Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
BMC Plant Biol ; 21(1): 550, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809576

RESUMO

BACKGROUND: Pineapple (Ananas comosus L. Merr.) is the third most important tropical fruit in China. In other crops, farmers can easily judge the nutritional requirements from leaf color. However, concerning pineapple, it is difficult due to the variation in leaf color of the cultivated pineapple varieties. A detailed understanding of the mechanisms of nutrient transport, accumulation, and assimilation was targeted in this study. We explored the D-leaf nitrogen (N), phosphorus (P), and potassium (K) contents, transcriptome, and metabolome of seven pineapple varieties. RESULTS: Significantly higher N, P, and K% contents were observed in Bali, Caine, and Golden pineapple. The transcriptome sequencing of 21 libraries resulted in the identification of 14,310 differentially expressed genes in the D-leaves of seven pineapple varieties. Genes associated with N transport and assimilation in D-leaves of pineapple was possibly regulated by nitrate and ammonium transporters, and glutamate dehydrogenases play roles in N assimilation in arginine biosynthesis pathways. Photosynthesis and photosynthesis-antenna proteins pathways were also significantly regulated between the studied genotypes. Phosphate transporters and mitochondrial phosphate transporters were differentially regulated regarding inorganic P transport. WRKY, MYB, and bHLH transcription factors were possibly regulating the phosphate transporters. The observed varying contents of K% in the D-leaves was associated to the regulation of K+ transporters and channels under the influence of Ca2+ signaling. The UPLC-MS/MS analysis detected 873 metabolites which were mainly classified as flavonoids, lipids, and phenolic acids. CONCLUSIONS: These findings provide a detailed insight into the N, P, K% contents in pineapple D-leaf and their transcriptomic and metabolomic signatures.

2.
Front Immunol ; 12: 744454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804026

RESUMO

Innate immunity is the first line of host defense against pathogen infection in metazoans. However, the molecular mechanisms of the complex immune regulatory network are not fully understood. Based on a transcriptome profiling of the nematode Caenorhabditis elegans, we found that a bZIP transcription factor ZIP-11 was up-regulated upon Pseudomonas aeruginosa PA14 infection. The tissue specific RNAi knock-down and rescue data revealed that ZIP-11 acts in intestine to promote host resistance against P. aeruginosa PA14 infection. We further showed that intestinal ZIP-11 regulates innate immune response through constituting a feedback loop with the conserved PMK-1/p38 mitogen-activated protein signaling pathway. Intriguingly, ZIP-11 interacts with a CCAAT/enhancer-binding protein, CEBP-2, to mediate the transcriptional response to P. aeruginosa PA14 infection independently of PMK-1/p38 pathway. In addition, human homolog ATF4 can functionally substitute for ZIP-11 in innate immune regulation of C. elegans. Our findings indicate that the ZIP-11/ATF4 genetic program activates local innate immune response through conserved PMK-1/p38 and CEBP-2/C/EBPγ immune signals in C. elegans, raising the possibility that a similar process may occur in other organisms.

3.
Dis Esophagus ; 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750620

RESUMO

BACKGROUND: Heterotopic gastric mucosa in the upper esophagus (HGMUE) is reported to be related to gastroesophageal reflux disease (GERD). This study investigated the prevalence of GERD and the use of salivary pepsin to diagnose gastroesophageal reflux, especially proximal reflux, in HGMUE patients. METHODS: One hundred and fifty-three HGMUE patients and 50 healthy volunteers were studied. All subjects took a reflux symptom index questionnaire (RSI); underwent endoscopy, barium esophagogram, high-resolution manometry (HRM), and 24-hour multichannel intraluminal impedance-pH-metry (MII-pH); and salivary pepsin test. RESULTS: Ninety-five (62.1%) HGMUE patients but no control subjects were diagnosed with GERD. The salivary pepsin concentration, RSI score, DeMeester score, acid exposure time (AET), total reflux episodes, proximal acidic reflux episodes, and proximal weakly acidic reflux episodes were significantly higher in the HGMUE group than in the control group (P < 0.05). The salivary pepsin test showed a sensitivity of 85.9% and specificity of 56.9% for diagnosing GERD using the optimal cut-off value of 75 ng/mL. One hundred and seven (69.9%) and 46 (30.1%) HGMUE patients were categorized as pepsin (+) and pepsin (-), respectively when 75 ng/mL was used as a cut-off value. Male sex, RSI, AET, and proximal acid reflux episodes were positive predictive factors for the occurrence of pepsin (+) in HGMUE patients. CONCLUSIONS: GERD, especially GERD with proximal acid reflux and related symptoms, was common in HGMUE patients. The salivary pepsin test could be an additional useful test for testing reflux in HGMUE patients, but it will not replace the MII-pH.

4.
Aquat Toxicol ; 241: 105996, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688138

RESUMO

Reduced oxygen levels and increased sulfide concentrations have become a concern for marine animals. This study examines respiratory and energetic adaption to acute (0-96 h) hypoxia (0.5 mg/L dissolved oxygen) with or without sulfide (0.2 mM, 1 mM, 3 mM) in the hypoxia-resistant and sulfide-tolerant ark shell, Anadara broughtonii. The different states of aerobic respiration, energy-balance, and activity of the mitochondrial sulfide oxidation chain (MSOC) under these conditions were evaluated. The results indicated that the anaerobic pathway was activated by hypoxia at 24 h without sulfide, but was activated in the presence of sulfide at only 2 h. Exposure to sulfide resulted in significant accumulation of ATP, probably due to the activated MSOC and lowered metabolism via suppression of Na+-K+ ATPase activity and protein synthesis. During hypoxia, both enzyme activity and mRNA levels of alternative oxidase (AOX) increased while the key enzymes in MSOC, sulfide: quinone oxidoreductase (SQR) and sulfur dioxygenase (SDO), were not altered. With additional sulfide, the enzyme activity and mRNA levels of AOX, SQR, SDO significantly increased. Classical aerobic respiration was significantly inhibited, and induction of alternative respiration was detected. The corresponding alternative electron transport chain (AETC) accepted the electrons originating from both the tricarboxylic acid cycle and MSOC during the challenge, indicating that the capacity of aerobic respiration and sulfide-oxidation under a reduction state might greatly depend on AETC. The synergistically induced alternative chains (AETC and MSOC) and anaerobic pathway suggested energy-balance between respiration and sulfide-oxidation, which might contribute to the endurance of ark shells to acute sulfide exposure.


Assuntos
Arcidae , Quinona Redutases , Poluentes Químicos da Água , Animais , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Quinona Redutases/metabolismo , Sulfetos/metabolismo , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Nanoscale ; 13(36): 15278-15284, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34486617

RESUMO

Because of suitable band gap and high mobility, two-dimensional transition metal dichalcogenide (TMD) materials are promising in future microelectronic devices. However, controllable p-type and n-type doping of TMDs is still a challenge. Herein, we develop a soft plasma doping concept and demonstrate both n-type and p-type doping for TMDs including MoS2 and WS2 through adjusting the plasma working parameters. In particular, p-type doping of MoS2 can be realized when the radio frequency (RF) power is relatively small and the processing time is short: the off-state current increases from ∼10-10 A to ∼10-8 A, the threshold voltage is positively shifted from -26.2 V to 8.3 V, and the mobility increases from 7.05 cm2 V-1 s-1 to 16.52 cm2 V-1 s-1. Under a relatively large RF power and long processing time, n-type doping was realized for MoS2: the threshold voltage was negatively shifted from 6.8 V to -13.3 V and the mobility is reduced from 10.32 cm2 V-1 s-1 to 3.2 cm2 V-1 s-1. For the former, suitable plasma treatment can promote the substitution of N elements for S vacancies and lead to p-type doping, thus reducing the defect density and increasing the mobility value. For the latter, due to excessive plasma treatment, more S vacancies will be produced, leading to heavier n-type doping as well as a decrease in mobility. We confirm the results by systematically analyzing the optical, compositional, thickness and structural characteristics of the samples before and after such soft plasma treatments via Raman, photoluminescence (PL), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) measurements. Due to its nondestructive and expandable nature and compatibility with the current microelectronics industry, this potentially generic method may be used as a reliable technology for the development of diverse and functional TMD-based devices.

7.
J Biomater Sci Polym Ed ; : 1-18, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34517778

RESUMO

At present, the treatment of bone defect is one of the most concerned problems in biomedical fields. Despite the wide variety of scaffolds, there is a challenge to select materials that can mimic the structural integrity and biocompatibility of natural bone. In our study, gelatin methacryloyl (GelMA) and sodium alginate (Alg) were used to prepare three-dimensional (3D) GelMA/Alg hybrid hydrogel, which can simulate the structure and biological function of natural extracellular matrix due to their high water content and porous structure. The interconnected and homogeneous pores of the scaffold facilitate the transport of nutrients during the bone regeneration. Then hydroxyapatite (HA) coated GelMA/Alg (GelMA/Alg-HA) hydrogel was obtained by sequential mineralization. The mineralized hydrogel was obtained by immersing hydrogel alternately in a solution of calcium and phosphorus at 37 °C. The hydrogel was modified with a coating of HA under a mild condition. The calcium crosslinked Alg could provide nucleation sites for HA crystals. And the sequential mineralization will improve the physical properties and osteoinductivity of the hydrogels by introducing HA, which is similar to the mineral component of natural bone. Analytical results confirmed that the HA particles were uniformly distributed in the surface of the hydrogels and the mineral contents were about 40% after three cycles. The compressive strength was improved from 22.43 ± 6.39 to 131.03 ± 9.26 kPa. In addition, MC3T3-E1 cell co-culture experiments shown that the mineralized GelMA/Alg-HA hybrid hydrogel possess good biocompatibility, which is conducive to the growth of new bone tissue and bone repair.

8.
J Breast Cancer ; 24(4): 389-401, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34352938

RESUMO

PURPOSE: The purpose of the current study was to explore the functions and potential mechanism of miR-451a in breast cancer (BC). METHODS: Quantitative reverse transcription real-time polymerase chain reaction was used to analyze the expression of miR-451a in human normal mammary cells (MCF-10A) and BC cells. Colony formation assay, terminal-deoxynucleoitidyl transferase mediated nick end labeling assay and transwell assays were conducted to validate the effect of miR-451a on proliferation, apoptosis, migration and invasion of BC cells, respectively. RNA pull-down, RNA immunoprecipitation and luciferase reporter assays were applied to investigate the upstream and downstream mechanisms of miR-451a in BC cells. RESULTS: MiR-451a was expressed at a low level in BC cells. Overexpression of miR-451a repressed BC cells proliferation, migration and invasion. Moreover, long non-coding RNA AC092127.1 acted as a sponge of miR-451a to enhance the expression level of AE binding protein 2 (AEBP2) that was demonstrated to be the target gene of miR-451a in BC cells. Finally, rescue experiments validated that miR-451a and AEBP2 involved in AC092127.1-mediated BC cell growth, migration and invasion. CONCLUSION: In a word, AC092127.1/miR-451a/AEBP2 axis contributes to BC cell growth, migration and invasion. Our results may help to find novel potential targets for BC treatment.

9.
Dalton Trans ; 50(33): 11619-11630, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34355718

RESUMO

A new family of isostructural 3d-4f heterometallic metal-organic frameworks (HMOFs), [Zn3EuxTb2-x(TZI)4(DMA)5(H2O)3]·4DMA [x = 0 (1), 0.3 (2), 0.6 (3), 0.9 (4), 1 (5), 1.2 (6), 1.5 (7), 1.8 (8), 2 (9)], has been synthesized using the 5-(4-(tetrazol-5-yl) phenyl)isophthalic acid (H3TZI) ligand, LnIII ions and ZnII ions under solvothermal conditions. All HMOFs exhibit a (3,3,4,5,5)-connected 63·63(42·62·82)(4·65·8)(4·66·83) topology, which features three different types of motifs: one is a mononuclear ZnII ion and the other two motifs are binuclear [Zn(COO)3Ln] clusters. The adsorption experiments indicate that Zn3Tb2 (1) could efficiently remove almost all I2 from cyclohexane solution after 12 h and also showed better adsorption towards neutral red (NR) dye (adsorption: only the Zn3Tb2 (1) was taken as one representative). Simultaneously, the luminescence sensing showed that Zn3Tb2 (1) and Zn3Eu2 (9) have excellent response and sensitivity towards pollutants such as Fe3+ ions and 2,4,6-trinitrophenol (TNP) with high selectivity and a fairly low limit of detection through luminescence quenching effect. Moreover, seven trimetallic-doped HMOFs 2-8 analogues of Zn3Ln2 (single) HMOFs were designed and prepared, showing different changes of luminescent color. More interestingly, Zn3Eu1.5Tb0.5 (7) with white-light emission was fabricated by doping relative concentrations of Eu3+ and Tb3+ ions. To the best of our knowledge, Zn3Eu1.5Tb0.5 (7) represents a novel kind of heterometallic Zn3Ln2 HMOFs with white-light emission. It could be deduced that the excellent characteristics, namely strong typical luminescence emission of ZnII and LnIII ions, microporous channels, active open metal sites (tetra-coordinated ZnII-metal sites), and uncoordinated carboxylate O atoms and uncoordinated tetrazolate N atoms, made the above HMOFs an ideal platform for adsorption, luminescence sensing, and white-light emission. More significantly, these HMOFs are the first reported Zn-Ln heterometallic materials with the H3TZI ligand.

10.
Animals (Basel) ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201637

RESUMO

Intraspecific aggression is detrimental to body/fin damage, physiological stress, and other problems in aquaculture. Environmental enrichment has been proposed to have positive effects on fish aggressive behavior, physiological stress, and fish welfare, but there are mixed results. Here, we examine the impact of physical enrichment levels (i.e., the intensity of physical enrichment) on aggression in black rockfish (Sebastes schlegelii) and fat greenling (Hexagrammos otakii). Generally, with the increase in the enrichment level, the frequency of the aggressive behavior of black rockfish gradually decreased. In contrast, a non-monotonous effect of the enrichment level on aggression was observed for fat greenling, with low and intermediate levels leading to no or more aggression, while a high enrichment level reduced aggression. After three days, the high-level enrichment groups in both rockfish and greenling reached social stability (i.e., a relatively stable social structure indicated by lower aggression), while aggression in the other groups continued increased. These results show the significant regulatory effect of enrichment levels on the aggressive behavior in both black rockfish and fat greenling. This study may promote the development of environmental enrichment measures, and it provides useful information for reducing fish aggression and improving fish welfare in aquaculture.

11.
J Agric Food Chem ; 69(30): 8578-8589, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310150

RESUMO

Pineapple fruits are usually harvested at different stages of maturity, based on consumer demands. The stage of maturity significantly affects the storage tolerance due to alterations in the cellular lipid homeostasis in the fruits. The characteristic abundance of metabolites and fatty acids (FAs) can provide vital information giving insight into the cellular lipid changes that occur during the ripening process in the fruits. Here, liquid chromatography-tandem mass spectrometry, largely based on the analysis of widely targeted metabolomics, was applied to evaluate the differences in the metabolites among the pineapple at three different stages of maturity namely, pineapples at the young fruit (YF), mature fruit (MF), and fully mature fruit (FMF) stages. In this study, 466 metabolites were annotated and identified. Among these, 59 lipids, including the glyceride esters, fatty acids and conjugates, and lysophospholipids (LPLs) were characterized. Notably, the LPLs were down-regulated in their relative abundance in the MF compared with the YF, and subsequently they remained almost stable in the FMF stage. The FA profiling results revealed the presence of certain unsaturated fatty acids (UFAs); besides, the total monounsaturated fatty acid (MUFA) to saturated fatty acid (SFA) ratio, as well as the polyunsaturated fatty acids (PUFA) to SFA ratio, showed noticeable decrease during the ripening process. The differential accumulation patterns of the LPLs, MUFAs, PUFAs, and SFAs imply that the lipid degradation and peroxidation take place in the pineapple fruits from the YF to MF and YF to FMF stages, respectively. The present study provides new insights into the alterations in the cellular lipid metabolism underlying the metabolite profiles and accumulation of FAs in pineapple fruits during ripening.


Assuntos
Ananas , Ácidos Graxos , Frutas , Lipídeos , Metaboloma
12.
Sci Total Environ ; 794: 148805, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323774

RESUMO

The surrounding environments that animals inhabit shape their behavioral phenotypes, physiological status and molecular processes. As one of the driving forces for the adaptation and evolution of marine animals, environmental complexity has been shown to affect several behavioral characteristics in fish. However, little is known about the effects of environmental complexity on fish spatial cognition and about the relevant regulatory mechanisms. To address this theoretical gap, black rockfish Sebastes schlegelii, which is a typical rock fish species, were exposed to laboratory-based small-scale contrasting environments (i.e., spatially complex environment vs. spatially barren environment) for seven weeks. Subsequently, the spatial cognitive abilities and behavioral performance during captive period were determined, and transcriptome sequencing and analyses for fish telencephalon were conducted. In general, the fish from barren environment had significantly lower spatial learning and memory abilities compared with the fish from complex environment (i.e., the complex fish exited the maze faster). During the whole captive period, the frequency of aggressive behavior among barren fish was significantly higher than complex fish. And meanwhile, the group dispersion index of barren group was also significantly higher than complex group, which indicated that complex fish tended to distribute in a more homogeneous pattern than barren fish. Through transcriptomic analyses, a series of differentially expressed genes and pathways which may underpin the damaged effects of barren environment on fish spatial cognition were identified, and these genes mainly related to stress response, metabolism, organism systems and neural plasticity. However, no significant differences in growth performance, locomotor activity (indicated by swimming behavior and rotatory behavior) between treatments were detected. Based on these results, mechanisms in the levels of behavior and molecule were proposed to explain the environmental effects on fish cognition. This study may provide fundamental information for deeply understanding the environmental effects on marine animals.


Assuntos
Perciformes , Transcriptoma , Animais , Cognição , Peixes
13.
Nature ; 595(7868): 596-599, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34234347

RESUMO

Biomolecular condensates have emerged as an important subcellular organizing principle1. Replication of many viruses, including human respiratory syncytial virus (RSV), occurs in virus-induced compartments called inclusion bodies (IBs) or viroplasm2,3. IBs of negative-strand RNA viruses were recently shown to be biomolecular condensates that form through phase separation4,5. Here we report that the steroidal alkaloid cyclopamine and its chemical analogue A3E inhibit RSV replication by disorganizing and hardening IB condensates. The actions of cyclopamine and A3E were blocked by a point mutation in the RSV transcription factor M2-1. IB disorganization occurred within minutes, which suggests that these molecules directly act on the liquid properties of the IBs. A3E and cyclopamine inhibit RSV in the lungs of infected mice and are condensate-targeting drug-like small molecules that have in vivo activity. Our data show that condensate-hardening drugs may enable the pharmacological modulation of not only many previously undruggable targets in viral replication but also transcription factors at cancer-driving super-enhancers6.

14.
Carbohydr Polym ; 266: 118128, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044944

RESUMO

Conventional stem cell delivery typically utilize administration of directly injection of allogenic cells or domesticated autogenic cells. It may lead to immune clearance of these cells by the host immune systems. Alginate microgels have been demonstrated to improve the survival of encapsulated cells and overcome rapid immune clearance after transplantation. Moreover, alginate microgels can serve as three-dimensional extracellular matrix to support cell growth and protect allogenic cells from rapid immune clearance, with functions as delivery vehicles to achieve sustained release of therapeutic proteins and growth factors from the encapsulated cells. Besides, cell-loaded alginate microgels can potentially be applied in regenerative medicine by serving as injectable engineered scaffolds to support tissue regrowth. In this review, the properties of alginate and different methods to produce alginate microgels are introduced firstly. Then, we focus on diverse applications of alginate microgels for cell delivery in tissue engineering and regenerative medicine.


Assuntos
Alginatos/química , Transplante de Células/métodos , Microgéis/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Encapsulamento de Células/métodos , Linhagem Celular Tumoral , Humanos
15.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972423

RESUMO

GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.

16.
Mar Environ Res ; 169: 105326, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33848850

RESUMO

Oxygen deficit and sulfide have been restrictive factors in mariculture zones. However, the adaptive mechanism in aquatic lives is still unclear. The commercial ark shells Anadara broughtonii were selected to test the tolerance and adaptive responses to prolonged and intermittent hypoxia with or without exogenous sulfide (mild, moderate, high) by evaluating their behavior, mortality, oxidative level, antioxidant responses, and the MAPK-mediated apoptosis in gills. The results indicated that the clams were tolerant to hypoxia and sulfide exposure but vulnerable during reoxygenation from the challenges. Even so, sulfide had remarkable effect on attenuating the accumulation of reactive oxygen species (ROS) and lipid peroxides caused by reoxygenation from prolonged hypoxia. The increase of glutathione level was probably as an early and primary protective response to prevent the expected reperfusion injury from reoxygenation. The challenges suppressed the oxidative level with a dose-dependent effect of sulfide, with an exception when exposed to mild sulfide. Synchronously, biphasic effects of exogenous sulfide on apoptotic cascade, which was induced by mild sulfide while it was inhibited by higher sulfide, were also detected in gills. The induced or inhibited apoptosis by hypoxia and sulfide kept to a typical ROS-MAPK-CASPASE cascade, desiderating further investigation.


Assuntos
Arcidae , Scapharca , Animais , Apoptose , Hipóxia Celular , Hipóxia , Estresse Oxidativo , Oxigênio , Espécies Reativas de Oxigênio , Sulfetos/toxicidade
17.
Int J Biol Macromol ; 181: 1039-1046, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33892030

RESUMO

Most existing hydrogel wound dressings lack gentle detachment property. In this work, novel hydrogels with anti-bacterial and induced detachment properties were prepared. Both gelatin (G) and sodium alginate (SA) are natural polymer materials. The G/SA hydrogels were prepared by dual cross-linking. The addition of SA significantly improves the mechanical properties of composite hydrogels. The tensile modulus and elongation at break of the G/SA hydrogels with 2.0% SA could reach 99.23 ± 2.18 kPa and 85.47 ± 5.01%, respectively. In addition, the interconnected porous network and high swelling ratio (over 9.99 ± 0.33) are beneficial to the transmission of oxygen and absorption of exudates to accelerate the healing of wound. Subsequently, berberine (BBR) was loaded into the G/SA hydrogels. The BBR/G/SA hydrogels show sustained drug release for 168 h and exhibit anti-bacterial effect against Staphylococcus aureus. The results of L929 cells cultured with the hydrogel extracts indicate good biocompatibility. Finally, results of EDTA-induced detachment performances demonstrate that the hydrogels could be removed from the wound as the internal structure destroyed. All illustrated results above demonstrated the BBR carried G/SA hydrogels have potential used as wound dressing materials in future.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Bandagens , Berberina/química , Ácido Edético/química , Gelatina/química , Gelatina/farmacologia , Humanos , Hidrogéis/química , Staphylococcus aureus/patogenicidade , Cicatrização/efeitos dos fármacos
18.
Mar Pollut Bull ; 167: 112292, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33873041

RESUMO

The effects of multiple natural and anthropogenic stressors on the functional trait composition and diversity of marine macrobenthic communities in Laoshan Bay were investigated using biological trait analysis (BTA). Seven traits, including 27 trait modalities and four functional diversity indices (functional richness, functional evenness, functional divergence, and Rao's quadratic entropy), were considered. The results of RLQ (environmental variables (R), species taxa (L), and traits (Q)) and variance partitioning analysis (VPA) showed that the trait compositions and functional diversity of macrobenthic communities were influenced by a combination of stressors, among which heavy metals were the major factors. At the sites with high heavy metal pollution, the prevalent traits were infauna, burrower, and deposit feeder, whereas epifauna, carnivores and crawlers were dominant at the sites of low heavy metal contamination. The impact of natural environmental gradients on macrobenthic communities is also worthy of attention.


Assuntos
Invertebrados , Metais Pesados , Animais , Baías , Biodiversidade , China , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-33774729

RESUMO

This study aims to explore the mechanism on how aggressive interaction alters reproductive physiology by testing whether aggressive interaction can activate the reproductive neuroendocrine function via the hypothalamus-pituitary-gonadal (HPG) axis in black rockfish (Sebastes schlegelii). The expressions of the androgen receptor gene (ar) and gonadotropin-releasing hormone genes (gnrhs), the concentration of plasma androgens, and GSI (the ratio of testes mass to body mass) were compared between the interaction group (dominant males or subordinate males) and the isolation group in male black rockfish after 3 weeks. A full-length cDNA encoding an androgen receptor (AR) of 766 amino acids was isolated. Transcripts encoding this AR were detected at a high relative abundance in the liver, kidney, testis, ovary, muscle, and intestine tissue. Further evaluation of brain genes transcripts abundance revealed that the mRNA levels of gnrh I and ar genes were significantly different between the interaction group and the isolation group in the hypothalamus. However, no significant difference was detected in testosterone, 11-keto-testosterone, and GSI between these two groups. This study indicates that a long-term aggressive interaction affect the expression of hypothalamic gnrh I and ar but may not change the physiological function of the HPG axis in an all-male condition.

20.
Dig Dis Sci ; 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721161

RESUMO

BACKGROUND: Proteasome subunit alpha type 7 (PSMA7) shows a carcinogenic effect on various human malignancies, but its role and regulatory mechanism in gastric carcinoma (GC) remain unclear. AIMS: This study aimed to explore the role and mechanism of PSMA7 in GC. METHODS: In this study, PSMA7 expressions in GC cells and tissues were detected, and relationships between PSMA7 and clinicopathological features were explored. Then, PSMA7 levels in human GC cells were intervened, and changes in cell biological behavior were observed in vitro and vivo. Key proteins and downstream factors of MAPK signaling pathway were detected after PSMA7 intervention. RESULTS: PSMA7 was upregulated in GC tissues and cell lines. PSMA7 overexpression was significantly associated with poor pTNM, cTNM stage, and high HP infection. PSMA7 can promote proliferation, invasion, and metastasis of GC cells in vitro and vivo. Furthermore, PSMA7 expression affected the phosphorylation level of JNK, P38, ERK and the expressions of their downstream factors Ap-1, c-myc, P53. CONCLUSION: PSMA7 can promote GC proliferation, invasion, and metastasis through MAPK signaling pathway in GC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...