Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 179(Pt A): 108769, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31574450

RESUMO

Excessive nitrogen (N) input is one of the most important causative factors of lake eutrophication, which has aroused increasing public attention in past decades. Estrogen contamination is also an increasing environmental problem in aquatic systems around the world. Although both substances usually co-exist in aquatic ecosystems, many researches have only investigated the influences of either N or estrogen individually on sediment bacterial community and nitrous oxide (N2O) emission. Knowledge regarding the combined effects of N and estrogen is still very limited. In this study, a 30-day laboratory incubation experiment was performed to examine the impacts of different N sources (ammonium and nitrate) combined with 17ß-estradiol (E2) on sediment bacterial community. High-throughput 16S rRNA gene sequencing technique was used and N2O emission was measured. The results revealed that the relative abundances of Proteobacteria and Bacteroidetes were higher in nitrate treatment than ammonium treatment. Compared to N treatments, N and E2 combined treatments showed higher relative abundances of Proteobacteria, Bacteroidetes, and Firmicutes, but lower relative abundances of Chloroflexi, Acidobacteria, and Actinobacteria over entire incubation period. At the genus level, the relative abundances of genera Flavobacterium, Pseudomonas, Arenimonas, Novosphingobium, Massilia, Aquabacterium, and Bacillus were enhanced by N treatments and especially N and E2 combined treatments, compared to sediment without addition of N and E2. However, the relative abundances of Sporacetigenium, Gaiella, Desulfatiglans, Nitrospira, and Haliangium were decreased in N treatments. Apart from the changes in bacterial community structure, N2O emission was also influenced by different treatments. Nitrate exerted a more significant positive effect on N2O emission than ammonium, and the cumulative emission of N2O was highest in nitrate and E2 combined treatment. Very low abundances of ammonia monooxygenase (amoA) gene and hydroxylamine oxidase (hao) gene were observed in sediments compared to other genes involved in N cycles (such as nitrate reductase (narG and napA) genes, nitrite reductase (nirB, nirK, and nrfA) genes, and nitric oxide reductase (norB) gene), implying that denitrification rather than nitrification played an important role in sediments. The abundances of napA, nirK, and norB were higher in N and E2 combined treatments, indicating that E2 might provide a carbon source for denitrifiers. Moreover, decrease in the abundance of nitrous oxide reductase (nosZ) gene during the denitrifying process in N and E2 combined treatment might be an important reason for increases of N2O emission. These results indicated that alterations of the bacterial community structure due to the co-existence of N and E2 could also change the abundances of genes involved in N cycle.

2.
Br J Cancer ; 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570753

RESUMO

BACKGROUND: The extracellular matrix (ECM) is essential for malignant tumour progression, as it is a physical barrier to various kinds of anticancer therapies. Matrix metalloproteinase (MMPs) can degrade almost all ECM components, and macrophages are an important source of MMPs. Studies using macrophages to treat tumours have shown that macrophages can enter tumour tissue to play a regulatory role. METHODS: We modified macrophages with a designed chimeric antigen receptor (CAR), which could be activated after recognition of the tumour antigen HER2 to trigger the internal signalling of CD147 and increase the expression of MMPs. RESULTS: Although CAR-147 macrophage treatment did not affect tumour cell growth in vitro compared with control treatment. However, we found that the infusion of CAR-147 macrophages significantly inhibited HER2-4T1 tumour growth in BALB/c mice. Further investigation showed that CAR-147 macrophages could reduce tumour collagen deposition and promote T-cell infiltration into tumours, which were consistent with expectations. Interestingly, the levels of the inflammatory cytokines TNF-α and IL-6, which are key factors in cytokine release syndrome, were significantly decreased in the peripheral blood in CAR-147 macrophage-transfused mice. CONCLUSION: Our data suggest that targeting the ECM by engineered macrophages would be an effective treatment strategy for solid tumours.

3.
J Biomol Struct Dyn ; : 1-11, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31496428

RESUMO

In the mammalians, the 4b-4c loop of excitatory amino acid transporters (EAATs) spans more than 50 amino-acid residues that are absent in glutamate transporter homologue of Pyrococcus horikoshii (GltPh). This part of insertion is unique for metazoans and indispensable to the localization of EAATs. The excitatory amino acid transporter (EAAT) 1 is one of the two glial glutamate transporters, which are responsible for efficiently clearing glutamate from the synaptic cleft to prevent neurotoxicity and cell death. Although the crystal structure of EAAT1cryst (a human thermostable EAAT1) was resolved in 2017, the structure-function relationship of the 4b-4c loop has not been elucidated in EAAT1cryst. To investigate the role of the 4b-4c loop, we performed alanine-scanning mutagenesis in the mutants and observed dramatically decreased transport activities in T192A, Y194A, N242A, and G245A mutants. The surface expression of T192A and Y194A mutants even decreased by more than 80%, and most of them were detained in the cytoplasm. However, when T192 and Y194 were substituted with conservative residues, the transport activities and the surface expressions of T192S and Y194F were largely recovered, and their kinetic parameters (Km values) were comparable to the wild-type EAAT1 as well. In contrast, N242 and G245 substituted with conservative residues could not rescue the uptake function, suggesting that N242 and G245 may play irreplaceable roles in the glutamate uptake process. These results indicate that the 4b-4c loop of EAAT1 may not only affect the glutamate uptake activity, but also influence the surface localization of EAAT1 by T192 and Y194. Communicated by Ramaswamy H. Sarma.

4.
Cancer Cell ; 36(3): 250-267.e9, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526758

RESUMO

How lymphoma cells (LCs) invade the brain during the development of central nervous system lymphoma (CNSL) is unclear. We found that NF-κB-induced gliosis promotes CNSL in immunocompetent mice. Gliosis elevated cell-adhesion molecules, which increased LCs in the brain but was insufficient to induce CNSL. Astrocyte-derived CCL19 was required for gliosis-induced CNSL. Deleting CCL19 in mice or CCR7 from LCs abrogated CNSL development. Two-photon microscopy revealed LCs transiently entering normal brain parenchyma. Astrocytic CCL19 enhanced parenchymal CNS retention of LCs, thereby promoting CNSL formation. Aged, gliotic wild-type mice were more susceptible to forming CNSL than young wild-type mice, and astrocytic CCL19 was observed in both human gliosis and CNSL. Therefore, CCL19-CCR7 interactions may underlie an increased age-related risk for CNSL.

5.
Hum Cell ; 32(4): 504-514, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493246

RESUMO

The objective of this study was to examine the function of the long non-coding RNA (lncRNA) HOXA11-AS in hepatocellular carcinoma (HCC). In total, samples from liver tumor and surrounding normal liver tissues were collected from 66 cases of HCC patients. Normal liver cell line HL-7702 and HCC cell lines HepG2, Hep3B, MHCC-97H and BEL7402 were used. Cells were transfected with different small interference RNAs or vectors. Then, transwell assay, qRT-PCR, CHIP, RIP and Western blot experiments were performed. We found that the HOXA11-AS expression level was higher in HCC samples than surrounding normal liver tissues. And the higher expression level of HOXA11-AS in HCC patients indicated a lower 5-year survival rate. Knockdown of HOXA11-AS in HepG2 and Hep3B cells caused impaired cell invasion and migration abilities. Otherwise, upregulation of HOXA11-AS in MHCC-97H and BEL7402 cells displayed higher invasion and migration capabilities. We also demonstrated that HOXA11-AS could inhibit miR-124 expression by binding to EZH2. Furthermore, overexpression of miR-124 or knockdown EZH2 expression could reverse the HOXA11-AS-induced migration and invasion effects in HCC cells. In summary, the high HOXA11-AS expression in HCC patients is associated with the poor outcome. HOXA11-AS could inhibit miR-124 expression by binding to EZH2 and thus promoted the migration and invasion of HCC cells.

6.
Injury ; 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31378539

RESUMO

PURPOSE: The purpose of this study is to retrospect and summarize clinical efficacy and experience of the free perforator flap base on the superficial palmar branch of the radial artery for tissue defect reconstruction in hand. METHOD: 17 patients who underwent tissue defect in hands reconstruction by the free superficial palmar branch of the radial artery (SPBRA) perforator flaps in our department from July 2014 to October 2018 were reviewed. RESULTS: All the flaps in our series application were survival uneventful except one, which was necrosis because of venous thrombosis postoperative 5 days, and then the abdominal pedicle flap was executed to recover the defect in second stage. The first dorsal metacarpal artery flap and the arterial venous flap were utilized to cover the defect in one right index finger and one right ring finger due to the absence variation of the SPBRA. 2 cases presented tension vesicle of superficial skin and 1 case occurred venous congestion. All donor sites were closed primarily. The follow-up period means 13.5 months (range, 4-50 months). The static 2 point discrimination test mean 7.53 mm (range, 4-11 mm). All flaps acquire protective feeling at the latest follow-up. The self-assessment of patients: 13 cases in good, 4 cases in fair. CONCLUSION: The goal of physiological reconstruction and esthetic effect can be achieved for hand tissue defect by the free SPBRA perforator flap, multiple tissues of the flap can be contained according to the defect. Even though the SPBRA is variation, arterial venous flap could be applied thanks to abundant superficial cutaneous veins.

7.
J Cardiothorac Surg ; 14(1): 130, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272459

RESUMO

BACKGROUND: There are no unanimous reports on different layouts and classifications of multi-hole secundum atrial septal defects (MHASD) and subsequent standardized occlusion techniques. The MHASD can be isolated or cribriform with variable inter-defects distance. In this retrospective study, experience-based classification and two approaches-based occlusion results are presented. METHODS: We retrospectively collected and analyzed data of 150 MHASD patients from 1320 patients who underwent atrial septal defect occlusion in our institute. The MHASD patients were categorized into 4 types; type A, B, C and D and occluded under exclusive transesophageal echocardiographic guidance. According to different types, 122 patients were occluded using peratrial approach and 28 patients via percutaneous approach. In type A, single device implantation is performed to occlude the large hole and squeeze the small one. For type B single or double-device deployment was performed depending on an inter-defects distance. In type C and D, a patent foramen-ovale (PF) device was selectively positioned to the central defect to occlude the central defect and cover the peripheral ones. In peratrial approach, 8 patients underwent inter-defects septal puncture technique to achieve single-device occlusion. The intracardiac manipulation time, procedural time, double device deployment, redeployment rate, residual shunt, and proportions were analyzed between (and within peratrial technique) two techniques. RESULTS: Successful occlusion was achieved in all 150 patients. Single device occlusion was applied in 78/84 type A and 22/37 type B patients (p < 0.05). Double device occlusion was more applicable to type B than A patients (p < 0.01). Sixteen of 21 type C and all type D patients used PF device for a satisfactory occlusion. Redeployment of the device occurred frequently in type B patients than A (p < 0.01). The intracardiac manipulation time and procedural time were shorter in type A than B (p < 0.05). The intracardiac manipulation time was also shortened in type A peratrial than type A percutaneous group (p < 0.05). Complete occlusion rate for all patients at discharge was 70% and rose to 82% at 1 year follow up. CONCLUSIONS: The diverse layouts and classification of MHASDs can help to choose different techniques and proper devices of different kinds to achieve better occlusion results.

8.
Sci Total Environ ; 690: 50-60, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284194

RESUMO

Deep-water reservoir sediment is a unique habitat sheltering indispensable microorganisms and facilitating their biogeochemical functions; however, the assembly processes of the microbial community therein remain elusive. This study focuses on the assembly processes in the Three Gorges Reservoir Area (TGRA). A total of 42 sediment samples were collected from the TGRA, both in the mainstream and the tributaries, and in different seasons. Metagenomic analyses of 16S rRNA using Exact Sequence Variants revealed the spatiotemporal distribution patterns of the microbial communities. Linear regressions between dissimilarity of microbial communities, geographic and environmental distance showed that environmental, rather than geographic factors, impacted the microbial community. However, the environmental differences explained little variations (14.14%) in community structure, implying the homogeneity of environmental conditions across the TGRA. From the quantification of ecological processes, homogeneous selection was shown to be a dominating factor (51.34%) in the assembly of the microbial communities. The co-occurrence network showed that keystone species were more important than prevalent abundant species in interspecies interactions. Overall, the assembly of microbial community in the deep-water reservoir sediment is mediated by both deterministic and stochastic processes, and homogeneous selection plays a leading role.

9.
Chemosphere ; 237: 124382, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31352097

RESUMO

The occurrence and transportation of phthalate esters in biofilms from natural and engineered sources have attracted considerable research interest. However, little information is available highlighting the responses of multi-species biofilms in terms of their physicochemical structure and bacterial community induced by phthalate esters. Di-(2-ethylhexyl) phthalate (DEHP), a model phthalate eater, was selected to treat multi-species biofilm aggregates, including an attached biofilm from a moving bed bioreactor (MBBR), a periphytic biofilm from a natural source and activated sludge in short-term exposure experiments (120 h). The production of extracellular polymeric substances (EPS) from the three biofilms initially decreased and then slightly increased after exposure to DEHP, consistent with the variation of the most dominant fluorescent compounds consisting of humic-acid-like organic substances. The MBBR and periphytic biofilms secreted more fluorescence compounds than the activated sludge during the exposure period. The organic matter in the EPS was converted into smaller molecules, while limited variation was observed in the functional groups and secondary protein structures. Acinetobacter and Bacillus demonstrated significant increases and were likely the key genera responsible for DEHP degradation. The combined use of spectral, chromatographic and sequencing analyses indicated that the periphytic biofilm was more resistant to DEHP, possibly owing to the presence of more mature assemblages, including cells with higher metabolic activity and a higher diversity within the bacterial community. This study provides insights into the microstructural and bacterial responses of multi-species biofilms following exposure to phthalate esters, and provides important guidance for bioremediation of phthalate esters using periphytic biofilms.

10.
ACS Appl Mater Interfaces ; 11(29): 25691-25701, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31264401

RESUMO

The greatest bottleneck for photothermal antibacterial therapy could be the difficulty in heating the infection site directly and specifically to evade the unwanted damage for surrounding healthy tissues. In recent years, infectious microenvironments (IMEs) have been increasingly recognized as a crucial contributor to bacterial infections. Here, based on the unique IMEs and rhenium trioxide (ReO3) nanocubes (NCs), a new specific photothermal antibacterial strategy is reported. These NCs synthesized by a rapid and straightforward space-confined on-substrate approach have good biocompatibility and exhibit efficient photothermal antibacterial ability. Especially when they are utilized in antibiofilm, the expression levels of biofilm-related genes (icaA, fnbA, atlE, and sarA for Staphylococcus aureus) can be effectively inhibited to block bacterial adhesion and formation of biofilm. Importantly, the ReO3 NCs can transform into hydrogen rhenium bronze (HxReO3) in an aqueous environment, making them relatively stable within the low pH of IMEs for photothermal therapy, while rapidly degradable within the surrounding healthy tissues to decrease photothermal damage. Note that under phosphate-buffered saline (PBS) at pH 7.4 without assistant conditions, these ReO3 NCs have the highest degradation rate among all known degradable inorganic photothermal nanoagents. This special and IME-sensitive selective degradability of the ReO3 NCs not only facilitates safe, efficient, and specific elimination of implant-related infections, but also enables effective body clearance after therapy. Solely containing the element (Re) whose atomic number is higher than clinic-applied iodine in all reported degradable inorganic photothermal nanoagents under the PBS (pH 7.4) without any assistant condition, the ReO3 NCs with high X-ray attenuation ability could be further applied to X-ray computed tomography imaging-guided therapy against implant-related infections. The present work described here is the first to adopt degradable inorganic photothermal nanoagents to achieve specific antibacterial therapy and inspires other therapies on this concept.

11.
Water Res ; 161: 98-107, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31181451

RESUMO

Identifying vertical and horizontal assemblage drivers of bacterial community is important for improving the efficacies of ecological evaluation and remediation for a huge contaminated river (e.g. black-odor urban river). However, little is known about the effect of stochastic vs. deterministic processes on the reliability of the identification processes. Here, a comprehensive analysis was performed to reveal vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river (total area of 4.23 km2 and total length of 9.3 km), considering the relative importance of stochastic and deterministic processes. Heterogeneous bacterial community assemblages were observed in both vertical and horizontal profiles and the differences in the bacterial community between depths were relatively significant at genus level. The higher values for the Simpson dissimilarity index (horizontal ßSIM = 0.59 ±â€¯0.02; vertical ßSIM = 0.48 ±â€¯0.03) compared to the nestedness-resultant dissimilarity index (horizontal ßNES = 0.05 ±â€¯0.02; vertical ßNES = 0.05 ±â€¯0.05) showed that species replacement explained both the vertical and horizontal beta-diversity patterns. Comparison of horizontal and vertical Sørensen dissimilarity indices further indicated that the biodiversity of vertical community deserved more attention due to the shorter geographical distance with similar beta-diversity patterns compared to horizontal assemblages. Various traditional analysis without consideration for phylogenetic turnover revealed that TN, TP, NH4+-N, DO, ORP, Conductivity and CODMn were all the related environmental factors that influenced bacterial community. However, after taking stochastic vs. deterministic processes into account, only NH4+-N and ORP were identified as the main driving forces of trends in the vertical and in the horizontal assembly of bacterial community in the polluted urban river, respectively. This study is helpful for improving ecological assessment methodology and remediation strategy for contaminated urban rivers.

12.
Lab Chip ; 19(14): 2346-2355, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31232418

RESUMO

Nanoscale extracellular vesicles (nEVs) have recently demonstrated potential value in cancer diagnostics and treatment monitoring, but translation has been limited by technical challenges in nEV isolation. Thus, we have developed a one-step nEV isolation platform that utilizes nEV size-matched silica nanostructures and a surface-conjugated lipid nanoprobe with an integrated microfluidic mixer. The reported platform has 28.8% capture efficiency from pancreatic cancer plasma and can sufficiently enrich nEVs for simpler positive identification of point mutations, particularly KRAS, in nEV DNA from the plasma of pancreatic cancer patients.

13.
Environ Sci Technol ; 53(13): 7504-7512, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31184870

RESUMO

Waterborne diseases related to unsafe water are still major threats to public health in some developing countries and rural areas. Providing affordable and safe drinking water globally remains a great challenge in the coming decades. In this study, we develop a high-throughput and conductive silver nanowire (AgNW)-modified composite filter via depositing thin and ultralong AgNWs on a macroporous substrate. An electrochemical filtration cell (EFC) equipped with the composite filter achieves controllable Ag+ release at a µg L-1 level and superior bacterial inactivation performance (>6-log inactivation efficiency) with an operation voltage of only 1 V at a high flux of 100 m3 h-1 m-2. Under such operation conditions, each composite filter (effective area: 0.79 cm2) can treat at least 750 mL of the bacterial suspension (∼107 CFU mL-1 of Escherichia coli) with a low effluent Ag+ concentration below 50 µg L-1 and almost negligible energy consumption of only ∼70 J m-3.


Assuntos
Nanofios , Purificação da Água , Desinfecção , Filtração , Prata
14.
Artigo em Inglês | MEDLINE | ID: mdl-31181868

RESUMO

Knowledge on the distribution of nitrogen (N) pools, processes, and fluxes along hydrological gradients provides a comprehensive perspective to understand the underlying causal mechanisms in intertidal flats, and thus improve predictions and climate adaptation strategies. We used a space-for-time substitution method to quantify N pools, processes, and fluxes along a hydrological gradient. Further, we linked N pools and processes and investigated not only surface but also subsurface sediments. Our results showed a gradual decrease in total N (TN) and mineralization rates (PNmin), but an increase in potential rates of nitrification (PNR) and denitrification (PDNR) under an elevated hydrological gradient, except for TN and PNmin in the subsurface sediment, which accumulated on the interaction zone between the high and middle tidal flats. Most sedimentary ammonium N (NH4+) and nitrate N (NO3-) concentrations were similar; however, NH4+ accumulated on the subsurface of the middle tidal flat. NO3- fluxes (from -0.54 to -0.35 mmol m-2 h-1) were uptake fluxes in the intertidal flats, but NH4+ fluxes (-2.48-3.54 mmol m-2 h-1) changed from uptake to efflux in the seaward direction. Structural equation modeling of the effects of inundation frequency, underground biomass, total carbon (TC), electrical conductivity (EC), and clay proportion on the N processes revealed that these accounted for 67%, 82%, and 17% of the variance of PDNR, PNmin, and PNR, respectively. Inundation frequency, underground biomass, TC, EC, and PNmin effects on N pools accounted for 53%, 69%, and 98% of the variance of NH4+, NO3-, and TN, respectively. This suggests that future sea level rise may decrease N storage due to increase in coupled nitrification-denitrification and decrease in N mineralization, and the NH4+ flux may change from sink to source in intertidal ecosystems.


Assuntos
Estuários , Nitrogênio , Áreas Alagadas , Biomassa , Carbono , Clima , Desnitrificação , Ecossistema , Sedimentos Geológicos/química , Hidrologia , Nitratos/análise , Nitrificação , Nitrogênio/análise , Ciclo do Nitrogênio
15.
Sensors (Basel) ; 19(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035640

RESUMO

The traditional passive azimuth estimation algorithm using two hydrophones, such as cross-correlation time-delay estimation and cross-spectral phase estimation, requires a high signal-to-noise ratio (SNR) to ensure the clarity of the estimated target trajectory. This paper proposes an algorithm to apply the frequency diversity technique to passive azimuth estimation. The algorithm also uses two hydrophones but can obtain clear trajectories at a lower SNR. Firstly, the initial phase of the signal at different frequencies is removed by calculating the cross-spectral density matrix. Then, phase information between frequencies is used for beamforming. In this way, the frequency dimension information is used to improve the signal processing gain. This paper theoretically analyzes the resolution and processing gain of the algorithm. The simulation results show that the proposed algorithm can estimate the target azimuth robustly under the conditions of a single target (SNR = -16 dB) and multiple targets (SNR = -10 dB), while the cross-correlation algorithm cannot. Finally, the algorithm is tested by the swell96 data and the South Sea experimental data. When dealing with rich frequency signals, the performance of the algorithm using two hydrophones is even better than that of the conventional broadband beamforming of the 64-element array. This further validates the effectiveness and advantages of the algorithm.

16.
J Hazard Mater ; 373: 572-579, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952002

RESUMO

To achieve zero liquid discharge, the flue-gas-desulfurization (FGD) wastewater at coal-fired power plants can be concentrated into brine through thermal evaporation to maximize water reuse; however, the hot brine generated requires further treatment prior to disposal. To address this need, this study investigates the performance of aged, micron-sized zero-valent iron (ZVI) for heavy metal removal in simulated and real FGD hot brines, which was scarcely studied previously. The effects of temperature, pH, total dissolved solids, ZVI dosage, major cations, nitrate and sulfate on the reactivity of ZVI in the brines were evaluated. Among many factors, higher temperature and Mg2+ exert the dominant influence. At 80 °C, almost 100% of arsenate (1 mg/L) and chromate (1 mg/L) can be removed in <5 min using 4.17 g/L of ZVI in simulated brines, while selenate (25 mg/L) and cadmium (5 mg/L) can be completely removed within 30 min. Mg2+ ions naturally present in FGD brines account for the depassivation of aged ZVI. X-ray diffraction results suggest that green rust is the reactive intermediate for selenate and cadmium removal. Overall, this study demonstrates that ZVI is an effective material for removing heavy metals in hot FGD brines generated through thermal evaporation at power plants.

17.
Nanotechnology ; 30(33): 335701, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995631

RESUMO

The iron oxide-based anode materials are widely studied and reported due to their abundance, low cost, high energy density and environmental friendliness for lithium ion batteries (LIBs). However, the application of LIBs is always limited by the poor rate capability and stability. In order to tackle these issues, a novel material with carbon-encapsulated Fe3O4 nanorods stuck together by multilevel porous carbon (Fe3O4@C/PC) is prepared through directly carbonizing the Fe-based metal-organic framework under a nitrogen atmosphere. This novel material shows a high specific capacity and rate performance. The initial specific capacity can reach 1789 mAh g-1 at a current density of 0.1 A g-1, and the specific capacity still remains 1105.3 mAh g-1 and 783.5 mAh g-1 after 150 cycles at the current densities of 0.1 A g-1 and 1 A g-1, respectively. Even under a current density as high as 12 A g-1, the specific capacity can achieve 309 mAh g-1 after 2000 cycles with an average attenuation rate of 0.019% per cycle. Overall, the simple strategy, low cost and high capacity can make the practical application possible.

18.
Clin Appl Thromb Hemost ; 25: 1076029619846562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31025571

RESUMO

Cancer-associated thrombosis (CAT) studies have increased in recent years and the quality of guidelines to guide the clinical practice of CAT prevention and treatment becomes crucial. The therapy status of new oral anticoagulants (NOACs) has been established in some thrombotic diseases, but the evidence for CAT remains unconvincing. The aim of this research is to evaluate the quality of CAT guidelines and discuss the role of NOAC in CAT. A search of articles was performed using PubMed/Medline, Chinese National Knowledge Infrastructure, and other authoritative websites. Search terms included guideline or guidance, consensuses, cancer, and thrombosis. Appraisal of Guidelines for Research & Evaluation II (AGREE II) tool was used to evaluate the qualities of the guidelines. A total of 19 guidelines were screened out and evaluated, of which 8 were recommended, 5 were recommended after revision, and 6 were not recommended. For prevention and treatment of CAT, low-molecular-weight heparin is the most recommended, followed by vitamin K antagonist, unfractionated heparin, fondaparinux, and aspirin. New oral anticoagulant is optional in some cases of CAT treatment. Based on AGREE II assessment tool, the quality of CAT guidelines is inconsistent. Attention should be drawn to the quality of CAT guidelines during clinical practice. The role of NOAC in the treatment of CAT is gradually established but requires more supporting evidence from future clinical trials.

19.
Res Vet Sci ; 124: 256-262, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30999161

RESUMO

Interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of proteins strongly induced downstream of type I interferon signaling. The function of IFITs has been investigated extensively in mammals. IFIT5 is the sole protein in this family found in birds and little information is available about the function of avian IFIT5. In this study, duck IFIT5 was cloned from peripheral blood mononuclear cells. Multiple amino acid sequence alignment and phylogenetic analysis showed that duck IFIT5 is highly homologous to chicken IFIT5. Tissue specificity analysis demonstrated that duck IFIT5 was ubiquitously expressed in all examined tissues of five-day-old ducklings, with the highest expression levels in heart, followed by thymus, cerebrum, liver, and lung; kidney expressed the lowest. Quantitative real-time PCR (qRT-PCR) analysis revealed that duck IFIT5 expression rapidly increased both in vitro and in vivo after stimulation with polyinosinic:polycytidylic acid [poly (I:C)] and infection with virulent duck hepatitis A virus type 3 (DHAV-3), respectively. Altogether, these results indicate that the expression of duck IFIT5 is positively correlated with viral load and may play an important role in the immune response to DHAV-3 infection. This study lays a foundation for further research into the innate antiviral immune responses of ducklings.


Assuntos
Patos/genética , Patos/imunologia , Proteínas de Neoplasias/genética , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/imunologia , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sequência de Bases , Clonagem Molecular , Vírus da Hepatite do Pato/fisiologia , Hepatite Viral Animal/imunologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fases de Leitura Aberta , Filogenia , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/veterinária , Poli I-C/farmacologia , Doenças das Aves Domésticas/imunologia , Alinhamento de Sequência
20.
Sci Total Environ ; 668: 815-824, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30870750

RESUMO

An amorphous sodium titanate (ST) nano-particle was prepared via the facile hydrolytic process with the addition of sodium hydroxide and firstly used for ammonia nitrogen (NH3-N) removal from wastewater. ST exhibited satisfactory adsorption efficiency for NH3-N simulative wastewater (20 mg·L-1) at a wide range of pH 3.0-9.0, within a minimum contact time of 10 min. The Langmuir isotherm showed that the maximum adsorption capacity (298 K) of the adsorbent was reach up to 44.54 mg·g-1. Concentrated competing cations had some interferences with NH3-N adsorption at the order of Ca2+ > K+ > Mg2+ > Na+ according to their competition on adsorption sites. During the adsorption process, cation exchange between Na+ and NH4+ played a powerful role for the NH3-N removal and the contribution of Ti-OH groups was also involved in the adsorption. The regeneration test showed that the saturated adsorbents could be conveniently regenerated just by NaOH or NaCl solution treatment and there was no obvious decline of the adsorption capacity after reused for five times. The facile method of fabrication and regeneration, the rapid adsorption process and the satisfactory adsorption efficiency make sodium titanate a promising adsorbent for low concentration NH3-N minimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA