Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.978
Filtrar
1.
Environ Res ; : 113698, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35779618

RESUMO

Due to extreme toxicity of the element of thallium (Tl), increasing aqueous Tl pollution incidents have aroused growing concerns. As the prevalent and stable form, i.e., monovalent Tl, the highly efficient removal methodologies of Tl(I) from (waste)water remains limited and challenging. In this study, an advanced oxidation method, the feasibility of using zero valent iron (Fe0) coupled with persulfate (PS) to treat Tl(I)-containing synthetic wastewater was investigated. Its influence parameters, including reaction time, initial Tl concentration, dosages of PS and Fe0, initial and coagulation pH, temperature, coexisting ions and organic matter (NO3-, SO42-, Cl- and HA) were examined. The results revealed that the system can be applied to a wide range of pH and temperature and the reaction equilibrium can be reached in about 30 min. Favorable Tl(I) removal rate (>98%) was observed in the synthetic wastewater with medium and relatively high Tl(I) concentration (≤0.250 mM). The analyses of characterization results including electron spin resonance spectrometer and X-ray photoelectron spectroscopy indicated that ·OH played a vital role in the removal of Tl(I), which was oxidized and removed by co-precipitation. Fe0 can be served as a stable source of Fe2+ to efficiently catalyze PS. The remaining Fe0 can be easily separated because of its magnetism, assuring the promising reusability of the reactant. The study aims to provide references for treatment of real Tl polluted wastewater.

3.
Inflamm Bowel Dis ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700276

RESUMO

BACKGROUND: Tofacitinib is an oral, small-molecule JAK inhibitor for the treatment of ulcerative colitis (UC). Using a novel electronic reporting tool, we aimed to prospectively describe the onset of tofacitinib efficacy during induction therapy in a real-world study. METHODS: Patient-reported outcome data (PROs) including the simple clinical colitis activity index (SCCAI), PRO Measurement Identification Systems (PROMIS) measures, and adverse events were collected daily for the first 14 days and at day 28 and 56. Paired t tests and P for trend were utilized to compare changes in SCCAI over time. Bivariate analyses and logistic regression models were performed to describe response (SCCAI <5) and remission (SCCAI ≤2) by clinical factors. RESULTS: Of all included patients (n = 96), 67% had failed ≥2 biologics, and 61.5% were on concomitant steroids. Starting at day 3, PROs showed significant and persistent decline of the mean SCCAI (-1.1, P < 000.1) including significantly lower SCCAI subscores for stool frequency (-0.3; P < .003), bleeding (-0.3; P < .0002) and urgency (-0.2; P < .001). Steroid-free remission at day 14, 28, and 56 was achieved in 25%, 30.2%, and 29.2% of patients, respectively. Neither prior biologics nor endoscopic severity were independently predictive of response or remission in multivariate models. Numeric improvements in all PROMIS measures (anxiety, depression, social satisfaction) were seen through day 56. Rates of discontinuation due to adverse events were low. CONCLUSIONS: In this prospective real-world study, tofacitinib resulted in a rapid and persistent improvement in UC disease activity PROs. The safety findings were consistent with the established safety profile of tofacitinib.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35715388

RESUMO

Highly-polarizable materials are favorable for photoelectric conversion due to their efficient charge separation, while precise design of them is still a big challenge. Herein a novel polar oxyselenide, Sr6Cd2Sb6O7Se10, is rationally designed. It contains lateral sublattices of polarizable [Sb2OSe4]4- chains and highly-orientated [CdSe3]4- chains. The intense polarization was evaluated by significant second-harmonic generation (SHG) signal (maximum: 12.6×AgGaS2) in broad spectrum range. The polarization was found to mainly improve the carrier separation with a much longer recombination lifetime (76.5 µs) than that of the nonpolar compound Sr2Sb2O2Se3 (18.0 µs), resulting in better photoelectric performance. The single-crystal photoelectric device exhibited excellent response covering broad spectrum in 500-1000 nm with stable reproducibility. This work provides some new insights into the structure design of highly-polarizable heteroanionic materials for photoelectric conversion.

5.
Adv Healthc Mater ; : e2201038, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670380

RESUMO

Bimodal synergistic therapy produces superadditive effect for enhanced therapeutic efficacy. However, how to efficiently and simultaneously deliver several kinds of therapeutic agents is still challenging. A cancer cell membrane-derived nanocarrier (mCas9-sGNRs) is proposed for synergistic photothermal/gene therapy (PTT/GT) by efficient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) and gold nanorods (GNRs). In this approach, Cas9 proteins can be efficiently loaded inside the cell membranes (mCas9) by electrostatic interactions. Similarly, single-guide RNAs, which target survivin, can be loaded onto GNRs (sGNRs) through electrostatic interactions and encapsulated by mCas9. As a result, the nanodelivery systems present advantages in biocompatibility, homologous targeting capacity and loading efficiency of cargoes. In addition, significant antitumor effects is achieved by gene editing of survivin which induces anticancer activity and reduces heat tolerance of cancer cells caused by GNRs mediated PTT due to the downregulation of HSP70. These results indicate the nanotherapeutic platform leads to enhanced PTT/GT efficacy. Therefore, this work not only provides a general strategy to construct a versatile nanoplatform for loading and target delivery of several therapeutic cargos but will also be valuable for PTT/GT and other bimodal synergistic therapy.

6.
Materials (Basel) ; 15(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744323

RESUMO

Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.

7.
Nano Lett ; 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35763414

RESUMO

Synthetic biology has promoted the development of microbial therapy, but the scope of applicable microbial species is limited and transgenic microorganisms also display safety risks for in vivo applications. Interestingly, symbiotic microorganisms in nature can achieve functional updates by metabolic cooperation. Here, we report on a nongenetic method for engineering microorganisms to construct a heavy metal ion reduction system, which was prepared by linking Shewanella oneidensis MR-1 (SO) and Lactobacillus rhamnosus GG (LGG). SO could reduce metal ions but is limited by finite substrates in vivo. LGG could metabolize glucose to lactate as a substrate for SO, promoting extracellular electron transfer by SO and heavy metal ion reduction. Meanwhile, SO could generate electron donor cytochrome C to promote metabolism of LGG, forming metabolic synergy and circulation between these two bacteria. The SO-LGG system shows splendid ability to remove heavy metal ions and inflammatory modulation in acute or chronic heavy metal poisoning.

8.
Plant J ; 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648423

RESUMO

Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.

9.
Signal Transduct Target Ther ; 7(1): 190, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739093

RESUMO

Long-term use of antipsychotics is a common cause of myocardial injury and even sudden cardiac deaths that often lead to drug withdrawn or discontinuation. Mechanisms underlying antipsychotics cardiotoxicity remain largely unknown. Herein we performed RNA sequencing and found that NLRP3 inflammasome-mediated pyroptosis contributed predominantly to multiple antipsychotics cardiotoxicity. Pyroptosis-based small-molecule compound screen identified cannabinoid receptor 1 (CB1R) as an upstream regulator of the NLRP3 inflammasome. Mechanistically, antipsychotics competitively bond to the CB1R and led to CB1R translocation to the cytoplasm, where CB1R directly interacted with NLRP3 inflammasome via amino acid residues 177-209, rendering stabilization of the inflammasome. Knockout of Cb1r significantly alleviated antipsychotic-induced cardiomyocyte pyroptosis and cardiotoxicity. Multi-organ-based investigation revealed no additional toxicity of newer CB1R antagonists. In authentic human cases, the expression of CB1R and NLRP3 inflammasome positively correlated with antipsychotics-induced cardiotoxicity. These results suggest that CB1R is a potent regulator of the NLRP3 inflammsome-mediated pyroptosis and small-molecule inhibitors targeting the CB1R/NLRP3 signaling represent attractive approaches to rescue cardiac side effects of antipsychotics.


Assuntos
Antipsicóticos , Cardiotoxicidade , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor CB1 de Canabinoide , Antipsicóticos/efeitos adversos , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/genética , Receptor CB1 de Canabinoide/metabolismo
10.
Bioorg Med Chem ; 68: 116881, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716587

RESUMO

Click chemistry is a hot topic in many research fields. A biocompatible reaction from fireflies has attracted increasing attention since 2009. Herein, we focus on the firefly-sourced click reaction between cysteine (Cys) and 2-cyanobenzothiazole (2-CBT). This reaction has many excellent properties, such as rapidity, simplicity and high selectivity, which make it successfully applied in protein labeling, molecular imaging, drug discovery and other fields. Meanwhile, its unique ability to form nanoparticles expands its applications in biological systems. We review its principle, development, and latest applications in the past 5 years and hope this review provides more profound and comprehensive insights to its further application.


Assuntos
Química Click , Cisteína , Cisteína/química , Imagem Molecular , Proteínas
11.
Dev Cell ; 57(12): 1496-1511.e6, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35675813

RESUMO

Diabetic patients show elevated plasma IL18 concentrations. IL18 has two receptors: the IL18 receptor (IL18r) and the Na-Cl co-transporter (NCC). Here, we report that IL18 is expressed on islet α cells, NCC on ß cells, and IL18r on acinar cells in human and mouse pancreases. The deficiency of these receptors reduces islet size, ß cell proliferation, and insulin secretion but increases ß cell apoptosis and exocrine macrophage accumulation after diet-induced glucose intolerance or streptozotocin-induced hyperglycemia. Together with the glucagon-like peptide-1 (GLP1), IL18 uses the NCC and GLP1 receptors on ß cells to trigger ß cell development and insulin secretion. IL18 also uses the IL18r on acinar cells to block hyperglycemic pancreas macrophage expansion. The ß cell-selective depletion of the NCC or acinar-cell-selective IL18r depletion reduces glucose tolerance and insulin sensitivity with impaired ß cell proliferation, enhanced ß cell apoptosis and macrophage expansion, and inflammation in mouse hyperglycemic pancreas. IL18 uses NCC, GLP1r, and IL18r to maintain islet ß cell function and homeostasis.


Assuntos
Células Secretoras de Insulina , Interleucina-18 , Pâncreas , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-18/metabolismo , Camundongos , Pâncreas/citologia , Pâncreas/metabolismo
12.
Anal Chem ; 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729689

RESUMO

Homogeneous and high-density immobilization of proteins on gold-based sensing surface without the loss of protein activity is of great significance for high-performance immunosensing but remains challenging. To realize more sensitive immunosensing, an improved method for protein immobilization on the gold surface is urgently required. Here, we propose a biological and mild approach by combining a genetically encoded SpyTag-SpyCatcher interaction system with a redesigned S-layer of bacteria. This method allows proteins of interest to be covalently linked with the S-layer in a biological manner and arranged orderly in a two-dimensional nanoarray on the gold surface. The activity of African swine fever virus proteins was significantly preserved after immobilization. In addition, our S-layer-based immobilization method exhibited an eightfold increase in detection sensitivity compared with the conventional chemical cross-linking for protein immobilization during serological tests. Together, our S-layer-based immobilization method provides an innovative approach for building a quality gold-based biosensing interface and should greatly contribute to the high-sensitivity sensing for a deeper understanding of pathogen infection and host immunity.

13.
Langmuir ; 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730995

RESUMO

As a nanozyme, gold nanoparticles have some advantages compared with natural enzymes, such as stable structure, adjustable catalytic activity, multifunctionality, and recyclability. Due to their special dimension, they are easy to aggregate rapidly and lose their catalytic performance when exposed to normal saline or special pH environment. To avoid such a situation, Au@PNIPAm nanozymes with core-shell structure are constructed and their mimic peroxidase and glucose oxidase enzymatic activities are investigated. Kinetic examinations manifest that Au@PNIPAm nanozymes exhibited a high affinity for 3,3,5,5-tetramethylbenzidine (TMB), hydrogen peroxide (H2O2), and glucose. These predominant peroxidase-like and glucose-like oxidase Au@PNIPAm catalytic activities are successfully used in the detection of H2O2 or glucose (LOD is 2.43 mM or 5.07 mM). Otherwise, the potential Au@PNIPAm nanozymes are provided with a clear ability for decomposing the intracellular H2O2 in living cells. And it could protect cells from oxidative stress damage with inducing by H2O2. Therefore, it is easy to consider that Au@PNIPAm nanozymes show a certain possibility to retard cell senescence and increase the production of the hydroxyl radical which could prevent carcinogenesis of the cell.

14.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1191-1198, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730076

RESUMO

To analyze the effects of forest edge on radial growth and cell characteristics in different stand types of Larix principis-rupprechtii, we investigated the differences on radial growth, cell size and numbers between edge trees and inner trees of L. principis-rupprechtii in pure L. principis-rupprechtii forests and mixed forests of L. principis-rupprechtii and Betula platyphylla in Saihanba mechanical forest farm, China. The results showed that radial growth of the edge trees was significantly faster than that of the inner trees in pure forests, with the total ring width, earlywood width and latewood width of edge trees being 48.9%, 58.9% and 29.6% higher than those of inner trees, respectively. However, there was no difference in radial growth between edge trees and inner trees in mixed forest. The total number of earlywood cells, the number of large cells and small cells in earlywood of edge trees were increased by 63.3%, 55.6% and 70.0%, while the total number of latewood cells, the number of large cells and small cells in latewood of edge trees were increased by 35.4%, 37.5% and 28.5% compared with those of inner trees. There was no significant difference in the cell sizes between edge trees and inner trees. The cell numbers of earlywood and latewood of edge trees were not significantly different from those of inner trees in mixed forest, but the cell size in the earlywood of edge trees was 50.0% larger than those of inner trees in mixed forest. The sizes of the largest cells, the smallest cells, the large cells and the small cells in the earlywood of edge trees were increased by 28.6%, 33.3%, 16.6% and 25.0% compared with those of inner trees, respectively. The fast growth of edge trees and slow growth of inner trees in the pure forests could be effectively alleviated by cultivating mixed forests.


Assuntos
Larix , Betula , China , Florestas , Árvores
15.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743161

RESUMO

Stigma color is an important morphological trait in many flowering plants. Visual observations in different field experiments have shown that a green stigma in melons is more attractive to natural pollinators than a yellow one. In the current study, we evaluated the characterization of two contrasted melon lines (MR-1 with a green stigma and M4-7 with a yellow stigma). Endogenous quantification showed that the chlorophyll and carotenoid content in the MR-1 stigmas was higher compared to the M4-7 stigmas. The primary differences in the chloroplast ultrastructure at different developmental stages depicted that the stigmas of both melon lines were mainly enriched with granum, plastoglobulus, and starch grains. Further, comparative transcriptomic analysis was performed to identify the candidate pathways and genes regulating melon stigma color during key developmental stages (S1-S3). The obtained results indicated similar biological processes involved in the three stages, but major differences were observed in light reactions and chloroplast pathways. The weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) uncovered a "black" network module (655 out of 5302 genes), mainly corresponding to light reactions, light harvesting, the chlorophyll metabolic process, and the chlorophyll biosynthetic process, and exhibited a significant contribution to stigma color. Overall, the expression of five key genes of the chlorophyll synthesis pathway-CAO (MELO03C010624), CHLH (MELO03C007233), CRD (MELO03C026802), HEMA (MELO03C011113), POR (MELO03C016714)-were checked at different stages of stigma development in both melon lines using quantitative real time polymerase chain reaction (qRT-PCR). The results exhibited that the expression of these genes gradually increased during the stigma development of the MR-1 line but decreased in the M4-7 line at S2. In addition, the expression trends in different stages were the same as RNA-seq, indicating data accuracy. To sum up, our research reveals an in-depth molecular mechanism of stigma coloration and suggests that chlorophyll and related biological activity play an important role in differentiating melon stigma color.


Assuntos
Cucumis melo , Cucurbitaceae , Clorofila , Cucumis melo/genética , Cucurbitaceae/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma
16.
Mol Cancer ; 21(1): 129, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690859

RESUMO

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Humanos , Prognóstico
17.
J Mater Chem B ; 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666635

RESUMO

Tumor-triggered targeting ammonium bicarbonate (TTABC) liposomes were proposed to improve the uptake of ammonium bicarbonate (ABC) liposomes in tumor cells and retain their long circulation in vivo in our previous study. However, it must be solved how to precisely release the loaded drugs of the TTABC liposomes into tumor cells. In addition, synergistic multimodal therapy could result in better tumor treatment outcomes than monomodal chemotherapy. In the research, we prepared indocyanine green (ICG) and doxorubicin (DOX) encapsulated TTABC liposomes (ICG&DOX@TTABC) to achieve near-infrared (NIR) light-controlled chemo/photothermal/photodynamic multimodal therapy guided by fluorescence and photothermal imaging. In vitro and vivo studies show that ICG&DOX@TTABC can specifically accumulate in tumor tissues, effectively transform NIR light into local thermo-therapy, and have excellent anti-tumor ability without obvious side effects. ICG&DOX@TTABC could be promising for fluorescence and photothermal imaging-guided chemo/photothermal/photodynamic tumor treatment.

18.
Sensors (Basel) ; 22(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684608

RESUMO

Bridges and subgrades are the main route forms for expressways. The ideal form for passing through sandy areas remains unclear. This study aims to understand the differences in the influence of expressway bridges and subgrades on the near-surface blown sand environment and movement laws, such as the difference in wind speed and profile around the bridge and subgrade, the difference in wind flow-field characteristics, and the difference in sand transport rate, to provide a scientific basis for the selection of expressway route forms in sandy areas. Therefore, a wind tunnel test was carried out by making models of a highway bridge and subgrade and comparing the environmental effects of wind sand on them. The disturbance in the bridge to near-surface blown sand activities was less than that of the subgrade. The variation ranges of the wind speed of the bridge and its upwind and downwind directions were lower than those of the subgrade. However, the required distance to recover the wind speed downwind of the bridge was greater than that of the subgrade, resulting in the sand transport rate of the bridge being lower than that of the subgrade. The variation in the wind field of the subgrade was more drastic than that of the bridge, but the required distance to recover the wind field downwind of the bridge was greater than that of the subgrade. In the wind speed-weakening area upwind, the wind speed-weakening range and intensity of the bridge were smaller than those of the subgrade. In the wind speed-increasing area on the top of the model, the wind speed-increasing range and intensity of the bridge were smaller than those of the subgrade. In the wind-speed-weakening area downwind, the wind speed weakening range of the bridge was greater than that of the subgrade, and the wind speed-weakening intensity was smaller than that of the subgrade. This investigation has theoretical and practical significance for the selection of expressway route forms in sandy areas.


Assuntos
Areia
19.
Environ Res ; 213: 113650, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690091

RESUMO

Investigating the contribution and associations of environmental microbes to ecological health and human well-being is in great demand with the goal of One Health proposed. To achieve the goal, there is an urgent need for accurate approaches to obtaining a large amount of high-resolution molecular information from various microbes. In this study, we developed a high-throughput library construction chip (HiLi-Chip) for profiling environmental microbial communities and evaluated its performance. The HiLi-Chip showed high conformity with the conventional Pacbio method in terms of α-diversity, community composition of abundant bacteria (>83%), as well as rare taxa (>84%) and human pathogens detection (>67%), indicating its advantages of accuracy, high-throughput, cost-efficiency, and broad practicability. It is suggested that the optimal strategy of the HiLi-Chip was a 2.4 µL PCR mixture per sample (∼2.4 ng DNA) with a 216-sample × 24-replicate format. We have successfully applied the HiLi-Chip to the Jiulongjiang River and identified 51 potential human bacterial pathogens with a total relative abundance of 0.22%. Additionally, under limited nutrients and similar upstream environments, bacteria tended to impose competitive pressures, resulting in a more connected network at the downstream river confluence (RC). Whereas narrow niche breadth of bacteria and upstream environmental heterogeneity probably promoted niche complementary and environment selection leading to fewer links at RC in the midsection of the river. Core bacteria might represent the entire bacterial community and enhance network stability through synergistic interactions with other core bacteria. Collectively, our results demonstrate that the HiLi-Chip is a robust tool for rapid comprehensive profiling of microbial communities in environmental samples and has significant implications for a profound understanding of environmental microbial interactions.

20.
Front Physiol ; 13: 888643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721532

RESUMO

The pupal diapause of univoltine Antheraea pernyi hampers sericultural and biotechnological applications, which requires a high eclosion incidence after artificial diapause termination to ensure production of enough eggs. The effect of pupal diapause termination using 20-hydroxyecdysone (20E) on the eclosion incidence has not been well-documented in A. pernyi. Here, the dosage of injected 20E was optimized to efficiently terminate pupal diapause of A. pernyi, showing that inappropriate dosage of 20E can cause pupal lethality and a low eclosion incidence. The optimal ratio of 20E to 1-month-old pupae was determined as 6 µg/g. Morphological changes showed visible tissue dissociation at 3 days post-injection (dpi) and eye pigmentation at 5 dpi. Comprehensive transcriptome analysis identified 1,355/1,592, 494/203, 584/297, and 1,238/1,404 upregulated and downregulated genes at 1, 3, 6, and 9 dpi, respectively. The 117 genes enriched in the information processing pathways of "signal transduction" and "signaling molecules and interaction" were upregulated at 1 and 3 dpi, including the genes involved in FOXO signaling pathway. One chitinase, three trehalase, and five cathepsin genes related to energy metabolism and tissue dissociation showed high expression levels at the early stage, which were different from the upregulated expression of four other chitinase genes at the later stage. Simultaneously, the expression of several genes involved in molting hormone biosynthesis was also activated between 1 and 3 dpi. qRT-PCR further verified the expression patterns of two ecdysone receptor genes (EcRB1 and USP) and four downstream response genes (E93, Br-C, ßFTZ-F1, and cathepsin L) at the pupal and pharate stages, respectively. Taken together, these genes serve as a resource for unraveling the mechanism underlying pupal-adult transition; these findings facilitate rearing of larvae more than once a year and biotechnological development through efficient termination of pupal diapause in A. pernyi in approximately half a month.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...