Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
J Mater Sci Mater Med ; 31(5): 48, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32405818

RESUMO

BACKGROUND: Skin injury is a kind of common tissue damage in daily life and war. Silk fibroin (SF) is becoming an engineered material for skin wound repair due to its superior unique physical and chemical properties. The present study aimed to illustrate mechanism of SF hydrogel promoting skin repair in the second degree burn mice. METHODS: Heat shock models were established. In vitro, cells were culture for 50 min at 44 °C water bath; while in vivo, the skin of anesthetic mice were treat with soldering iron at 90 °C. Then, they divided into silk fibroin gel group, purilon gel group and control (blank) group. The cellular activity of proliferation and apoptosis was detected by Kit-8, flow cytometry and HE-staining, and the migration and adhesion were detected by scratch test. qRT-PCR and WB were employed to detected adhesion and migration related genes and proteins expression. TLN1 siRNA and overexpression technologies were also employed to illustrate the potential mechanism of SF effects. RESULTS: Compared with the purilon gel group and control group, SF hydrogel could enhance cell proliferation, migration and adhesion and increase the expression of adhesion and migration related proteins (P < 0.05), which promote burn wound healing. CONCLUSIONS: Through the inhibition, overexpression and rescue experiments of Talin1, we proved that silk fibroin hydrogel promote burn wound healing through regulating TLN1 expression and affecting cell adhesion and migration.

2.
Nature ; 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380511

RESUMO

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the corona virus disease 2019 (COVID-19) cases in China and has become a public health emergency of international concern1. Because angiotensin-converting enzyme 2 (ACE2) is the cell entry receptor of SARS-CoV5, we used transgenic mice bearing human ACE2 and infected with SARS-CoV-2 to study the pathogenicity of the virus. Weight loss and virus replication in lung were observed in hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of significant macrophages and lymphocytes into the alveolar interstitium, and accumulation of macrophages in alveolar cavities. Viral antigens were observed in the bronchial epithelial cells, macrophages and alveolar epithelia. The phenomenon was not found in wild-type mice with SARS-CoV-2 infection. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. The mouse model with SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutics and vaccines as well as understanding the pathogenesis of COVID-19.

3.
Sci Total Environ ; 732: 139282, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32413621

RESUMO

The outbreak of COVID-19 has spreaded rapidly across the world. To control the rapid dispersion of the virus, China has imposed national lockdown policies to practise social distancing. This has led to reduced human activities and hence primary air pollutant emissions, which caused improvement of air quality as a side-product. To investigate the air quality changes during the COVID-19 lockdown over the YRD Region, we apply the WRF-CAMx modelling system together with monitoring data to investigate the impact of human activity pattern changes on air quality. Results show that human activities were lowered significantly during the period: industrial operations, VKT, constructions in operation, etc. were significantly reduced, leading to lowered SO2, NOx, PM2.5 and VOCs emissions by approximately 16-26%, 29-47%, 27-46% and 37-57% during the Level I and Level II response periods respectively. These emission reduction has played a significant role in the improvement of air quality. Concentrations of PM2.5, NO2 and SO2 decreased by 31.8%, 45.1% and 20.4% during the Level I period; and 33.2%, 27.2% and 7.6% during the Level II period compared with 2019. However, ozone did not show any reduction and increased greatly. Our results also show that even during the lockdown, with primary emissions reduction of 15%-61%, the daily average PM2.5 concentrations range between 15 and 79 µg m-3, which shows that background and residual pollutions are still high. Source apportionment results indicate that the residual pollution of PM2.5 comes from industry (32.2-61.1%), mobile (3.9-8.1%), dust (2.6-7.7%), residential sources (2.1-28.5%) in YRD and 14.0-28.6% contribution from long-range transport coming from northern China. This indicates that in spite of the extreme reductions in primary emissions, it cannot fully tackle the current air pollution. Re-organisation of the energy and industrial strategy together with trans-regional joint-control for a full long-term air pollution plan need to be further taken into account.

4.
Gene ; 751: 144706, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32387386

RESUMO

Skeletal muscle, the most abundant and plasticity tissue in mammals, is essential for various functions such as movement, breathing, maintaining posture and metabolism. Myogenesis is a complex and precise process, which is regulated by the sequential expression of multiple transcription factors, and accumulating evidence have confirmed that multiple lncRNAs are involved in muscle development as the important transcriptional regulator. In this study, a novel lncRNA, named lnc403 was obtained, with a full-length 2689 bp, which had poor coding ability and was mainly expressed in the nucleus of myoblasts and myotubes. The expression of lnc403 was significantly different in the proliferation and differentiation stages of muscle cells. Then we successfully constructed lnc403 loss/gain-function cell models by transfecting silnc403 and pCDNA3.1-EGFP-lnc403 into satellite cells, respectively; and found that lnc403 inhibited skeletal muscle satellite cell differentiation but had no significant effect on cell proliferation, either in the case of lnc403 knockdown or overexpression. In order to further screen the target factors regulated by lncRNA in the process of myogenic differentiation, the RNA-pull down, mass spectrometry and bioinformatics analysis were performed. The results showed that lnc403 negatively regulated the expression of the adjacent gene Myf6 and positively regulated interaction proteins KRAS expression. The above results indicate that lnc403 affects skeletal muscle cell differentiation by affecting the expression of nearby genes and interacting proteins, implying lnc403 might participate in the bovine myoblasts differentiation through multi-pathway network regulation mode. This study provides a new perspective for further understanding of the regulation mechanism of lncRNAs on bovine myogenic process.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32303548

RESUMO

Humans have used high-salinity for the production of bean-based fermented foods over thousands of years. Although high-salinity can inhibit the growth of harmful microbes and select functional microbiota in an open environment, it also affects fermentation efficiency of bean-based fermented foods and has a negative impact on people's health. Therefore, it is imperative to develop novel defined starter cultures for reduced-salt fermentation in a sterile environment. Here, we explored the microbial assembly and function in the fermentation of traditional Chinese broad bean paste with 12% salinity. The results revealed that the salinity and microbial interactions together drove the dynamic of community, and pointed out that five dominant genera (Staphylococcus, Bacillus, Weissella, Aspergillus and Zygosaccharomyces) may play different key roles in different fermentation stages. Then, core species were isolated from broad bean paste, and their salinity tolerance, interaction and metabolic characteristics were evaluated. The results provided an opportunity to validate in situ predictions through in vitro dissection of microbial assembly and function. Last, we reconstructed the synthetic microbial community with five strains (A. oryzae, B. subtilis, S. gallinarum, W. confusa and Z. rouxii) under different salinity, and realized efficient fermentation of broad bean paste for 6 weeks in a sterile environment with 6% salinity. In general, this work provided a bottom-up approach for the development of simplified microbial community model with desired functions to improve the fermentation efficiency of bean-based fermented foods by deconstructing and reconstructing the microbial structure and function.IMPORTANCE Humans have mastered high-salinity fermentation technique for the bean-based fermented products preparation over thousands of years. The high salinity was used to select the functional microbiota and conducted food fermentation production with unique flavor. Although high salinity environment is beneficial for suppressing harmful microbes in the open fermentation environment, the fermentation efficiency of functional microbes is partially inhibited. Therefore, application of defined starter cultures for reduced-salt fermentation in a sterile environment is an alternative approach to improve the fermentation efficiency of bean-based fermented foods and guide the transformation of traditional industry. However, the assembly and function of self-organized microbiota in an open fermentation environment are still unclear. This study provided a comprehensive understanding of microbial function and the mechanism of community succession in a high-salinity environment during the fermentation of broad bean paste, so as to reconstruct the microbial community and realize efficient fermentation of broad bean paste in a sterile environment.

6.
Biomed Res Int ; 2020: 6301697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280693

RESUMO

Objective: To investigate the therapeutic effect of combined application of Wuweizi (Schisandrae Chinensis Fructus) and dexamethasone in rats with idiopathic pulmonary fibrosis (IPF) and the possible protective effect of Wuweizi against dexamethasone-induced glucocorticoid osteoporosis (GIOP). Methods: There were five groups in this study, including the sham operation group, model group, Wuweizi group, dexamethasone group, and the combination group. A rat IPF model was made by the endotracheal injection of bleomycin. After modeling, rats were given drug interventions for 7 and 28 days. Rats were sacrificed for pathological morphology examination of the bone and lung and quantitative determination of biochemical markers of bone metabolism and angiogenesis-related cytokine to observe therapeutic efficacy on the 7th and 28th day. ELISA was used for the quantitative determination of tartrate-resistant acid phosphatase (TRACP), bone alkaline phosphatase (BALP), hypoxia-inducible factor (HIF-1α), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), and endostatin in serum. The concentrations of calcium (Ca) and phosphorus (P) were detected with the automatic biochemical analyzer. Results: After drug interventions for 7 and 28 days, alveolitis and pulmonary fibrosis in treatment groups showed significant improvement compared with those in the model group (P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (α), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), and endostatin in serum. The concentrations of calcium (Ca) and phosphorus (P) were detected with the automatic biochemical analyzer. P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (P < 0.05). Bone histopathological figures showed severely damaged trabecular bone and bone marrow cavity in the dexamethasone group, but it was significantly alleviated in the combination group. The concentrations of BALP and Ca in the combination group were significantly higher than those in the dexamethasone group after treatment, while the concentrations of TRACP and P were lower than those in the dexamethasone group (α), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), and endostatin in serum. The concentrations of calcium (Ca) and phosphorus (P) were detected with the automatic biochemical analyzer. Conclusions: The combination therapy of Wuweizi and dexamethasone effectively treated IPF rats by regulating angiogenesis, meanwhile distinctly alleviating dexamethasone-induced GIOP.

7.
Cell Host Microbe ; 27(4): 601-613.e7, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32272078

RESUMO

Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.

8.
Curr Microbiol ; 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32306114

RESUMO

Strain 16W4-4-3 T was isolated from the oil-well production water in Qinghai Oilfield, China. Cells were Gram-stain-negative, rod-shaped, catalase- and oxidase-positive, facultatively anaerobic and motile by single polar flagellum. The 16S rRNA gene sequences of strain 16W4-4-3 T showed the highest similarities with Pseudomonas profundi M5T (98.8%), P. pelagia CL-AP6T (98.0%), P. salina XCD-X85T (97.7%), and P. sabulinigri J64T (97.5%). The phylogenetic trees based on multilocus sequence analyses with concatenating 16S rRNA, gyrB, rpoD and rpoB genes suggested that this strain should be affiliated to the genus Pseudomonas but remotely related from other species. In addition, whole genome analyses revealed that the digital DNA-DNA hybridization values and average nucleotide identities of strain 16W4-4-3 T against its close relatives were all below 28.8% and 86.5%, respectively. Furthermore, the isolate had totally different whole cell protein profile as compared to those of other species. Major fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C17:0cyclo. Major isoprenoid quinone was ubiquinone (Q-9), and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The DNA G + C content was 58.5 mol%. Therefore, phenotypic, phylogenetic, genomic, chemotaxonomic, and proteomic traits showed that the isolate represented a novel species of the genus Pseudomonas, the name Pseudomonas saliphila sp. nov. is proposed. Type strain is 16W4-4-3 T (= CGMCC 1.13350 T = KCTC 72619 T).

9.
Biomater Sci ; 8(8): 2308-2317, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32186291

RESUMO

Overlapping substrate specificities within the family of matrix metalloproteinases (MMPs), usually caused by their highly conserved structural topology, increase the potential for a substrate to be cleaved by multiple enzymes within this family, which leads to the decrease in the selectivity of MMP substrate-based probes. To resolve this issue, MT1-MMP activatable fluorogenic probes for tumor detection with enhanced specificity were developed by combining a fluorescence resonance energy transfer (FRET) peptide substrate and its specific binding peptide with different lengths of linkers. The specificity of the probes increased profiting from the high affinity of the MT1-MMP specific binding peptide while keeping the ability to amplify the output imaging signals in response to MMP activity with the FRET substrate. Enzyme kinetics analysis clearly demonstrated that the conjugation of P-1 and MT1-AF7p enhanced both the specificity and selectivity of the fluorogenic probes for MT1-MMP, and introducing a linker composed of 12 PEG subunits into these two fragments led to optimized specificity and selectivity of the fluorogenic probe for MT1-MMP. Both in vitro and in vivo results revealed that the imaging probe with the linker composed of 12 PEG subunits based on our designed strategy could be effectively applied for MT1-MMP positive tumor imaging. Since this strategy for enhancing the specificity of protease sensing probes can be applied to other proteases and is not just limited to MT1-MMP, it is an appealing platform to achieve selective tumor imaging.

10.
11.
Mol Ecol Resour ; 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32198971

RESUMO

Crassostrea hongkongensis is a popular and important native oyster species that is cultured mainly along the coast of the South China Sea. However, the absence of a reference genome has restricted genetic studies and the development of molecular breeding schemes for this species. Here, we combined PacBio and 10 × Genomics technologies to create a C. hongkongensis genome assembly, which has a size of 610 Mb, and is close to that estimated by flow cytometry (~650 Mb). Contig and scaffold N50 are 2.57 and 4.99 Mb, respectively, and BUSCO analysis indicates that 95.8% of metazoan conserved genes are completely represented. Using a high-density linkage map of its closest related species, C. gigas, a total of 521 Mb (85.4%) was anchored to 10 haploid chromosomes. Comparative genomic analyses with other molluscs reveal that several immune- or stress response-related genes extensively expanded in bivalves by tandem duplication, including C1q, Toll-like receptors and Hsp70, which are associated with their adaptation to filter-feeding and sessile lifestyles in shallow sea and/or deep-sea ecosystems. Through transcriptome sequencing, potential genes and pathways related to sex determination and gonad development were identified. The genome and transcriptome of C. hongkongensis provide valuable resources for future molecular studies, genetic improvement and genome-assisted breeding of oysters.

12.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(1): 44-49, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32148230

RESUMO

OBJECTIVE: To investigate the relationship between serum cholinesterase (SChE) level and the prognosis of patients with septic shock (SS). METHODS: A total of 594 patients with SS admitted to the First Affiliated Hospital of Zhengzhou University from June 2013 to June 2017 were enrolled. General data such as gender, age, acute physiology and chronic health evaluation II (APACHE II) score were recorded as well as routine blood test, procalcitonin (PCT), hepatic function, renal function, coagulation function and blood gas analysis parameters within 48 hours of SS diagnosis. The patients were followed by telephone from September to October in 2019, and the outcome was recorded. The primary outcome was all-cause death 28 days after discharge. The secondary outcomes were all-cause death in intensive care unit (ICU) and 2 years after discharge, and the length of ICU stay. The patients were divided into two groups according to prognosis of 28 days: the survival group and the death group. The clinical data of the two groups were compared. Multivariate Cox regression analysis was used to screen prognostic risk factors of 28 days in patients with SS. The receiver operating characteristic (ROC) curve was used to explore predictive value of liver function parameter SChE for 28-day prognosis of patients with SS. The patients were divided into two groups according to the levels of SChE: the low SChE group (SChE ≤ 4 000 U/L) and the normal SChE group (SChE > 4 000 U/L). Kaplan-Meier survival curves were used to compare the cumulative survival rates without endpoint event of patients with different SChE levels. RESULTS: A total of 385 patients with SS were enrolled according to the inclusion and exclusion criteria, and a total of 356 patients were followed up successfully, with a follow-up rate of 92.5% (356/385). There were 142 survival patients and 214 death patients at 28 days, with a 28-day mortality rate of 60.1% (214/356). There were 116 survival patients and 240 death patients at 2 years, with a 2-year mortality rate of 67.4% (240/356). Compared with the 28-day survival group, the patients in the death group were older and had higher APACHE II score, partial hepatic and renal function parameters, higher level of blood lactate (Lac) and lower levels of white blood cell count (WBC), platelet count (PLT) and SChE with statistically significant differences. Multivariate Cox regression analysis showed that the age [relative risk (RR) = 1.444, 95% confidence interval (95%CI) was 1.090-1.914, P = 0.010], APACHE II score (RR = 2.249, 95%CI was 1.688-2.997, P = 0.000), SChE (RR = 1.469, 95%CI was 1.057-2.043, P = 0.022), and Lac (RR = 2.190, 95%CI was 1.636-2.931, P = 0.000) were independent risk factors for 28-day mortality of patients with SS. The ROC curve analysis showed that SChE had a weak prognostic value for 28-day prognosis of patients with SS [the area under ROC curve (AUC) was 0.574]. However, the combined predictive value of SChE, APACHE II score and Lac was greater than APACHE II score or Lac alone for prediction (AUC: 0.807 vs. 0.785, 0.697), with a sensitivity of 79.9% and a specificity of 68.5%. Compared with the normal SChE group (n = 88), the 28-day mortality of patients in the low SChE group (n = 268) was significantly increased [63.1% (169/268) vs. 51.1% (45/88), P < 0.05], but ICU mortality [59.7% (160/268) vs. 48.9% (43/88)], 2-year mortality [69.8% (187/268) vs. 60.2% (53/88)] or the length of ICU stay [days: 4 (2, 7) vs. 5 (2, 9)] between the two groups showed no statistical significance (all P > 0.05). Kaplan-Meier survival curve analysis showed that the cumulative survival rate without endpoint event of patients in the low SChE group was significantly lower than that in the normal SChE group (Log-Rank test: χ2 = 5.852, P = 0.016). CONCLUSIONS: Increased risk of 28-day mortality in patients with SS whose SChE is below normal. The level of SChE is an independent risk factor for 28-day death in SS patients, and it is one of the indicators to evaluate the short-term prognosis of patients with SS.


Assuntos
Colinesterases/sangue , Choque Séptico/diagnóstico , APACHE , Humanos , Unidades de Terapia Intensiva , Prognóstico , Curva ROC , Estudos Retrospectivos , Choque Séptico/enzimologia , Choque Séptico/mortalidade
13.
Chembiochem ; 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32180310

RESUMO

Transcription terminators play a role in terminating the progress of gene transcription, and are thus essential elements in the gene circuit. Terminators have two main functions: terminating gene transcription and improving the stability of gene transcripts during translation. We therefore considered the detailed characteristics of terminators in relation to their different roles in gene transcription and translation, including transcription shut-down degree (α) and upstream mRNA protection capacity (ß), and apparent termination efficiency (η) reflecting the overall regulatory effect of the terminator. Based on a dual-reporter gene system, we constructed three terminator-probe plasmids to investigate each characteristic in Escherichia coli. According to multiple regression analysis, the transcription shut-down degree and the upstream mRNA protection capacity contributed almost equally to the apparent termination efficiency. Sequence analysis of 12 terminators demonstrated that the terminator sequence was dominated by GC bases, and that a high ratio of GC bases in the stem structure of terminators might be associated with a high degree of transcription shut-down. This comprehensive characterization of terminators furthers our understanding of the role of terminators in gene expression and provides a guide for synthetic terminator design.

14.
Theranostics ; 10(7): 2918-2929, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194844

RESUMO

Nanoparticle formulations have proven effective for cisplatin delivery. However, the development of a versatile nanoplatform for cisplatin-based combination cancer therapies still remains a great challenge. Methods: In this study, we developed a one-pot synthesis method for a microporous organosilica shell-coated cisplatin nanoplatform using a reverse microemulsion method, and explored its application in co-delivering acriflavine (ACF) for inhibiting hypoxia-inducible factor-1 (HIF-1). Results: The resulting nanoparticles were tunable, and they could be optimized to a monodisperse population of particles in the desired size range (40-50 nm). In addition, organic mPEG2000-silane and tetrasulfide bond-bridged organosilica were integrated into the surface and silica matrix of nanoparticles for prolonged blood circulation and tumor-selective glutathione-responsive degradation, respectively. After reaching the tumor sites, cisplatin induced cancer cell death and activated HIF-1 pathways, resulting in acquired drug resistance and tumor metastasis. To address this issue, ACF was co-loaded with cisplatin to prevent the formation of HIF-1α/ß dimers and suppress HIF-1 function. Hence, the efficacy of cisplatin was improved, and cancer metastasis was inhibited. Conclusion: Both in vitro and in vivo results suggested that this core-shell nanostructured cisplatin delivery system represented a highly efficacious and promising nanoplatform for the synergistic delivery of combination therapies involving cisplatin.

15.
J Ind Microbiol Biotechnol ; 47(3): 311-318, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140931

RESUMO

Glutaric acid is an important organic acid applied widely in different fields. Most previous researches have focused on the production of glutaric acid in various strains using the 5-aminovaleric acid (AMV) or pentenoic acid synthesis pathways. We previously utilized a five-step reversed adipic acid degradation pathway (RADP) in Escherichia coli BL21 (DE3) to construct strain Bgl146. Herein, we found that malonyl-CoA was strictly limited in this strain, and increasing its abundance could improve glutaric acid production. We, therefore, constructed a malonic acid uptake pathway in E. coli using matB (malonic acid synthetase) and matC (malonic acid carrier protein) from Clover rhizobia. The titer of glutaric acid was improved by 2.1-fold and 1.45-fold, respectively, reaching 0.56 g/L and 4.35 g/L in shake flask and batch fermentation following addition of malonic acid. Finally, the highest titer of glutaric acid was 6.3 g/L in fed-batch fermentation at optimized fermentation conditions.

16.
PLoS One ; 15(3): e0230580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218589

RESUMO

The spinyhead croaker (Collichthys lucidus) is a commercially important fish species, which is mainly distributed in the coastal regions of China. However, little is known about the molecular regulatory mechanism underlying reproduction in C. lucidus. A de novo transcriptome assembly in brain, liver, ovary and testis tissues of C. lucidus was performed. Illumina sequencing generated 60,322,004, 57,044,284, 60,867,978 and 57,087,688 clean reads from brain, liver, ovary and testis tissues of C. lucidus, respectively. Totally, 131,168 unigenes with an average length of 644 bp and an N50 value of 1033 bp were assembled. In addition, 1288 genes were differentially expressed between ovary and testis, including 442 up-regulated and 846 down-regulated in ovary. Functional analysis revealed that the differentially expressed genes between ovary and testis were mainly involved in the function of sexual reproduction, sex differentiation, development of primary male sexual characteristics, female gamete generation, and male sex differentiation. A number of genes which might be involved in the regulation of reproduction and sex determination were found, including HYAL and SYCP3 and BMP15. Furthermore, 35,476 simple sequence repeats (SSRs) were identified in this transcriptome dataset, which would contribute to further genetic and mechanism researches. De novo transcriptome sequencing analysis of four organs of C. lucidus provides rich resources for understanding the mechanism of reproductive development of C. lucidus and further investigation of the molecular regulation of sex determination and reproduction of C. lucidus.

17.
Drug Des Devel Ther ; 14: 603-611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32103902

RESUMO

Background: Chronic kidney disease (CKD) has become a major public health issue. Meanwhile, renal fibrosis caused by diabetic nephropathy can lead to CKD, regardless of the initial injury. It has been previously reported that silibinin or valsartan could relieve the severity of renal fibrosis. However, the effect of silibinin in combination with valsartan on renal fibrosis remains unclear. Material and Methods: Proximal tubular cells (HK-2) were treated with TGF-ß1 (5 ng/mL) to mimic in vitro model of fibrosis. The proliferation of HK-2 cells was tested by CCK-8. Epithelial-mesenchymal transition (EMT) and inflammation-related gene and protein expressions in HK-2 cells were measured by qRT-PCR and Western-blot, respectively. ELISA was used to test the level of TNF-αNF-A. Additionally, HFD-induced renal fibrosis mice model was established to investigate the effect of silibinin in combination with valsartan on renal fibrosis in vivo. Results: Silibinin significantly increased the anti-fibrosis effect of valsartan in TGF-ß1-treated HK-2 cells via inhibition of TGF-ß1 signaling pathway. Furthermore, silibinin significantly enhanced the anti-fibrosis effect of valsartan on HFD-induced renal fibrosis in vivo through inactivation of TGF-ß1 signaling pathway. Conclusion: These data indicated that silibinin markedly increased anti-fibrosis effect of valsartan in vitro and in vivo. Thus, silibinin in combination with valsartan may act as a potential novel strategy to treat renal fibrosis caused by diabetic nephropathy.

18.
Biol Trace Elem Res ; 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060730

RESUMO

It has been defined that deficiency of trace elements plays an important role in the progression of asthma. However, the relationship between blood zinc (Zn), selenium (Se), and magnesium (Mg) and pulmonary functions in children remains to be clarified. A cross-sectional study was conducted in Wuxi, China, and a total of 202 healthy children were recruited. The forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured. Blood samples were collected, and the levels of blood zinc, selenium, and magnesium were measured by inductively coupled plasma mass spectrometry (ICP-MS). Meanwhile, the concentrations of serum total IgE was also determined. The associations between trace elements and pulmonary functions were analyzed by multiple linear regression models. After stratified by sex, there was a positive association between blood Zn and pulmonary functions in boys. In addition, blood Zn was also negatively associated with serum total IgE concentrations in boys, but not in girls after adjusting for potential confounders. Our findings indicated that zinc deficiency was significantly related to children's pulmonary functions and that screening of trace elements may be a potential solution to decrease the risks of asthma in children.

20.
Nanoscale ; 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31994573

RESUMO

As a rate-determining step, electrocatalytic water oxidation acts a pivotal role in the water splitting process. As a consequence, it is of great significance to explore low-cost, efficient and durable electrocatalysts for the oxygen evolution reaction (OER) to promote electrocatalytic splitting water. Herein, for the first time, FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT matrix materials (FNM/NPCNT) are synthesized via a facile solid-phase grinding of the precursor, composed of nickel hexacyanoferrate/phosphomolybdic acid/CNT, and subsequently pyrolyzing under nitrogen atmosphere without any further post-processing. Due to its significant enhancement of the charge transfer efficiency and prevention of the metallic-based catalysts from being corroded, the as-prepared FNM/NPCNT hybrid electrocatalyst shows a high OER activity with a low overpotential of 282 mV vs. RHE at 10 mA cm-2 and a small Tafel slope of 46.2 mV dec-1 in an alkaline electrolyte. Moreover, the as-prepared FNM/NPCNT hybrid delivers a large mass activity of 327.6 A g-1 at the potential of 1.7 V and excellent stability (more than 20 h). This study opens up a new approach to design and synthesize non-precious transition metal-based composites immobilized N, P co-doped CNT materials as OER catalysts with high efficiency and long-term stability for promoting water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA