Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143312

RESUMO

Salmon is a highly perishable food due to temperature, pH, odor, and texture changes during cold storage. Intelligent monitoring and spoilage rapid detection are effective approaches to improve freshness. The aim of this work was an evaluation of IoT-enabled monitoring system (IoTMS) and electronic nose spoilage detection for quality parameters changes and freshness under cold storage conditions. The salmon samples were analyzed and divided into three groups in an incubator set at 0 °C, 4 °C, and 6 °C. The quality parameters, i.e., texture, color, sensory, and pH changes, were measured and evaluated at different temperatures after 0, 3, 6, 9, 12, and 14 days of cold storage. The principal component analysis (PCA) algorithm can be used to cluster electronic nose information. Furthermore, a Convolutional Neural Networks and Support Vector Machine (CNN-SVM) based algorithm is used to cluster the freshness level of salmon samples stored in a specific storage condition. In the tested samples, the results show that the training dataset of freshness is about 95.6%, and the accuracy rate of the test dataset is 93.8%. For the training dataset of corruption, the accuracy rate is about 91.4%, and the accuracy rate of the test dataset is 90.5%. The overall accuracy rate is more than 90%. This work could help to reduce quality loss during salmon cold storage.

2.
Sensors (Basel) ; 20(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076361

RESUMO

Due to the presence of bioactive compounds, fruits are an essential part of people's healthy diet. However, endogenous ethylene produced by climacteric fruits and exogenous ethylene in the microenvironment could play a pivotal role in the physiological and metabolic activities, leading to quality losses during storage or shelf life. Moreover, due to the variety of fruits and complex scenarios, different ethylene control strategies need to be adapted to improve the marketability of fruits and maintain their high quality. Therefore, this study proposed an ethylene dynamic monitoring based on multi-strategies control to reduce the post-harvest quality loss of fruits, which was evaluated here for blueberries, sweet cherries, and apples. The results showed that the ethylene dynamic monitoring had rapid static/dynamic response speed (2 ppm/s) and accurately monitoring of ethylene content (99% accuracy). In addition, the quality parameters evolution (firmness, soluble solids contents, weight loss rate, and chromatic aberration) showed that the ethylene multi-strategies control could effectively reduce the quality loss of fruits studied, which showed great potential in improving the quality management of fruits in the supply chain.

3.
Foods ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397121

RESUMO

The market demand for fresh sweet cherries in China has experienced continuous growth due to its rich nutritional value and unique taste. Nonetheless, the characteristics of fruits, transportation conditions and uneven distribution pose a huge obstacle in keeping high quality, especially in express logistics. This paper proposes dynamic monitoring and quality assessment system (DMQAS) to reduce the quality loss of sweet cherries in express logistics. The DMQAS was tested and evaluated in three typical express logistics scenarios with "Meizao" sweet cherries. The results showed that DMQAS could monitor the changes of critical micro-environmental parameters (temperature, relative humidity, O2, CO2 and C2H4) during the express logistics, and the freshness prediction model showed high accuracy (the relative error was controlled within 10%). The proposed DMQAS could provide complete and accurate microenvironment data and can be used to further improve the quality and safety management of sweet cherries during express logistics.

4.
Foods ; 8(4)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013609

RESUMO

Tricholoma matsutake (T. matsutake) growing in Tibet is very popular for its high economic and medicinal value, but fresh T. matsutake has an extremely short shelf life. The shelf life of T. matsutake is complex, influenced by product characteristics, surrounding environmental conditions, and spoilage development. The objective of this work was to study the quality characteristics of fresh T. matsutake during its shelf life period in modified atmosphere packaging (MAP) conditions and establish its remaining shelf life prediction models in a cold chain. In this study, we measured and analyzed quality indicators of fresh T. matsutake, including hardness (cap, stipe), color, odor of sensory characteristics, pH, soluble solids content (SSC), and moisture content (MC) of physical and chemical characteristics under the temperature condition of 4 °C and relative humidity (RH) of 90%. The sensory evaluation results showed that the odor indicator in sensory characteristics was more sensitive to the freshness of T. matsutake. The changes of pH, SSC, and MC were divided into three periods to analyze the physiological changes of T. matsutake. The cap spread process could affect the changes of pH, SSC, and MC in period S1, and they changed gradually in period S2. In the period S3, they changed complicatedly because of deterioration. The remaining shelf life prediction model of T. matsutake was established by the back propagation (BP) neural network method to quantify the relationship between the quality indicators and the remaining shelf life. The shelf life characteristics are complex, which were optimized by correlation analysis. Significant benefits of this work are anticipated on the transportation and preservation of fresh T. matsutake to the market and the reduction of its losses in the postharvest chain.

5.
J Food Sci Technol ; 53(3): 1363-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27570261

RESUMO

With continuous rise of table grapes consumption and increased public awareness of food safety, the quality control of grapes in storage after purchase is not sufficiently examined. Home storage constitutes the last and important stage in grape supply chain. Literature review shows that few researches on grape quality focus on the home storage stage compared with numerous researches reported on the quality control during postharvest and transportation process. This paper reports the performance evaluation of grape quality at home storage and consumers' satisfaction using integrated sensory evaluations. The internal attributes, including Texture, Taste and Odor of the table grapes and the appearance indices, Color and Cleanliness are examined. Key results show that during home storage, all the internal attributes decrease rapidly as time goes on, and cleanliness and color appear to be deteriorating in a lower speed. A comprehensive quality index was created to measure the quality of table grape which has high correlation with the Overall acceptability perceived by consumers.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(10): 3154-8, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-30222261

RESUMO

In view of the actual logistics process of table grapes and the situation that fresh keeping agents based on sulfur dioxide are commonly used in table grape logistics, we studied the shelf life prediction method of table grapes under 4 temperatures and constant concentrations of sulfur dioxide based on near infrared spectrum (NIR) and the evolution of texture in this work. Logistics process safety system based on shelf life prediction was designed to reduce the loss of table grapes in the logistics. The change of texture is an important cause of postharvest table grapes to end their shelf life in postharvest logistics. In this work, we used SO2 concentration sensors to control solenoid valves, and obtained the set SO2 concentrations by automatic compensation mechanism. The evolutions of table grape texture under different concentrations of sulfur dioxide were studied as well as the influence of temperature. The NIR pretreatment effects of multiplicative scatter correction and the first S-G derivation were compared. The table grape texture nondestructive testing model built base on NIR and partial least squares regression achieved a determination coefficient of 0.93 and the root mean squared error (RMSE) was 1.70. In full cross-validation, the prediction accuracy reached to 0.81 and got a RMSE of 2.91. Research indicated that the NIR detection combined with the quality change modeling and information technology could be used to improve the logistics process safety management efficiency of postharvest fruits and vegetables.

7.
J Sci Food Agric ; 95(13): 2693-703, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25408190

RESUMO

BACKGROUND: The main export varieties in China are brand-name, high-quality bred aquatic products. Among them, tilapia has become the most important and fast-growing species since extensive consumer markets in North America and Europe have evolved as a result of commodity prices, year-round availability and quality of fresh and frozen products. As the largest tilapia farming country, China has over one-third of its tilapia production devoted to further processing and meeting foreign market demand. RESULTS: Using by tilapia fillet processing, this paper introduces the efforts for developing and evaluating ITS-TF: an intelligent traceability system integrated with statistical process control (SPC) and fault tree analysis (FTA). Observations, literature review and expert questionnaires were used for system requirement and knowledge acquisition; scenario simulation was applied to evaluate and validate ITS-TF performance. CONCLUSION: The results show that traceability requirement is evolved from a firefighting model to a proactive model for enhancing process management capacity for food safety; ITS-TF transforms itself as an intelligent system to provide functions on early warnings and process management by integrated SPC and FTA. The valuable suggestion that automatic data acquisition and communication technology should be integrated into ITS-TF was achieved for further system optimization, perfection and performance improvement.


Assuntos
Aquicultura , Cruzamento , Qualidade de Produtos para o Consumidor , Inocuidade dos Alimentos , Abastecimento de Alimentos/normas , Alimentos Marinhos/análise , Tilápia , Animais , China , Comércio , Europa (Continente) , Humanos , América do Norte
8.
Sensors (Basel) ; 14(10): 19877-96, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25340455

RESUMO

This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications.

9.
J Sci Food Agric ; 91(7): 1316-25, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360540

RESUMO

BACKGROUND: Tilapia has been named as the 'food fish of the 21st century' and has become the most important farmed fish. China is the world leader in tilapia production and export. Identifying information and functional requirements is critical in developing an efficient traceability system because traceability has become a fundamental prerequisite for exporting aquaculture products. RESULTS: This paper examines the export-oriented tilapia chains and information flow in the chains, and identifies the key actors, information requirements and information-capturing points. Unified Modeling Language (UML) technology is adopted to describe the information and functionality requirement for chain traceability. The barriers of traceability system adoption are also identified. CONCLUSION: The results show that the traceability data consist of four categories that must be recorded by each link in the chain. The functionality requirement is classified into four categories from the fundamental information record to decisive quality control; the top three barriers to the traceability system adoption are: high costs of implementing the system, lack of experienced and professional staff; and low level of government involvement and support.


Assuntos
Comércio/organização & administração , Pesqueiros , Indústria Alimentícia/organização & administração , Sistemas de Informação , Tilápia , Animais , China , Dieta , Indústria Alimentícia/métodos , Modelos Teóricos , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA