RESUMO
OBJECTIVES: Massage is a common therapy of nonpharmacological treatments, particularly in Tuina (Chinese massage) as its most common style, detailed guidance in reporting the intervention is warranted for its evaluation and replication. Based on the CONSORT (Consolidated Standards of Reporting Trials), we aimed to develop an Extension for Tuina/Massage, namely "The STandards for Reporting Interventions in Clinical Trials Of Tuina/Massage (STRICTOTM)." METHODS: A group of professional clinicians, trialists, methodologists, developers of reporting guidelines, epidemiologists, statisticians, and editors has developed this STRICTOTM checklist through a standard methodology process recommended by the EQUATOR (Enhancing the QUAlity and Transparency of Health Research) Network, including prospective registration, literature review, draft of the initial items, three rounds of the Delphi survey, consensus meeting, pilot test, and finalization of the guideline. RESULTS: A checklist of seven items (namely Tuina/Massage rationale, details of Tuina/Massage, intervention regimen, other components of the intervention, Tuina/Massage provider background, control or comparator interventions, and precaution measures), and 16 subitems were developed. Explanations and examples (E&E) for each item are also provided. CONCLUSIONS: The working group hopes that the STRICTOTM, in conjunction with both the CONSORT statement and extension for nonpharmacologic treatment, can improve the reporting quality and transparency of Tuina/Massage clinical research.
RESUMO
Background: Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD. Methods: CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated. Results: A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells. Conclusion: 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Biomarcadores , Aprendizado de Máquina , Apoptose , Biologia ComputacionalRESUMO
Autoantibodies against NETs (ANETA) are present in SLE patients. We aimed to determine the clinical relevance of ANETA in SLE. Serum from 129 SLE patients, 161 patients with various rheumatoid diseases (DC), and 53 healthy controls (HC) were tested by a home-made ANETA ELISA platform. ANETA showed a sensitivity of 35.7% and a specificity of 92.5%, respectively, in the diagnosis of SLE. The combination of ANETA with anti-dsDNA antibody increased the diagnostic sensitivity from 49.6% to 62.8% for SLE. The presence of ANETA potentiates the clinical utility of anti-dsDNA antibodies in identifying a subset of SLE patients with higher disease activity and hematological abnormalities. The binding of ANETA to NETs did not inhibit the immunostimulatory effect of NETs. Our findings suggested that ANETA have potential as clinically relevant biomarkers that potentiate the clinical performance of anti-dsDNA antibodies in the diagnosis, risk stratification and subtyping of patients with SLE.
RESUMO
This study investigates the U.S. stock market efficiency from the symmetric and asymmetric perspectives during the COVID-19 pandemic. We explore that the pandemic boosts (hurts) the information role of symmetrically (asymmetrically) informed trading. Specifically, we find that the epidemic outbreak and infection scale strengthen (weaken) the stock return reaction to symmetrically (asymmetrically) informed trading. Evidence also indicates that the effect of symmetrically (asymmetrically) informed trading on stocks' permanent price shocks and price informational efficiency is enhanced (impaired) during the pandemic. Moreover, all these effects are consistently more intensive to informed buys.
RESUMO
Epithelial to mesenchymal transition (EMT) plays a crucial role in cancer metastasis, accompanied with vast epigenetic changes. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays regulatory roles in multiple biological processes. Although a few studies have shed light on AMPK regulating cancer metastasis, the inside epigenetic mechanisms remain unknown. Herein we show that AMPK activation by metformin relieves the repressive H3K9me2-mediated silencing of epithelial genes (e.g., CDH1) during EMT processes and inhibits lung cancer metastasis. PHF2, a H3K9me2 demethylase, was identified to interact with AMPKα2. Genetic deletion of PHF2 aggravates lung cancer metastasis and abolishes the H3K9me2 downregulation and anti-metastasis effect of metformin. Mechanistically, AMPK phosphorylates PHF2 at S655 site, enhancing PHF2 demethylation activity and triggering the transcription of CDH1. Furthermore, the PHF2-S655E mutant that mimics AMPK-mediated phosphorylation status further reduces H3K9me2 and suppresses lung cancer metastasis, while PHF2-S655A mutant presents opposite phenotype and reverses the anti-metastasis effect of metformin. PHF2-S655 phosphorylation strikingly reduces in lung cancer patients and the higher phosphorylation level predicts better survival. Altogether, we reveal the mechanism of AMPK inhibiting lung cancer metastasis via PHF2 mediated H3K9me2 demethylation, thereby promoting the clinical application of metformin and highlighting PHF2 as the potential epigenetic target in cancer metastasis.
Assuntos
Neoplasias Pulmonares , Metformina , Humanos , Fosforilação , Proteínas Quinases Ativadas por AMP , Transição Epitelial-Mesenquimal , Proteínas de HomeodomínioRESUMO
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
RESUMO
BACKGROUND: The conserved sirtuin protein sirtuin 3 (SIRT3) is a vital protective protein for cardiac hypertrophy. Inhibition of SIRT3 accelerated the development of heart hypertrophy. On the other hand, myocardial hypertrophy was prevented by overexpressing SIRT3. SIRT3 has been proposed as a potential therapeutic target for managing or averting heart hypertrophy. Baicalin, a flavonoid extracted from the Scutellaria baicalensis plant, has anti-cardiovascular properties, including protection against cardiac hypertrophy. However, the molecular mechanism of the anti-hypertrophic effect of baicalin is not well known. PURPOSE: In this study, we aim to investigate the effect of baicalin on cardiac hypertrophy and explored its underlying molecular mechanisms. STUDY-DESIGN/METHODS: Abdominal aortic constriction (AAC)-induced mouse cardiac hypertrophy and angiotensin II (Ang II)-induced cardiomyocyte hypertrophy models were established. After baicalin treatment, cardiac hypertrophy was monitored by detecting the expression of hypertrophic genes and cell surface area. Echocardiogram was performed to check the heart function in vivo. Moreover, the protein expression of the SIRT3-dependent pathway was detected by Western blotting. RESULTS: In this work, we demonstrated that baicalin might suppress the cell surface area and the expression of the Ang II -induced myosin heavy chain ß (ß-MHC), brain natriuretic polypeptide (BNP), and atrial natriuretic factor (ANF). Additionally, it reduced the AAC rats' hypertrophic impact. We also found that baicalin prevents cardiac hypertrophy by regulating SIRT3/LKB1/AMPK signaling pathway. Moreover, we showed that baicalin upregulated the SIRT3 protein expression by inhibiting proteasome and by the activation of 20 S proteasome subunit beta type-5 (PSMB5). CONCLUSION: These results offer the first proof that baicalin inhibits cardiac hypertrophy due to its effect on the SIRT3-dependent signaling pathway, indicating its potential for treating cardiac hypertrophy and heart failure. The present study provides a preliminary experimental basis for the clinical application of baicalin and baicalin-like compounds.
RESUMO
OBJECTIVES: Little is known about the immunology underlying variable treatment response in rheumatoid arthritis (RA). We performed large-scale transcriptome analyses of peripheral blood immune cell subsets to identify immune cells that predict treatment resistance. METHODS: We isolated 18 peripheral blood immune cell subsets of 55 patients with RA requiring addition of new treatment and 39 healthy controls, and performed RNA sequencing. Transcriptome changes in RA and treatment effects were systematically characterised. Association between immune cell gene modules and treatment resistance was evaluated. We validated predictive value of identified parameters for treatment resistance using quantitative PCR (qPCR) and mass cytometric analysis cohorts. We also characterised the identified population by synovial single cell RNA-sequencing analysis. RESULTS: Immune cells of patients with RA were characterised by enhanced interferon and IL6-JAK-STAT3 signalling that demonstrate partial normalisation after treatment. A gene expression module of plasmacytoid dendritic cells (pDC) reflecting the expansion of dendritic cell precursors (pre-DC) exhibited strongest association with treatment resistance. Type I interferon signalling was negatively correlated to pre-DC gene expression. qPCR and mass cytometric analysis in independent cohorts validated that the pre-DC associated gene expression and the proportion of pre-DC were significantly higher before treatment in treatment-resistant patients. A cluster of synovial DCs showed both features of pre-DC and pro-inflammatory conventional DC2s. CONCLUSIONS: An increase in pre-DC in peripheral blood predicted RA treatment resistance. Pre-DC could have pathophysiological relevance to RA treatment response.
RESUMO
Mobile genetic elements (MGEs) mediated horizontal gene transfer is the primary reason for the propagation of antibiotic resistance genes in environment. The behavior of MGEs under magnetic biochar pressure in sludge anaerobic digestion (AD) is still unknown. This study evaluated the effects of different dosage magnetic biochar on the MGEs in AD reactors. The results showed that the biogas yield was highest (106.68 ± 1.16 mL g-1 VSadded) with adding optimal dosage of magnetic biochar (25 mg g-1 TSadded), due to it increased the microorganism's abundance involved in hydrolysis and methanogenesis. While, the total absolute abundance of MGEs in the reactors with magnetic biochar addition increased by 11.58%-77.37% compared with the blank reactor. When the dosage of magnetic biochar was 12.5 mg g-1 TSadded, the relative abundance of most MGEs was the highest. The enrichment effect on ISCR1 was the most significant, and the enrichment rate reached 158.90-214.16%. Only the intI1 abundance was reduced and the removal rates yield 14.38-40.00%, which was inversely proportional to the dosage of magnetic biochar. Co-occurrence network explored that Proteobacteria (35.64%), Firmicutes (19.80%) and Actinobacteriota (15.84%) were the main potential host of MGEs. Magnetic biochar changed MGEs abundance by affecting the potential MGEs-host community structure and abundance. Redundancy analysis and variation partitioning analysis showed that the combined effect of polysaccharides, protein and sCOD exhibited the greatest contribution (accounted for 34.08%) on MGEs variation. These findings demonstrated that magnetic biochar increases the risk of MGEs proliferation in AD system.
Assuntos
Genes Bacterianos , Esgotos , Anaerobiose , Antibacterianos/farmacologia , Sequências Repetitivas Dispersas , Fenômenos Magnéticos , Esterco/microbiologiaRESUMO
BACKGROUND: Micafungin is an echinocandin-type antifungal agent used for the clinical treatment of invasive fungal infections. It is semisynthesized from the sulfonated lipohexapeptide FR901379, a nonribosomal peptide produced by the filamentous fungus Coleophoma empetri. However, the low fermentation efficiency of FR901379 increases the cost of micafungin production and hinders its widespread clinical application. RESULTS: Here, a highly efficient FR901379-producing strain was constructed via systems metabolic engineering in C. empetri MEFC09. First, the biosynthesis pathway of FR901379 was optimized by overexpressing the rate-limiting enzymes cytochrome P450 McfF and McfH, which successfully eliminated the accumulation of unwanted byproducts and increased the production of FR901379. Then, the functions of putative self-resistance genes encoding ß-1,3-glucan synthase were evaluated in vivo. The deletion of CEfks1 affected growth and resulted in more spherical cells. Additionally, the transcriptional activator McfJ for the regulation of FR901379 biosynthesis was identified and applied in metabolic engineering. Overexpressing mcfJ markedly increased the production of FR901379 from 0.3 g/L to 1.3 g/L. Finally, the engineered strain coexpressing mcfJ, mcfF, and mcfH was constructed for additive effects, and the FR901379 titer reached 4.0 g/L under fed-batch conditions in a 5 L bioreactor. CONCLUSIONS: This study represents a significant improvement for the production of FR901379 and provides guidance for the establishment of efficient fungal cell factories for other echinocandins.
Assuntos
Alcanossulfonatos , Peptídeos Cíclicos , Micafungina , Reatores BiológicosRESUMO
BACKGROUND: Ductal lesions are an important, often overlooked, and poorly understood issue in breast imaging, which have a risk of underlying malignancy ranging from 5 to 23%. Ultrasonography (US), which has largely replaced galactography or ductography, has become an important imaging method to assess patients with ductal lesions. However, it is difficult to distinguish benign from malignant ductal abnormalities only by ultrasonography, most of which are recommended to be at least in subcategory 4A; these require biopsy according to the ACR BI-RADS®atlas 5th Edition-breast ultrasound. Contrast-enhanced ultrasound (CEUS) has been shown to be valuable for differentiating benign from malignant tumors, but its value is unclear in breast ductal lesions. Therefore, the purposes of this study were to explore the characteristics of malignant ductal abnormalities on US and CEUS imaging and the diagnostic value of CEUS in breast ductal abnormalities. METHODS: Overall, 82 patients with 82 suspicious ductal lesions were recruited for this prospective study. They were divided into benign and malignant groups according to the pathological results. Morphologic features and quantitative parameters of US and CEUS were analyzed by comparison and multivariate logistic regression to determine the independent risk factors. The diagnostic performance was assessed by receiver operating characteristic (ROC) curve analysis. RESULTS: Shape, margin, inner echo, size, microcalcification and blood flow classification on US, wash-in time, enhancement intensity, enhancement mode, enhancement scope, blood perfusion defects, peripheral high enhancement and boundary on CEUS were identified as features correlated with malignant ductal lesions. However, multivariate logistic regression showed that only microcalcification (OR = 8.96, P = 0.047) and enhancement scope (enlarged, OR = 27.42, P = 0.018) were independent risk factors for predicting malignant ductal lesions. The sensitivity, specificity, positive predictive value, negative predictive value, accuracy and area under the ROC curve of microcalcifications combined with an enlarged enhancement scope were 0.895, 0.886, 0.872, 0.907, 0.890, and 0.92, respectively. CONCLUSIONS: Microcalcification and enlarged enhancement scope are independent factors for predicting malignant ductal lesions. The combined diagnosis can greatly improve the diagnostic performance, indicating that CEUS can be useful in the differentiation of benign and malignant lesions to formulate more appropriate management for ductal lesions.
Assuntos
Neoplasias da Mama , Calcinose , Feminino , Humanos , Estudos Prospectivos , Meios de Contraste , Ultrassonografia/métodos , Ultrassonografia Mamária/métodos , Sensibilidade e Especificidade , Diagnóstico DiferencialRESUMO
As a low-cost additive to anaerobic digestion (AD), magnetic biochar (MBC) can act as an electron conductor to promote electron transfer to enhance biogas production performance in the AD process of sewage sludge and has thus attracted much attention in research and industrial applications. In the present work, Camellia oleifera shell (COS) was used to produce MBC as an additive for mesophilic AD of sewage sludge, in order to explore the effect of MBC on the mesophilic AD process and its enhancement mechanism. Analysis by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectrometry (FTIR), and X-ray diffraction (XRD) further confirmed that biochar was successfully magnetized. The yield of biogas from sewage sludge was enhanced by 14.68-39.24% with the addition of MBC, and the removal efficiency of total solid (TS), volatile solids (VS), and soluble chemical oxygen demand (sCOD) were 28.99-46.13%, 32.22-48.62%, and 84.18-86.71%, respectively. According to the Modified Gompertz Model and Cone Model, the optimum dosage of MBC was 20 mg/g TS. The maximum methane production rate (Rm) was 15.58% higher than that of the control reactor, while the lag-phase (λ) was 43.78% shorter than the control group. The concentration of soluble Fe2+ and Fe3+ were also detected in this study to analyze the function of MBC for improving biogas production performance from sewage sludge. The biogas production was increased when soluble Fe3+ was reduced to soluble Fe2+. Overall, the MBC was beneficial to the resource utilization of COS and showed a good prospect for improving mesophilic AD performance.
Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Esgotos/química , Biocombustíveis/análise , Reatores Biológicos , Fenômenos MagnéticosRESUMO
Introduction of Brønsted acids into biomimetic nonheme reactions promotes the oxidative ability of metal-oxygen complexes significantly. However, the molecular machinery of the promoted effects is missing. Herein, a comprehensive investigation of styrene oxidation by a cobalt(III)-iodosylbenzene complex, [(TQA)CoIII(OIPh)(OH)]2+ (1, TQA = tris(2-quinolylmethyl)amine), in the presence and absence of triflic acid (HOTf) was performed using density functional theory calculations. Results revealed for the first time that there is a low-barrier hydrogen bond (LBHB) between HOTf and the hydroxyl ligand of 1, which forms two valence-resonance structures [(TQA)CoIII(OIPh)(HO---HOTf)]2+ (1LBHB) and [(TQA)CoIII(OIPh)(H2O--OTf-)]2+ (1'LBHB). Due to the oxo-wall, these complexes (1LBHB and 1'LBHB) cannot convert to high-valent cobalt-oxyl species. Instead, styrene oxidation by these oxidants (1LBHB and 1'LBHB) shows novel spin-state selectivity, i.e., on the ground closed-shell singlet state, styrene is oxidized to an epoxide, whereas on the excited triplet and quintet states, an aldehyde product, phenylacetaldehyde, is formed. The preferred pathway is styrene oxidation by 1'LBHB, which is initiated by a rate-limiting bond-formation-coupled electron transfer process with an energy barrier of 12.2 kcal mol-1. The nascent PhIO-styrene-radical-cation intermediate undergoes an intramolecular rearrangement to produce an aldehyde. The halogen bond between the OH-/H2O ligand and the iodine of PhIO modulates the activity of the cobalt-iodosylarene complexes 1LBHB and 1'LBHB. These new mechanistic findings enrich our knowledge of nonheme chemistry and hypervalent iodine chemistry and will play a positive role in the rational design of new catalysts.
RESUMO
BACKGROUND: Dulaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has been approved for improving glycemic control and reducing the risk of cardiovascular (CV) adverse events. This study compared the pharmacokinetic (PK) profiles, safety, and immunogenicity of LY05008, a biosimilar candidate, to a licensed product dulaglutide in healthy Chinese male subjects. RESEARCH DESIGN AND METHODS: In this double-blind, open-label, parallel-group study, healthy Chinese male subjects were randomized 1:1 to receive either LY05008 or dulaglutide subcutaneously. Primary study endpoints were PK parameters such as the area under the concentration-time curve (AUC) from time zero to infinity (AUC0 - ∞), AUC from time zero to the last quantifiable concentration (AUC0-t), and maximum serum concentration (Cmax). Safety and immunogenicity profiles were also included for data analysis. RESULTS: 82 subjects were randomized to receive LY05008 (n = 41) or dulaglutide (n = 41). The 90% confidence intervals (CIs) of the geometric mean ratios (GMRs) of AUC0 - ∞, AUC0-t and Cmax of LY05008 to dulaglutide were all within the bioequivalence limits of 80%-125%. Other PK parameters, safety, and immunogenicity profiles were comparable across the two treatment groups. CONCLUSION: This study demonstrated PK similarity of LY05008, a dulaglutide biosimilar, to dulaglutide in healthy Chinese male subjects, with comparable safety and immunogenicity data. TRIAL REGISTRATION: The trial is registered at the Chinese Clinical Trial Registry (Identifier No. ChiCTR2200066519).
RESUMO
BACKGROUND: Maternal psychological distress during pregnancy is associated with unfavorable outcomes in infants. Mindfulness-based interventions (MBIs) can effectively alleviate psychological distress, but there are often barriers to the access of face-to-face interventions. OBJECTIVE: This study aimed to investigate the effectiveness of a digital guided self-help (GSH) MBI (GSH-MBI) in reducing maternal psychological distress and improving infant neuropsychological performance. METHODS: This was a randomized controlled trial. We recruited 160 women who were 12 to 20 weeks pregnant and exhibited psychological distress. We randomized them into a digital GSH-MBI group and a control group (usual perinatal care). The digital GSH-MBI consisted of a 6-week intervention through a WeChat mini program, with a daily reminder sent to the participants by a research assistant via WeChat. The primary outcomes consisted of maternal psychological distress, including depression, anxiety, and pregnancy-related anxiety symptoms, which were assessed at 6 time points from baseline to 6 months post partum (only pregnancy-related anxiety symptoms were assessed 3 times during pregnancy). The secondary outcomes were infant neuropsychological outcomes, including temperament and developmental behaviors, which were assessed at 6 weeks and 6 months post partum. RESULTS: Compared with the control group, the digital GSH-MBI group showed a significant reduction in depression, anxiety, and pregnancy-related anxiety symptoms. In addition, the scores of the digital GSH-MBI group were lower than those of the control group for the 3 types of infant temperament at 6 weeks post partum, including quality of mood, distractibility, and adaptability. CONCLUSIONS: Digital GSH-MBIs are effective in alleviating psychological distress among pregnant women and protecting infant outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Register ChiCTR2000040717; https://www.chictr.org.cn/showproj.aspx?proj=65376.
Assuntos
Atenção Plena , Angústia Psicológica , Feminino , Lactente , Gravidez , Humanos , Período Pós-Parto , Comportamentos Relacionados com a Saúde , Ansiedade/psicologia , Depressão/terapiaRESUMO
Fecal sewage (FS), composed of human feces and wastewater, potentially contains microplastics (MPs) that are prone to environmental pollution. In this study, 65 FS samples, as collected from 65 villages in 27 Chinese provinces, have been employed to investigate the characteristics of MPs in three kinds of household FS treatment facilities of rural regions, and the possibility of FS irrigation as the source of MPs in farmlands. As a result, seven physicochemical properties and microbial community of FS were detected, and pertinent social statistical data were collected to determine influencing factors of MPs. The abundance of FS-based MPs ranged from 47.16 to 143.05 particles L-1, with an average 90.38 ± 20.63 particles L-1. The FS from northern China had higher MPs abundance than that from southern and northwestern China. Average MPs abundance was cesspit (101.33) > septic tank (86.54) > biogas digester (84.11). The estimated mass of FS-based MPs entering farmlands in China was 7.8 × 103-5.6 × 104 tons a year. Chemical oxygen demand and genus Phascolarctobacterium might mainly affected MPs abundance in FS, while some other factors such as suspended substance, ambient temperature, and medical care spending were also significantly correlated with FS-based MPs abundance.
Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Esgotos , Plásticos , Poluentes Químicos da Água/análise , China , Monitoramento AmbientalRESUMO
Anti-obesity medications act by suppressing energy intake (EI), promoting energy expenditure (EE), or both. Metformin (Met) and mirabegron (Mir) cause weight loss by targeting EI and EE, respectively. However, anti-obesity effects during concurrent use of both have yet to be explored. In this study, we investigated the anti-obesity effects, metabolic benefits, and underlying mechanisms of Met/Mir combination therapy in two clinically relevant contexts: the prevention model and the treatment model. In the prevention model, Met/Mir caused further 12% and 14% reductions in body weight (BW) gain induced by a high-fat diet compared to Met or Mir alone, respectively. In the treatment model, Met/Mir additively promoted 17% BW loss in diet-induced obese mice, which was 13% and 6% greater than Met and Mir alone, respectively. Additionally, Met/Mir improved glucose tolerance and insulin sensitivity. These benefits of Met/Mir were associated with increased EE, activated brown adipose tissue thermogenesis, and white adipose tissue browning. Significantly, Met/Mir did not cause cardiovascular dysfunction in either model. Together, the combination of Met and Mir could be a promising approach for the prevention and treatment of obesity by targeting both EI and EE simultaneously.
RESUMO
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.