Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Carbohydr Polym ; 276: 118739, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823775

RESUMO

Adjuvants have been used in vaccines for a long time to promote the body's immune response, reducing vaccine dosage and production costs. Although many vaccine adjuvants are developed, the use in human vaccines is limited because of either limited action or side effects. Therefore, the development of new vaccine adjuvants is required. Many studies have found that natural polysaccharides derived from Traditional Chinese medicine (TCM) possess good immune promoting effects and simultaneously improve humoral, cellular and mucosal immunity. Recently polysaccharide adjuvants have attracted much attention in vaccine preparation because of their intrinsic characteristics: immunomodulation, biocompatibility, biodegradability, low toxicity and safety. This review article systematically analysed the literature on polysaccharides possessing vaccine adjuvant activity from TCM plants, such as Astragalus polysaccharide (APS), Rehmannia glutinosa polysaccharide (RGP), Isatis indigotica root polysaccharides (IRPS), etc. and their derivatives. We believe that polysaccharide adjuvants can be used to prepare the vaccines for clinical use provided their mechanisms of action are studied in detail.

2.
ACS Sens ; 6(11): 4009-4018, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757720

RESUMO

Mitochondrial membrane potential (ΔΨm) is a key indicator of cell health or injury due to its vital roles in adenosine 5'-triphosphate synthesis. Thus, monitoring ΔΨm is of great significance for the assessment of cell status, diagnosis of diseases, and medicament screening. Cationic fluorescent probes suffer from severe photobleaching or false positive signals due to the luminescence of the probe on non-mitochondria. Herein, we report a lipophilic cationic fluorescent probe [1-methyl-2-(4-(1,2,2-triphenylvinyl)styryl)-ß-naphthothiazol-1-ium trifluoromethanesulfonate (TPE-NT)] with the features of aggregation-induced emission and intramolecular charge transfer for imaging ΔΨm in live cells. TPE-NT is enriched on the surface of the mitochondrial inner membrane due to the negative ΔΨm, and its fluorescence is activated in the high-viscosity microenvironment. The false positive signals of emission from TPE-NT on non-mitochondria are therefore effectively eliminated. Moreover, TPE-NT exhibits a Stokes shift of >200 nm, near-infrared (∼675 nm) emission, excellent photostability, and low cytotoxicity, which facilitate real-time imaging in live cells. Cell imaging confirmed that the probe can rapidly and reliably report mitochondrial depolarization (decrement of ΔΨm) during cell damage caused by CCCP and H2O2 as well as mitochondrial polarization (increment of ΔΨm) by oligomycin. Furthermore, the probe successfully detected the reduction of ΔΨm in these cell models of hypoxia, heat damage, acidification, aging, inflammation, mitophagy, and apoptosis caused by hypoxia, heatstroke, lactate/pyruvate, doxorubicin, lipopolysaccharide, rapamycin, monensin, and nystatin, respectively.

3.
Front Microbiol ; 12: 719599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803940

RESUMO

Increasing evidences suggest that the gut microbiota have their contributions to the hypertension, but the metagenomic characteristics and potential regulating mechanisms in primary hypertension patients taking antihypertension drugs are not clear yet. We carried out a metagenomic analysis in 30 primary hypertension patients taking antihypertension medications and eight healthy adults without any medication. We found that bacterial strains from species, such as Bacteroides fragilis, Bacteroides vulgatus, Escherichia coli, Klebsiella pneumoniae, and Streptococcus vestibularis, were highly increased in patients; and these strains were reported to generate glycan, short-chain fatty acid (SCFA) and trimethylamine (TMA) or be opportunistic pathogens. Meanwhile, Dorea longicatena, Eubacterium hallii, Clostridium leptum, Faecalibacterium prausnitzii, and some other strains were greatly decreased in the patient group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that ortholog groups and pathways related to glycan biosynthesis and multidrug resistance were significantly increased in the patient group, and some of the hub genes related to N-glycan biosynthesis were increased in the patient group, while those related to TMA precursor metabolism and amino acid metabolism both increased and decreased in the patient group. Metabolites tested by untargeted liquid chromatography-mass spectrometry (LC-MS) proved the decrease of acetic acid, choline, betaine, and several amino acids in patients' fecal samples. Moreover, meta-analysis of recent studies found that almost all patients were taking at least one kind of drugs that were reported to regulate adenosine monophosphate-activated protein kinase (AMPK) pathway, so we further investigated if AMPK regulated the metagenomic changes by using angiotensin II-induced mouse hypertensive model on wild-type and macrophage-specific AMPK-knockout mice. We found that the changes in E. coli and Dorea and glycan biosynthesis-related orthologs and pathways were similar in our cohort and hypertensive wild-type mice but reversed after AMPK knockout. These results suggest that the gut microbiota-derived glycan, SCFA, TMA, and some other metabolites change in medication-taking primary hypertension patients and that medications might promote gut microbiota glycan biosynthesis through activating macrophage-AMPK.

4.
J Healthc Eng ; 2021: 1822776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804446

RESUMO

In this paper, we analyzed the application value and effect of deep learn-based image segmentation model of convolutional neural network (CNN) algorithm combined with 3D brain magnetic resonance imaging (MRI) in diagnosis of cerebral palsy in children. 3D brain model was segmented based on CNN algorithm to obtain the segmented MRI images of brain tissue, and the validity was verified. Then, 70 children with cerebral palsy were rolled into the observation group (n = 35), which received MRI for diagnosis after segmentation of brain tissue, and control group (n = 35), which were diagnosed by computed tomography (CT). The diagnosis results of the two groups were compared. The validity experiment verified that the image segmentation method based on CNN algorithm can obtain effective style graphics. In clinical trials, the diagnostic accuracy of 88.6% in the observation group was evidently superior to that of 80% in the control group (P < 0.05). In the observation group, one patient was diagnosed as normal, four patients had white matter lesions, 17 patients had corpus callosum lesions, and five patients had basal ganglia softening foci. In the control group, two patients were diagnosed as normal, two patients had white matter lesions, 19 patients had corpus callosum lesions, and four patients had basal ganglia softening foci. No notable difference was found between the two groups (P > 0.05). According to the research results, in the diagnosis of cerebral palsy in children, the image segmentation of brain 3D model based on CNN to obtain the MRI image of segmented brain tissue can effectively improve the detection accuracy. Moreover, the specific symptoms can be diagnosed clearly. It can provide the corresponding diagnostic basis for clinical diagnosis and treatment and was worthy of clinical promotion.

5.
J Exp Clin Cancer Res ; 40(1): 353, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753494

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Its therapy has not significantly improved during the past four decades despite intense research efforts. New molecularly targeted therapies are in great need. The proto-oncogene c-Myc (MYC) is an attractive target due to its transactivation role in multiple signaling cascades. Deregulation of the MYC is considered one of a series of oncogenic events required for tumorigenesis. However, limited knowledge is available on which mechanism underlie MYC dysregulation and how long non-coding RNAs (lncRNAs) are involved in MYC dysregulation in AML. METHODS: AML microarray chips and public datasets were screened to identify novel lncRNA GAS6-AS1 was dysregulated in AML. Gain or loss of functional leukemia cell models were produced, and in vitro and in vivo experiments were applied to demonstrate its leukemogenic phenotypes. Interactive network analyses were performed to define intrinsic mechanism. RESULTS: We identified GAS6-AS1 was overexpressed in AML, and its aberrant function lead to more aggressive leukemia phenotypes and poorer survival outcomes. We revealed that GAS6-AS1 directly binds Y-box binding protein 1 (YBX1) to facilitate its interaction with MYC, leading to MYC transactivation and upregulation of IL1R1, RAB27B and other MYC target genes associated with leukemia progression. Further, lentiviral-based GAS6-AS1 silencing inhibited leukemia progression in vivo. CONCLUSIONS: Our findings revealed a previously unappreciated role of GAS6-AS1 as an oncogenic lncRNA in AML progression and prognostic prediction. Importantly, we demonstrated that therapeutic targeting of the GAS6-AS1/YBX1/MYC axis inhibits AML cellular propagation and disease progression. Our insight in lncRNA associated MYC-driven leukemogenesis may contribute to develop new anti-leukemia treatment strategies.

6.
Anal Chem ; 93(44): 14900-14906, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34714045

RESUMO

Acetylcholinesterase (AChE) plays crucial roles in the nervous system, and thus the reliable assay of its activity is of great significance for the diagnosis of nervous diseases. In this work, we report a fluorescent sensing platform with silicon quantum dots (Si-QDs) as a fluorescence oscillator and nano iron oxyhydroxide (α-, ß-, and γ-FeOOH) as a quencher for the assay of AChE. FeOOH with α-, ß-, and γ-crystal forms quenches the fluorescence of Si-QDs at λex/λem = 350/438 nm, which is retrieved in the presence of AChE and its substrate acetylthiocholine (ATCh) to provide an off-on strategy with a high signal/noise ratio. It is interesting that the sensitivity of AChE sensing is closely related to the crystal forms of FeOOH, with the highest sensitivity by adopting α-FeOOH as the quencher. A linear calibration is achieved within 0.02-1.4 U/L along with a limit of detection of 0.016 U/L. The sensing strategy was demonstrated by the AChE assay in human blood, plasma, and hemocytes.


Assuntos
Acetilcolinesterase , Pontos Quânticos , Acetiltiocolina , Fluorescência , Humanos , Silício
7.
J Transl Med ; 19(1): 417, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627268

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of the kidney. New and reliable biomarkers are in urgent need for ccRCC diagnosis and prognosis. The CENP family is overexpressed in many types of cancers, but its functions in ccRCC have not been fully clarified. In this paper, we found that several CENP family members were highly expressed in ccRCC tissues. Also, CENPA expression level was related to clinicopathological grade and prognosis by weighted gene co-expression network analysis (WGCNA). CENPA served as a representative CENP family member as a ccRCC biomarker. Further in vitro experiments verified that overexpression of CENPA promoted ccRCC proliferation and metastasis by accelerating the cell cycle and activating the Wnt/ß-catenin signaling pathway. The elevated ß-catenin led by CENPA overexpression translocated to nucleus for downstream effect. Functional recovery experiment confirmed that Wnt/ß-catenin pathway was essential for ccRCC progression and metastasis. Developing selective drugs targeting CENPA may be a promising direction for cancer treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Prognóstico , Via de Sinalização Wnt
8.
Front Aging Neurosci ; 13: 738529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658841

RESUMO

Parkinson's disease is mainly caused by specific degeneration of dopaminergic neurons (DA neurons) in the substantia nigra of the middle brain. Over the past two decades, transplantation of neural stem cells (NSCs) from fetal brain-derived neural stem cells (fNSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs) has been shown to improve the symptoms of motor dysfunction in Parkinson's disease (PD) animal models and PD patients significantly. However, there are ethical concerns with fNSCs and hESCs and there is an issue of rejection by the immune system, and the iPSCs may involve tumorigenicity caused by the integration of the transgenes. Recent studies have shown that somatic fibroblasts can be directly reprogrammed to NSCs, neurons, and specific dopamine neurons. Directly induced neurons (iN) or induced DA neurons (iDANs) from somatic fibroblasts have several advantages over iPSC cells. The neurons produced by direct transdifferentiation do not pass through a pluripotent state. Therefore, direct reprogramming can generate patient-specific cells, and it can overcome the safety problems of rejection by the immune system and teratoma formation related to hESCs and iPSCs. However, there are some critical issues such as the low efficiency of direct reprogramming, biological functions, and risks from the directly converted neurons, which hinder their clinical applications. Here, the recent progress in methods, mechanisms, and future challenges of directly reprogramming somatic fibroblasts into neurons or dopamine neurons were summarized to speed up the clinical translation of these directly converted neural cells to treat PD and other neurodegenerative diseases.

9.
Huan Jing Ke Xue ; 42(11): 5433-5439, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708982

RESUMO

In this work, a novel sodium silicate-modified peanut shell biochar(Si-PSB) was synthesized and used as phosphorus adsorbents. Compared with unmodified biochar(PSB), the adsorption capacity of Si-PSBs increased significantly. The adsorption capacity of 8% sodium silicate solution modified biochar(8%Si-PSB) was 3.9 times higher than that of PSB. The biochar was characterized using scanning electron microscopy(SEM), Fourier transformed infrared(FTIR), and X-ray diffraction(XRD), which confirmed that silica was present on the surface of 8%Si-PSB. The introduction of silica improved the reaction activity of biochar's own metal ions by affecting the morphology of calcium carbonate. The 8%Si-PSB had a good adsorption effect on phosphorus in both acid and alkali environments. Phosphorus adsorption by 8%Si-PSB and PSB was described well by the pseudo-second-order model, and the adsorption capacity after equilibrium fluctuated between 2.79 mg·g-1 and 0.71 mg·g-1, respectively. Further, the isothermal adsorption experimental data fitted well to the Langmuir model. The presence of humic acid in the solution inhibited the adsorption of phosphorus by the 8%Si-PSB and PSB. The 8%Si-PSB, as a new low-cost phosphorus removal material, can improve the utilization of metal ions in peanut shell itself.


Assuntos
Fósforo , Poluentes Químicos da Água , Adsorção , Arachis , Carvão Vegetal , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
10.
Anal Chim Acta ; 1183: 338973, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34627508

RESUMO

In this study, the application of carbon dots (CDs) modified NaYF4:Yb, Er nanoparticles (UCNPs@CDs) as the fluorescent nanoprobe for simultaneous detection of Fe2+ and Fe3+ was investigated. Fe3+ quantification (5-80 µmol L-1) was achieved, as a result of Fe3+ induced fluorescence quenching of UCNPs@CDs at 434 nm (under the 336 nm excitation). The chelate (Fe2+-phen) formed by Fe2+ and 1,10-phenanthroline had a broad absorption centered at 510 nm, due to inner filter effect (IFE), Fe2+ quantification (4-120 µmol L-1) was achieved as a result of (Fe2+-phen) induced fluorescence quenching of UCNPs@CDs at 545 nm (under the 980 nm excitation). The resultant UCNPs@CDs probe, with excellent anti-interference capability, favorable fluorescence stability, and convincing performance in real sample analysis, showed promising application in simultaneous detection of Fe2+ and Fe3+.


Assuntos
Carbono , Nanopartículas , Íons , Ferro , Espectrometria de Fluorescência
11.
Cancer Res ; 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702726

RESUMO

Cisplatin (CDDP)-based chemotherapy is the first-line treatment for muscle-invasive and metastatic bladder cancer (BC), yet most patients rapidly develop resistance. N6-methyladenosine (m6A) methylation is a pervasive RNA modification, and its specific role and potential mechanism in the regulation of CDDP chemosensitivity in BC remain unclear. Furthermore, studies have not yet fully elucidated whether circRNA can directly regulate m6A modification of mRNA. Here we report upregulation of a novel circRNA, hsa_circ_0008399 (circ0008399), by eukaryotic translation initiation factor 4A3 (EIF4A3) in BC tissues and cell lines. Functionally, circ0008399 inhibited apoptosis of BC cells. Mechanistically, circ0008399 bound Wilms' tumor 1-associating protein (WTAP) to promote formation of the WTAP/METTL3/METTL14 m6A methyltransferase complex. Circ0008399 increased expression of TNF alpha-induced protein 3 (TNFAIP3) by increasing its mRNA stability in an m6A-dependent manner. In BC patients, high expression of circ0008399 and WTAP was associated with poor outcomes. Importantly, activation of the circ0008399/WTAP/TNFAIP3 pathway decreased BC chemosensitivity to CDDP, and targeting the circ0008399/WTAP/TNFAIP3 axis enhanced the CDDP efficacy. Collectively, these findings give novel insights into circRNA-mediated regulation of m6A modifications and provide potential therapeutic targets for BC.

12.
Int J Gen Med ; 14: 6587-6599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703279

RESUMO

Background: Increasing evidence indicated that the aberrant expression of the cytoplasmic FMR1-interacting protein (CYFIP) family might possess critical role and potential functions in cancer. But the role of CYFIP2 in clear cell renal cell carcinoma (ccRCC) is still uncharacteristic. Methods: We investigated the Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) database for the expression profile, clinicopathological variables, clinical prognosis information, and promoter methylation levels of CYFIPs in ccRCC. The aberrant CYFIP2 protein expression was validated by the Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to uncover CYFIP2 mRNA levels in 28 pairs of ccRCC cancer tissues. Kaplan-Meier analysis, univariate and multivariate Cox proportional hazard regression were performed to assess CYFIPs' prognosis value. Gene set enrichment analysis (GSEA) was used to determined hallmark functions, gene ontology of CYFIP2. TIMER database was utilized to assess the correlation with immune infiltration in ccRCC. Results: Results showed CYFIP2 was downregulated in ccRCC, relative to paired normal tissues in TCGA-KIRC database and 28 pairs of clinical samples (P < 0.0001). Similarly, a decreased CYFIP2 protein expression was confirmed by ccRCC tissues. The results showed CYFIP2 was negatively regulated by promoter DNA methylation. Survival analysis results showed CYFIP2 could be an independent biomarker for ccRCC and its reduction predicted a poor overall survival (OS) and disease-free survival (DFS). GSEA showed CYFIP2 was involved in metabolic pathways and epithelial-mesenchymal transition (EMT). Immune infiltration analysis revealed that a list of immune markers was significantly correlated with CYFIP2 expression especially with CD4+ cells and CD8+ cells in ccRCC. Conclusion: These results show that CYFIP2 was downregulated in ccRCC patients and predicted an unfavorable prognosis. CYFIP2 might be a potential novel prognostic molecule, and related to immune infiltration, the metabolism, as well as EMT process in ccRCC. CYFIP2 could act as tumor suppressor gene in ccRCC and positive modulation of CYFIP2 might lead to development of a novel strategy for ccRCC treatment.

13.
World J Urol ; 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554297

RESUMO

PURPOSE: We aimed to evaluate the reliability of a portable device that applies Raman spectroscopy at an excitation wavelength of 1064 nm for the post-operative analysis of urinary stone composition. MATERIALS AND METHODS: Urinary stone samples were obtained post-operatively from 300 patients. All samples were analyzed by the portable Raman spectroscopy system at an excitation wavelength of 1064 nm as well as by infrared spectroscopy (IR), and the results were compared. RESULTS: Both Raman spectroscopy and IR could detect multiple stone components, including calcium oxalate monohydrate, calcium oxalate dihydrate, calcium phosphate, uric acid, cystine, and magnesium ammonium phosphate hexahydrate. The results from 1064-nm Raman analysis matched those from IR analysis for 96.0% (288/300) of cases. Although IR detected multiple components within samples more often than Raman analysis (239 vs 131), the Raman analysis required less time to complete than IR data acquisition (5 min vs 30 min). CONCLUSIONS: These preliminary results indicate that 1064-nm Raman spectroscopy can be applied in a portable and automated analytical system for rapid detection of urinary stone composition in the post-operative clinical setting. TRIAL REGISTRATION: Chinese Clinical Trail Register ID: ChiCTR2000039810 (approved WHO primary register) http://www.chictr.org.cn/showproj.aspx?proj=63662 .

14.
IUBMB Life ; 73(11): 1363-1377, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549875

RESUMO

Prostate cancer (PCa), characterized by high invasion, metastasis, and recurrence, is the most prevalent malignant tumor in men worldwide. A clear understanding of the underlying molecular mechanisms and their role during PCa tumorigenesis can help develop prognostic and targeted therapies. We analyzed datasets from public databases, including the Cancer Genome Atlas (TCGA) and Oncomine and Gene Expression Profiling Interactive Analysis for differential expression of solute carrier family 16 member 5 (SLC16A5). We further investigated its relationship with clinical stage, pathological grade, and prognosis of PCa. The promoter methylation level of SLC16A5 in PCa was also investigated by UALCAN. We also utilized datasets from UCSC Xena to explore the prognostic role of SLC16A5 methylation levels and CpG site. Correlations between SLC16A5 and immune infiltration were discovered through TIMER. We observed significantly lower levels of SLC16A5 mRNA in PCa relative to normal tissues across six datasets from Oncomine database (p < .001) and 498 cases from TCGA database (p < .0001). SLC16A5 is strongly negatively regulated by its DNA methylation, with a Spearman of -0.81 and Pearson of -0.80 (p < .001). The aberrant SLC16A5 expression resulted in a significant relationship with clinical stage, pathological grade, and lower SLC16A5 mRNA expression, and its hypermethylation was related to a poorer PCa prognosis. SLC16A5 acted as an important factor for PCa diagnosis, with an AUC of 0.9038 (95% CI: 0.8597-0.9479; p < .0001). Besides, the aberrant SLC16A5 expression revealed close correlations with multiple immune cells. Overall, these results indicate that decreased SLC16A5 expression might be a potential biomarker for determining prognosis and immune infiltration in PCa. The positive SLC16A5 modulation might be a promising therapeutic target for PCa.

15.
J Hazard Mater ; 416: 125898, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492836

RESUMO

Moso bamboo is considered a potential species for heavy metal (HM) phytoremediation; however, the effect of intercropping on rhizosphere and phytoextraction remains to be elucidated. We comparatively investigated rhizobacteria, soil properties, and phytoextraction efficiency of monoculture and intercropping of Moso bamboo and Sedum plumbizincicola in Cu/Zn/Cd-contaminated soil. Compared with monocultures, intercropping increased the bacterial α-diversity indices (Shannon, Chao1) and the number of biomarkers. Intercropping reduced the contents of soil organic matter (SOM), available nutrients, and Cd and Cu in rhizosphere soils, and reduced the Cd and Zn contents in tissues of sedum. By contrast, Cd and Zn contents in tissues of bamboo increased, and the increase of organic acid in root exudates from intercropping could facilitate the HM absorption. The total amount of Cu, Zn, and Cd removed from the soil in intercropping system was 1.2, 1.9, and 1.8 times than those in monoculture bamboo, respectively. The abundances of Proteobacteria, Acidobacteria, Verrucomicrobia and Actinobacteria were higher in intercropping, playing an important role in soil nutrient cycles and HM remediation. These bacterial communities were closely correlated (P < 0.01) with SOM, available nitrogen, available phosphorus, and HMs. The results suggested this intercropping pattern can increase HM removal efficiency from polluted soils.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Metais Pesados/análise , Rizosfera , Solo , Poluentes do Solo/análise
16.
Int J Gen Med ; 14: 5255-5267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522125

RESUMO

Background: Studies report that conventional treatment of clear cell renal cell carcinoma (ccRCC) is effective, but several advanced patients present with poor prognosis. The current study explored potential new tumor markers and therapeutic targets in advanced ccRCC. Methods: Biomarker gene expression of ccRCC was retrieved from GEO database and the Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) database. Gene ontology (GO) analysis and protein-protein interaction (PPI) networks of biomarker genes were constructed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool. Kaplan-Meier analysis and receiver operating characteristic curve (ROC) analysis were performed to explore the prognostic and diagnostic roles of these genes. Gene set enrichment analysis (GSEA) analysis was used to determine hallmark functions of the biomarker genes. qRT-PCR was used to verify the reliability of the analysis results in tumor tissues. Results: A total of 21 upregulated genes were identified between advanced ccRCC and early ccRCC (grade III+IV vs grade I+II). Gene ontology analysis showed that the 21 upregulated genes were mainly implicated in biological processes including metabolic and lipid transport. The findings showed that 7 out of the 21 genes were significantly upregulated in 72-paired samples retrieved from the TCGA-KIRC. High expression of 5 genes indicated a poor prognosis of overall survival and disease-free survival in KIRC. Three genes effectively distinguished renal cancer tissue and adjacent renal tissues in a total of 533 ccRCC samples. GSEA showed that the 3 biomarkers were significantly enriched in epithelial-mesenchymal transition, G2M checkpoint, and angiogenesis. The results of qRT-PCR showed that STEAP3, IBSP, and AQP9 had a significant identification effect in ccRCC. Conclusion: The findings showed that 3 biomarkers were significantly upregulated in advanced ccRCC and could be used for diagnosis, prediction, and potential novel therapeutic targets for progression of ccRCC.

17.
J Photochem Photobiol B ; 223: 112279, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425416

RESUMO

A novel highly selective and sensitive turn-on fluorescent chemosensor PCE to recognize Zn2+ has been developed. The sensor PCE displays a remarkable fluorescent enhancement at 456 nm (λex = 340 nm) with Zn2+ without the interference of other biologically important relevant metal ions in aqueous acetonitrile solution. Job's plot and mass spectral studies divulge such the interaction of PCE by Zn2+ was 1:1 binding stoichiometry. The association constant and detection limit of PCE to recognize Zn2+ was found to be 0.948 × 104 M-1 and 4.82 × 10-7 M respectively. The nature of turn-on fluorescence sensor was supported by TD-DFT calculations. And the synthesized probe PCE was able to image intracellular Zn2+ in living cells using confocal imaging techniques. PCE-Zn ensemble showed the remarkable fluorescence enhancement with ATP selectively among other biologically important phosphates. 31P NMR experiments suggesting that the triphosphates unit of ATP is intact with the PCEZn. PCE-Zn ensemble can be utilized for monitoring ATP in live cells.


Assuntos
Trifosfato de Adenosina/análise , Corantes Fluorescentes/química , Pirenos/química , Zinco/química , Trifosfato de Adenosina/química , Teoria da Densidade Funcional , Corantes Fluorescentes/análise , Células HeLa , Humanos , Íons/química , Limite de Detecção , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Teoria Quântica , Bases de Schiff/química , Zinco/metabolismo
18.
Pancreas ; 50(6): 822-826, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347726

RESUMO

OBJECTIVES: This retrospective cohort study investigated the efficacy of routine intravenous chemotherapy (the control group), transcatheter arterial infusion (TAI) chemotherapy, and TAI combined with radioactive particles as therapeutic methods for advanced body/tail pancreatic cancer by assessing the short-term and overall survival rates. METHODS: We screened our prospective database for patients with advanced body/tail pancreatic cancer, which tumor deemed unresectable, and no other confirmed malignant tumors, patients were assigned into 3 groups according to their treatment: routine intravenous chemotherapy, TAI, and TAI combined with radioactive particles. RESULTS: The median survival time was 6 months in the control group, 10 months in the TAI group, and 13 months in the TAI combined group. The Kaplan-Meier estimates of the overall survival among the 3 groups, indicating that there is significant difference among 3 groups (P < 0.000). The clinical remission rates were 17.5% in the control group, 41.5% in the TAI group, and 48.0% in the TAI combined group. Covariates analyzed showed that different treatment methods and times affected the results significantly (P < 0.002). CONCLUSIONS: In the treatment of advanced body/tail pancreatic cancer, TAI and TAI combined with radioactive particles significantly improved the clinical outcomes in patients compared with routine intravenous chemotherapy.

19.
New Phytol ; 232(5): 2124-2137, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34449897

RESUMO

Root-knot nematodes, Meloidogyne spp., secrete effectors to modulate plant immune responses and establish a parasitic relationship with host plants. However, the functions and plant targets of C-type lectin (CTL)-like effectors of Meloidogyne incognita remain unknown. Here, we characterized a CTL-like effector of M. incognita, MiCTL1a, and identified its target and role in nematode parasitism. In situ hybridization demonstrated the expression of MiCTL1 in the subventral glands; and in planta, immunolocalization showed its secretion during M. incognita parasitism. Virus-induced gene silencing of the MiCTL1 reduced the infection ability of M. incognita in Nicotiana benthamiana. The ectopic expression in Arabidopsis not only increased susceptibility to M. incognita but also promoted root growth. Yeast two-hybrid and co-immunoprecipitation assays revealed that MiCTL1a interacts with Arabidopsis catalases, which play essential roles in hydrogen peroxide homeostasis. Knockout or overexpression of catalases showed either increased or reduced susceptibility to M. incognita, respectively. Moreover, MiCTL1a not only reduced catalase activity in vitro and in planta but also modulated stress-related gene expressions in Arabidopsis. Our data suggest that MiCTL1a interacts with plant catalases and interferes with catalase activity, allowing M. incognita to establish a parasitic relationship with its host by fine-tuning responses mediated by reactive oxygen species.

20.
Arch Microbiol ; 203(9): 5363-5371, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34386827

RESUMO

A novel mycelium-forming actinomycete strain, designated YIM S01255T were isolated from a salt lake. Optimal growth occurred in the presence of 0-5.0% (w/v) NaCl, at pH 7.0-8.0, and at 37 °C. Strain YIM S01255T contained meso-diaminopimelic acid as the diagnostic diamino acid, and glucose, galactose and arabinose as the whole-cell sugars. The major fatty acid (> 5.0%) were iso-C16:0, iso-C16:1H and iso-C15:0. The major menaquinone were MK-9(H4) and MK-8(H4). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylinositolmannoside and phosphatidylinositol. The DNA G + C content was 70.7 mol%. The 16S rRNA gene sequence of the strain showed high similarity to members of genera in the family Pseudonocardiaceae with values less than 95.8%, and most closely related to the genus Amycolatopsis. Both of phylogenetic analysis based on 16S rRNA gene sequences and the up-to-date bacterial genome sequences analysis revealed that strains YIM S01255T and Prauserella shujinwangii XJ46T formed a distinct monophyletic clade and was separated from the other members within the family Pseudonocardiaceae. The average nucleotide identity (ANI) values and digital DNA-DNA hybridization (dDDH) between the two strains were 81.0% and 40.6%, respectively. The distinctive polyphasic evidences differentiated YIM S01255T from members of the family Pseudonocardiaceae, so strain YIM S01255T is considered to represent a novel species of a novel genus of the family Pseudonocardiaceae, for which the name Qaidamihabitans albus gen. nov., sp. nov. is proposed. The type strain of genus Qaidamihabitans is YIM S01255T (= KCTC 49476T = CGMCC 4.7684T). Moreover, Prauserella shujinwangii is also proposed to being transferred into the genus Qaidamihabitans as Qaidamihabitans shujinwangii comb. nov. (type strain XJ46T = CGMCC 4.7125T = JCM 19736T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Actinobacteria , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...