasing numbers of bilayers and also makes the embedded DHFR more resilient to lyophilization. Therefore, this is a convenient and versatile method for protein immobilization with potential benefits of synergistic enhancement in enzyme performance and resilience.

20.
Neurochem Res ; 43(6): 1161-1170, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29675728

RESUMO

Neuroinflammation involves in the progression of many central nervous system diseases. Several studies have shown that histone deacetylase (HDAC) inhibitors modulated inflammatory responses in lipopolysaccharide (LPS) stimulated microglia. While, the mechanism is still unclear. The aim of present study was to investigate the effect of HDAC2 inhibitor CAY10683 on inflammatory responses and TLR4/NF-κB signaling pathways in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. The effect of CAY10683 on cell viability of BV2 microglial cells was detected by CCK-8 assay. The expressions of inflammatory cytokines were analyzed by western blotting and RT-PCR respectively. The TLR4 protein expression was measured by western blotting, immunofluorescence, immunohistochemistry respectively. The protein expressions of MYD88, phospho-NF-κB p65, NF-κB-p65, acetyl-H3 (AH3), H3, and HDAC2 were analyzed by western blotting. We found that CAY10683 could inhibit expression levels of inflammatory cytokine TNF-α and IL-1ß in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. It could induce TLR4, MYD88, phospho-NF-κB p65, and HDAC2 expressions. Moreover, CAY10683 increased the acetylation of histones H3 in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. Taken together, our findings suggested that HDAC2 inhibitor CAY10683 could suppress neuroinflammatory responses and TLR4/NF-κB signaling pathways by acetylation after LPS stimulation.


Assuntos
Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Linhagem Celular , Histona Desacetilase 2/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA