Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
1.
Neurosci Bull ; 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847915

RESUMO

The lateral hypothalamic area (LHA) plays a pivotal role in regulating consciousness transition, in which orexinergic neurons, GABAergic neurons, and melanin-concentrating hormone neurons are involved. Glutamatergic neurons have a large population in the LHA, but their anesthesia-related effect has not been explored. Here, we found that genetic ablation of LHA glutamatergic neurons shortened the induction time and prolonged the recovery time of isoflurane anesthesia in mice. In contrast, chemogenetic activation of LHA glutamatergic neurons increased the time to anesthesia and decreased the time to recovery. Optogenetic activation of LHA glutamatergic neurons during the maintenance of anesthesia reduced the burst suppression pattern of the electroencephalogram (EEG) and shifted EEG features to an arousal pattern. Photostimulation of LHA glutamatergic projections to the lateral habenula (LHb) also facilitated the emergence from anesthesia and the transition of anesthesia depth to a lighter level. Collectively, LHA glutamatergic neurons and their projections to the LHb regulate anesthetic potency and EEG features.

2.
Bioorg Chem ; 111: 104886, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33836342

RESUMO

Our present and previous phytochemical investigations on Leptopus lolonum have resulted in the isolation of almost 30 phenylpropanoid-conjugated pentacyclic triterpenoids (PCPTs). During the continuous study on PCPTs, this kind of triterpenoid ester is considered as a natural product with low toxicity because of it's widely distribution in natural plants and edible fruits including kiwi fruit, durian, jujube, pawpaw, apple and pear. In the present work, we report the isolation, structural elucidation and cytotoxic evaluation of four new PCPTs (1-4) which obtained from L. lolonum. In addition, the possible biosynthesis pathway for 28-norlupane triterpenoid and potent effect of phenylpropanoid moiety for increasing the cytotxic effect of triterpenoids were also discussed. Among these compounds, compound 1 exhibited the highest cytotoxic effect on HepG2 cells with IC50 value of 11.87 µM. Further flow cytometry and western blot analysis demonstrated that 1 caused G1 cell cycle arrest by up-regulated the expression of phosphorylated p53 protein in HepG2 cells and induced cell apoptosis via MAPK and Akt pathways. These results emphasized the potential of PCPTs as lead compounds for developing anti-cancer drugs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33817923

RESUMO

Dual-atom site catalysts (DACs) have emerged as a new frontier in heterogeneous catalysis because the synergistic effect between adjacent metal atoms can promote their catalytic activity while maintaining the advantages of single-atom site catalysts (SACs), like 100% atomic utilization efficiency and excellent selectivity. Herein, a supported Pd 2 DAC was synthesized and used for electrochemical CO 2 reduction reaction (CO 2 RR) for the first time. The as-obtained Pd 2 DAC exhibited superior CO 2 RR catalytic performance with 98.2% FE CO at -0.85 V vs. RHE, far exceeding that of Pd 1 SAC, and coupled with long-term stability. The density functional theory (DFT) calculations revealed that the intrinsic reason for the superior activity of Pd 2 DAC toward CO 2 RR was the electron transfer between Pd atoms at the dimeric Pd sites. Thus, Pd 2 DAC possessed moderate adsorption strength of CO*, which was beneficial for CO production in CO 2 RR.

4.
Immunol Lett ; 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838181

RESUMO

The lysosomal thiol reductase GILT catalyzes the reduction of disulfide bonds of protein antigens, facilitating antigen-presenting cells (APCs) to present antigen to T cells. However, whether GILT expression in tumor cells can be associated with improved T cell-mediated anti-tumor responses remains unknown. Here, we identify that GILT is able to facilitate anti-tumor immune surveillance via promoting MHC class I mediated-antigen presentation in colon carcinoma. By using mice model bearing colon tumors, we find that GILT inhibites tumor growth in vivo with more leucocytes infiltration but has no effect on tumor cell development in vitro in terms of proliferation, cell cycle and migration. Furthermore, by using transgenic OT-I mice, we recognize the tumor-expressing OVA peptide, a surrogate tumor antigen, we find that GILT is capable of enhancing MHC class I mediated antigen presentation and improving specific CD8+ T cell anti-tumor responses in murine colon carcinoma. These findings propose the boost of GILT-MHC-I axis in tumors as a viable option for immune system against cancer.

5.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803587

RESUMO

Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.

6.
Ann Palliat Med ; 10(3): 3386-3395, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33849124

RESUMO

BACKGROUND: The present study sought to investigate the short-term effects of different delivery methods on postpartum pelvic floor function in Chinese primiparas. METHODS: Primiparous women who delivered a full-term, cephalic, singleton infant at our hospital between January 1, 2018 and August 15, 2019 were recruited into this study. All women underwent pelvic floor function screening at 6-8 weeks postpartum. Tests included postpartum Pelvic Organ Prolapse Quantification (POP-Q) score, incidence of urinary incontinence, pelvic floor muscle (PFM) strength, and Pelvic Floor Distress Inventory Questionnaire-Short Form 20 (PFDI-20) score. RESULTS: A total of 284 postpartum women were recruited into the study. Of the participants, 147 had undergone vaginal delivery, 37 had undergone intrapartum cesarean delivery (ICD), and 100 had undergone elective cesarean delivery (ECD). Points Aa, Ba, Ap, and Bp showed a greater degree of prolapse in the vaginal delivery group than in the ECD group (P≤0.05). UI was less prevalent in ECD group relative to the vaginal delivery group (P≤0.05). Tonic PFM contraction was weaker in the vaginal delivery group than in the ECD and ICD groups (P≤0.05). Significant differences were also observed between the vaginal delivery group and the ECD group with respect to PFDI-20 scores (P≤0.05). CONCLUSIONS: Compared with vaginal delivery, ECD was strongly linked to a lower risk of pelvic organ prolapse (POP) and UI, stronger tonic PFM strength, and lower PFDI-20 scores. ECD confers relatively better protection against pelvic floor dysfunction (PFD) than does ICD.

7.
J Environ Manage ; 286: 112259, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677340

RESUMO

Electricity demand in megacities may exert substantial stress on water resources, which is often expressed through the water scarcity footprint for electricity consumption (WSFE). Conversely, water scarcity may constrain electricity production, leading to increased vulnerability for megacities electricity production. The WSFE and the water related vulnerability of electricity production reflect two aspects of water-electricity conflict. This varies over time by both the amount and location of electricity production. However, no studies have conducted time-series analysis to evaluate the trends of these two indicators, both in terms of severity and spatial characteristics. Our study focused on evaluating trends in water-electricity conflict both within and beyond megacity administrative boundaries. China's four provincial-level megacities, i.e. Beijing, Tianjin, Shanghai and Chongqing, were chosen as case studies. The results show that water related vulnerability of electricity production in Tianjin, Beijing, Shanghai and Chongqing was diverse and can be classified as extreme, severe, moderate and minor, respectively. Between 2006 and 2016, the WSFE of Tianjin experienced an increasing trend, and its water related vulnerability of electricity production remained at the highest level. Beijing's WSFE has decreased, but its water related vulnerability of electricity production has increased. These differing trends highlight the need for joint reductions to both WSFE and water related vulnerability of electricity production in mitigating water-electricity conflict.


Assuntos
Abastecimento de Água , Água , Pequim , China , Eletricidade
8.
Ann Clin Biochem ; : 45632211002879, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33657846

RESUMO

BACKGROUND: This study aimed to establish anti-Mullerian hormone age-specific reference intervals and determine the correlation between the anti-Mullerian hormone concentration and age, body mass index and concentrations of follicle-stimulating hormones and luteinizing hormone in healthy Chinese girls. METHODS: Serum anti-Mullerian hormone concentrations of 1702 healthy girls (0-12 years), recruited between March 2018 and December 2019, were determined using the Beckman Access 2 automated chemiluminescence immunoassay. Single-year-specific medians of anti-Mullerian hormone and effects of age, body mass index, follicle-stimulating hormone and luteinizing hormone on anti-Mullerian hormone concentration were analysed. RESULTS: The anti-Mullerian hormone median level continued increasing from birth, reached its peak at age 9 at 4.45 ng/mL (interquartile range [IQR] 2.58-6.90) and then gradually decreased. At age 12, the median reached 1.98 ng/mL (IQR 1.05-3.46). Age-specific reference intervals for anti-Mullerian hormone were established in healthy Chinese girls aged 0-12 years. Anti-Mullerian hormone concentrations showed a moderately positive correlation with age (r = 0.33, P < 0.001). In contrast, follicle-stimulating hormone (r = -0.29, P < 0.001) concentrations were weakly negatively correlated with the serum anti-Mullerian hormone concentration. CONCLUSION: We established single-year-specific reference intervals for anti-Mullerian hormone in Chinese girls using the Beckman chemiluminescent platform. This reference range can help clinicians accurately understand anti-Mullerian hormone secretion in healthy girls and promote its clinical use.

9.
Cancer Med ; 10(8): 2826-2839, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713047

RESUMO

BACKGROUND: Emerging oncogenes were reportedly linked to the complicated subtypes and pathogenesis of clinical gliomas. Herein, we first comprehensively explored the potential correlation between growth-arrest-specific two family genes (GAS2, GAS2L1, GAS2L2, GAS2L3) and gliomas by bioinformatics analysis and cellular experiments. METHODS: Based on the available datasets of TCGA (The Cancer Genome Atlas), CGGA (Chinese Glioma Genome Atlas), and Oncomine databases, we performed a series of analyses, such as gene expression, survival prognosis, DNA methylation, immune infiltration, and partner enrichment. We also utilized two glioma cell lines to conduct the colony formation and wound-healing assay. RESULTS: GAS2L3 gene was highly expressed in glioma tissues compared to normal brain tissues (p < 0.05). We further observed the relationship between the high expressed GAS2L3 and poor clinical prognosis of brain low-grade glioma (LGG) cases in our Cox proportional hazard model (hazard ratio [HR] = 0.1715, p < 0.001). Moreover, DNA hypomethylation status of GAS2L3 was correlated with the high expression of GAS2L3 in LGG tissues and the poor clinical prognosis of primary glioma cases (p < 0.05). We also found that the high expression of GAS2L3 was associated with the infiltration level of immune cells, especially the T cells (p < 0.0001). Functional enrichment analysis of GAS2L3-correlated genes and interaction partners further indicated that GAS2L3 might take part in the occurrence of glioma by influencing a series of biological behaviors, such as cell division, cytoskeleton binding, and cell adhesion. Additionally, our cellular experiment data suggested that a highly expressed GAS2L3 gene contributes to the enhanced proliferation and migration of glioma cells. CONCLUSION: This study first analyzed the potential role of GAS2 family genes, especially GAS2L3, in the clinical prognosis and possible functional mechanisms of glioma, which gives a novel insight into the relationship between GAS2L3 and LGG.

10.
Pharmazie ; 76(2): 55-60, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33714280

RESUMO

Ferulic acid, a hydroxyl derivative extracted from plants, is abundant in free state in seeds and leaves, or covalently linked with cell wall polysaccharides, lignin and different polymers. It has various pharmacological activities, including antioxidant and anti-inflammatory effects, regulates immunity, protects the cardiovascular system, and contributes to the prevention of tumors and diabetes. The protective effect on cardiovascular system is the most valuable one in view of clinical application. Here, we are reviewing the research progress concerning the pharmacological effects of ferulic acid and its derivatives on cardiovascular diseases in the past five years, mainly focusing on mechanisms of action and clinical application. This should provide guidance for clinical applications of ferulic acid and its derivatives in the treatment of cardiovascular diseases.

11.
EBioMedicine ; 65: 103272, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33691246

RESUMO

BACKGROUND: Despite the fundamental clinical significance of general anaesthesia, the cortical mechanism underlying anaesthetic-induced loss of consciousness (aLOC) remains elusive. METHODS: Here, we measured the dynamics of two major cortical neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate, through in vivo two-photon imaging and genetically encoded neurotransmitter sensors in a cell type-specific manner in the primary visual (V1) cortex. FINDINGS: We found a general decrease in cortical GABA transmission during aLOC. However, the glutamate transmission varies among different cortical cell types, where in it is almost preserved on pyramidal cells and is significantly reduced on inhibitory interneurons. Cortical interneurons expressing vasoactive intestinal peptide (VIP) and parvalbumin (PV) specialize in disinhibitory and inhibitory effects, respectively. During aLOC, VIP neuronal activity was delayed, and PV neuronal activity was dramatically inhibited and highly synchronized. INTERPRETATION: These data reveal that aLOC resembles a cortical state with a disrupted excitatory-inhibitory network and suggest that a functional inhibitory network is indispensable in the maintenance of consciousness. FUNDING: This work was supported by the grants of the National Natural Science Foundation of China (grant nos. 81620108012 and 82030038 to H.D. and grant nos. 31922029, 61890951, and 61890950 to J.H.).

12.
Environ Toxicol ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656234

RESUMO

Fenvalerate (Fen) is an endocrine disruptor, capable of interfering with the activity of estrogen and androgen. Our objective was to explore the molecular mechanisms of Fen on sperm in vivo. Adult male Sprague-Dawley rats were orally exposed to 0, 0.00625, 0.125, 2.5, 30 mg/kg/day Fen for 8 weeks. Sperm morphology, differential proteomics of sperm and testes, bioinformatic analysis, western blotting (WB), and RT-PCR were used to explore the mechanism of Fen on sperm. Data showed that low Fen doses significantly induced sperm malformations. In sperm proteomics, 47 differentially expressed (DE) proteins were enriched in biological processes (BPs) related to energy metabolism, response to estrogen, spermatogenesis; and enriched in cellular components (CCs) relating to energy-metabolism, sperm fibrous sheath and their outer dense fibers. In testicular proteomics, 56 DE proteins were highly associated with mRNA splicing, energy metabolism; and enriched in CCs relating to vesicles, myelin sheath, microtubules, mitochondria. WB showed that the expression of selected proteins was identical to their tendency in 2D gels. Literature indicates that key DE proteins in proteomic profiles (such as Trap1, Hnrnpa2b1, Hnrnpk, Hspa8, and Gapdh) are involved in P53-related processes or morphogenesis or spermatogenesis. Also, P53 mRNA and protein levels were significantly increased by Fen; bioinformatic re-analysis showed that 88.5% DE proteins and P53 formed a complex interacting network, and the key DE proteins were coenriched with P53-related BPs. Results indicate that key DE proteins of proteome underlying sperm malformations of rats exposed to low Fen doses are highly related to P53.

13.
J Exp Clin Cancer Res ; 40(1): 90, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676554

RESUMO

BACKGROUND: FBXW7 m6A modification plays an important role in lung adenocarcinoma (LUAD) progression; however, the underlying mechanisms remain unclear. METHODS: The correlation between FBXW7 and various genes related to m6A modification was analyzed using The Cancer Genome Atlas database. The regulatory effects of METTL3 on FBXW7 mRNA m6A modification were examined in a cell model, and the underlying mechanism was determined by methylated RNA immunoprecipitation, RNA immunoprecipitation, luciferase reporter, and mutagenesis assays. In vitro experiments were performed to further explore the biological effects of METTL3-mediated FBXW7 m6A modification on LUAD development. RESULTS: Decreased FBXW7 expression was accompanied by downregulated METTL3 expression in human LUAD tissues and was associated with a worse prognosis for LUAD in The Cancer Genome Atlas database. m6A was highly enriched in METTL3-mediated FBXW7 transcripts, and increased m6A modification in the coding sequence region increased its translation. Functionally, METTL3 overexpression or knockdown affected the apoptosis and proliferation phenotype of LUAD cells by regulating FBXW7 m6A modification and expression. Furthermore, FBXW7 overexpression in METTL3-depleted cells partially restored LUAD cell suppression in vitro and in vivo. CONCLUSIONS: Our findings reveal that METTL3 positively regulates FBXW7 expression and confirm the tumor-suppressive role of m6A-modified FBXW7, thus providing insight into its epigenetic regulatory mechanisms in LUAD initiation and development.

14.
Sci Total Environ ; 777: 145171, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33676207

RESUMO

In this study, the effects of silver (Ag NPs) and sliver sulfide nanoparticles (Ag2S NPs) on nitrogen removal and nitrogen functional microbes in constructed wetlands were investigated. The obtained results demonstrated that inhibition extent on nitrogen removal relied on NPs types and high concentrations NPs showed higher negative effects. 0.5 mg/L Ag NPs had no influence on NH4+-N removal, amoA and nxrA gene copies, whereas Ag2S NPs and Ag+ decreased NH4+-N removal by reducing abundances of nitrifying genes. The concentrations of NO3--N and TN in all 0.5 mg/L obviously increased compared with control, resulting from decreasing functional genes and denitrifying bacteria. And 0.5 mg/L Ag NPs exhibited largest inhibitory effects, with the highest NO3--N effluent concentrations. 2 mg/L Ag NPs decreased NH4+-N removal, but adverse effects gradually vanished with extension of time, whereas both Ag2S NPs and Ag+ at 2 mg/L influenced NH4+-N transformation and decreased the abundance of amoA and nxrA genes and the AOB Nitrosomonas in CWs. Moreover, 2 mg/L of Ag NPs reduced NO3--N removal by decreasing abundance of nirS and key denitrifying bacteria. To sum up, the inhibition mechanisms concluded from current results were possibly in that Ag NPs exhibited nanotoxicity rather than ionic toxicity.

15.
Plant Dis ; 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33754866

RESUMO

Foot rot of sweet potato caused by Diaporthe destruens severely affects yield and quality worldwide. Research on this pathogen is limited due to non-availability of genome resources. Here, we report a high-quality genome sequence of D. destruens isolate CRI 305-2,which was originally isolated from infected stem of sweet potato in Taizhou City, Zhejiang Province, China. The genome comprised a total length of 56,108,228 bp, consisted of 47 scaffolds with an overall G+C content of 48.7% and an N50 of 2,479,481 bp. This resource that can be used as a reference for evolution mechanisms and comparative genomic research.

16.
J Clin Lab Anal ; : e23724, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543804

RESUMO

BACKGROUND: This article is to explore changes in levels of coagulation parameters in different trimesters among healthy pregnant women in China. METHODS: A total of 760 eligible women were enrolled (first-trimester group: n = 183, second-trimester group: n = 183, third-trimester group: n = 263, non-pregnant group: n = 131). Seven parameters including prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (FIB), D-dimer (DD), fibrinogen degradation products (FDP), and antithrombin III (ATIII), of all participants were collected. The non-parametric 2.5th-97.5th percentiles reference intervals were calculated for each parameter. RESULTS: The reference intervals for FIB, PT, APTT, TT, FDP, DD, and ATIII at first trimester were 2.11-4.32 g/L, 10.90-13.85 s, 24.60-39.28 s, 12.95-15.88 s, 0.04-2.55 µg/mL, 0.03-1.15 µg/mL, and 75.57%-125.31%, respectively. The reference intervals at second trimester were 2.31-4.77 g/L, 9.70-12.64 s, 24.16-35.43 s, 12.95-15.88 s, 0.15-7.40 µg/mL, 0.08-2.13 µg/mL, and 74.35%-119.28%, respectively. For the third-trimester, the intervals were 2.39-4.96 g/L, 9.20-11.95 s, 23.90-35.51 s, 13.41-18.00 s, 0.55-13.43 µg/mL, 0.15-3.60 µg/mL, and 71.61%-118.29%, respectively. The third-trimester group showed decreased PT, APTT, and ATIII and increased FIB, TT, DD and FDP as compared with the other groups. CONCLUSION: In this study, level changes of coagulation parameters in different trimesters were observed. And the ranges for coagulation parameters were presented, which may provide some reference for clinicians to more accurately monitor the coagulation and fibrinolytic system in pregnant women.

17.
Comput Intell Neurosci ; 2021: 6654717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628216

RESUMO

Design is a complex, iterative, and innovative process. By traditional methods, it is difficult for designers to have an integral priori design experience to fully explore a wide range of design solutions. Therefore, refined intelligent design has become an important trend in design research. More powerful design thinking is needed in intelligent design process. Combining cognitive dynamics and a cobweb structure, an intelligent design method is proposed to formalize the innovative design process. The excavation of the dynamic mechanism of the product evolution process during product development is necessary to predict next-generation multi-image product forms from a larger design space. First, different design thinking stimulates the information source and is obtained by analyzing the designers' thinking process when designing and mining the dynamic mechanism behind it. Based on the nonlinear cognitive cobweb process proposed by Francisco and a natural cobweb structure, the product image cognitive cobweb model (PICCM) is constructed. Then, natural cobweb predation behavior is simulated using a stimulus information source to impact the PICCM. This process uses genetic algorithms to obtain numerous offspring forms, and the PICCM's mechanical properties are the energy loss parameters in the impact information. Furthermore, feasible solutions are selected from intelligent design sketches by the product artificial form evaluation system based on designers' cognition, and a new product image cognitive cobweb system is reconstructed. Finally, a case study demonstrates the efficiency and feasibility of the proposed approach.

18.
Hum Brain Mapp ; 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624333

RESUMO

Canonical correlation analysis (CCA), a multivariate approach to identifying correlations between two sets of variables, is becoming increasingly popular in neuroimaging studies on brain-behavior relationships. However, the CCA stability in neuroimaging applications has not been systematically investigated. Although it is known that the number of subjects should be greater than the number of variables due to the curse of dimensionality, it is unclear at what subject-to-variable ratios (SVR) and at what correlation strengths the CCA stability can be maintained. Here, we systematically assessed the CCA stability, in the context of investigating the relationship between the brain structural/functional imaging measures and the behavioral measures, by measuring the similarity of the first-mode canonical variables across randomly sampled subgroups of subjects from a large set of 936 healthy subjects. Specifically, we tested how the CCA stability changes with SVR under two different brain-behavior correlation strengths. The same tests were repeated using an independent data set (n = 700) for validation. The results confirmed that both SVR and correlation strength affect greatly the CCA stability-the CCA stability cannot be guaranteed if the SVR is not sufficiently high or the brain-behavior relationship is not sufficiently strong. Based on our quantitative characterization of CCA stability, we provided a practical guideline to help correct interpretation of CCA results and proper applications of CCA in neuroimaging studies on brain-behavior relationships.

19.
J Transl Med ; 19(1): 62, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568202

RESUMO

BACKGROUND: Atherosclerosis is a chronic vascular disease posing a great threat to public health. We investigated whether rosuvastatin (RVS) enhanced autophagic activities to inhibit lipid accumulation and polarization conversion of macrophages and then attenuate atherosclerotic lesions. METHODS: All male Apolipoprotein E-deficient (ApoE-/-) mice were fed high-fat diet supplemented with RVS (10 mg/kg/day) or the same volume of normal saline gavage for 20 weeks. The burden of plaques in mice were determined by histopathological staining. Biochemical kits were used to examine the levels of lipid profiles and inflammatory cytokines. The potential mechanisms by which RVS mediated atherosclerosis were explored by western blot, real-time PCR assay, and immunofluorescence staining in mice and RAW264.7 macrophages. RESULTS: Our data showed that RVS treatment reduced plaque areas in the aorta inner surface and the aortic sinus of ApoE-/- mice with high-fat diet. RVS markedly improved lipid profiles and reduced contents of inflammatory cytokines in the circulation. Then, results of Western blot showed that RVS increased the ratio LC3II/I and level of Beclin 1 and decreased the expression of p62 in aortic tissues, which might be attributed to suppression of PI3K/Akt/mTOR pathway, hinting that autophagy cascades were activated by RVS. Moreover, RVS raised the contents of ABCA1, ABCG1, Arg-1, CD206 and reduced iNOS expression of arterial wall, indicating that RVS promoted cholesterol efflux and M2 macrophage polarization. Similarly, we observed that RVS decreased lipids contents and inflammatory factors expressions in RAW264.7 cells stimulated by ox-LDL, accompanied by levels elevation of ABCA1, ABCG1, Arg-1, CD206 and content reduction of iNOS. These anti-atherosclerotic effects of RVS were abolished by 3-methyladenine intervention. Moreover, RVS could reverse the impaired autophagy flux in macrophages insulted by chloroquine. We further found that PI3K inhibitor LY294002 enhanced and agonist 740 Y-P weakened the autophagy-promoting roles of RVS, respectively. CONCLUSIONS: Our study indicated that RVS exhibits atheroprotective effects involving regulation lipid accumulation and polarization conversion by improving autophagy initiation and development via suppressing PI3K/Akt/mTOR axis and enhancing autophagic flux in macrophages.

20.
Ecotoxicol Environ Saf ; 213: 112033, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582415

RESUMO

The ever-increasing ozone (O3) concentration has led to reduced production and altered quality of soybean. Abundant reports have explored the damage mechanisms of O3 on soybean. However, how the elevated O3 affects metabolite profiling of soybean remains to be poorly understood. Here, we compare the metabolic profile of soybean leaves under charcoal filtered air (CF, <20 ppb) and short-term elevated O3 concentration (EO, 100 ppb). High level of O3 affects metabolites for the tricarbonic acid (TCA) cycle, reactive oxygen species, cell wall composition and amino acids. Significantly, jasmonic acid-related metabolite promoting stomata closure is highly induced with 125-fold change. Furthermore, O3 fumigation alters the expression of genes contributing to the biosynthesis of certain metabolites in TCA cycle. Together, these findings identify a wide range of changed metabolites in response to O3 pollution. Our results pave the way for the genetic improvement of soybean to adapt to O3 pollution to maintain stable yields.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Soja/fisiologia , Poluentes Atmosféricos/metabolismo , Fabaceae , Ozônio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Soja/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...