Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Sci ; 292: 110394, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005399

RESUMO

Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.

2.
J Struct Biol ; 209(1): 107406, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747559

RESUMO

The essential SAS2-related acetyltransferase 1 (Esa1), as a acetyltransferase of MYST family, is indispensable for the cell cycle and transcriptional regulation. The Tudor domain consists of 60 amino acids and belongs to the Royal family, which serves as a module interacting with methylated histone and/or DNA. Although Tudor domain has been widely studied in higher eukaryotes, its structure and function remain unclear in Trypanosoma brucei (T. brucei), a protozoan unicellular parasite causing sleeping sickness in human and nagana in cattle in sub-Saharan Africa. Here, we determined a high-resolution structure of TbEsa1 presumed Tudor domain from T. brucei by X-ray crystallography. TbEsa1 Tudor domain adopts a conserved Tudor-like fold, which is comprised of a five-stranded ß-barrel surrounded by two short α-helices. Furthermore, we revealed a non-specific DNA binding pattern of TbEsa1 Tudor domain. However, TbEsa1 Tudor domain showed no methyl-histone binding ability, due to the absence of key aromatic residues forming a conserved aromatic cage.

3.
Biochem Biophys Res Commun ; 521(3): 799-805, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706575

RESUMO

Lpg0189 is a type II secretion system-dependent extracellular protein with unknown function from Legionella pneumophila. Herein, we determined the crystal structure of Lpg0189 at 1.98 Šresolution by using single-wavelength anomalous diffraction (SAD). Lpg0189 folds into a novel chair-shaped architecture, with two sheets roughly perpendicular to each other. Bioinformatics analysis suggests Lpg0189 and its homologues are unique to Legionellales and evolved divergently. The interlinking structural and bioinformatics studies provide a better understanding of this hypothetical protein.

4.
Biochem Biophys Res Commun ; 521(4): 997-1002, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31727364

RESUMO

Laccases (benzenediol: oxygen oxidoreductases, EC1.10.3.2) can oxidize various substrates, and those which are tolerant to and even activated by salts have attracted a lot of attention due to their application potential in certain industries. The mechanism of the salt activation of laccases is awaiting to be elucidated yet. Our previous study (Li, Xie et al. 2018) supposed that the salt activation of marine laccase Lac15 might be attributed to Cl- ion specifically binding to some local sites to interfere substrate binding and/or electron transfer. In this study, we found two sites whose mutations resulted in elimination of the salt activation of Lac15's activity towards catechol and dopamine respectively, and revealed that the mutations affected the activity by altering both Em and kcat, demonstrating the supposed mechanism. A model for the salt activation of laccases was accordingly proposed, albeit some details are to be elucidated.

5.
Medicine (Baltimore) ; 98(47): e18116, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31764851

RESUMO

BACKGROUND: Pelvic organ prolapse (POP) is the downward descent of vaginal walls, affecting the health of 32% to 76% female patients. Conservative interventions are considered as priority before seeking help from surgery. We plan to make the systematic review to assess the effectiveness of conservative intervention for adult women with POP. METHODS: Studies will be searched in PubMed, EMBASE, and the Cochrane Library from inception to July 2017. Primary outcomes are specific POP-related symptom, severity of prolapse, Prolapse-related, and general health-related quality of life and other non-POP-specific symptoms. RESULTS: The data will be synthesized if possible using MD, SMD or RR. A descriptive analysis will be made if the data cannot be synthesized. DISCUSSION: The systematic review might provide solid evidence for the treatment of POP by conservative intervention.


Assuntos
Tratamento Conservador , Prolapso de Órgão Pélvico/terapia , Revisão Sistemática como Assunto , Adulto , Feminino , Humanos , Projetos de Pesquisa
6.
Biochem Biophys Res Commun ; 519(4): 894-900, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31563321

RESUMO

Laccases (benzenediol: oxygen oxidoreductases, EC1.10.3.2) can oxidize wide range of compounds thus have great application potential in diverse industries. The catalytic mechanisms of laccases have been extensively studied, while the details of proton transfer remain to be fully elucidated. In this study, we tried to uncover the sites that are crucial for the proton transfer of microbial laccase Lac15. A residue near the trinuclear copper center, D396, was indicated by statistical coupling analysis (SCA) and structural alignment to be an important site like D93, which is conserved in laccases and believed crucial for the catalysis by facilitating proton transfer. A representative mutant at this site, D396A, similar to D93A, exhibited significantly impaired catalysis with the global structure and substrate binding slightly perturbed. The mutation resulted in stay of the intermediate I, which would accept a proton to proceed to next catalysis stage, suggesting D396 might play a critical role in the proton transfer. Our finding may help to completely elucidate the proton transfer mechanism in laccases.

7.
Soft Matter ; 15(32): 6476-6484, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31365016

RESUMO

An injectable biomaterial has been prepared through co-assembly of lipopeptides C4-Bhc-Glu-Glu-NH2 and C14-Phe-Lys-Lys-NH2. This biomaterial contained a large number of nanofibre bundles (nano-bundles, NBs) of lipopeptide co-assemblies and performed like hydrogels. The morphologies of the NBs were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The rheological properties were investigated with a rheometer. Excitingly, the NB biomaterials exhibited shear thinning and self-healing properties, and could be used as injectable biomaterials. The coumarin group in the lipopeptides endowed the NB biomaterials with both ultraviolet (UV, a one photon process) and near-infrared (NIR) light (a two photon process) responsiveness. A small molecule (Doxorubicin, DOX) and a large molecule (bovine serum albumin, BSA) were used as model drugs, and both of them could be encapsulated in the NB biomaterials and could also be released sustainably or explosively under different conditions (with or without one- and two-photon irradiation). DOX and BSA have different release behaviors because of the NBs. Cell assays showed that the co-assembled NB biomaterials exhibited low cytotoxicity to normal cells. However, when DOX was loaded, the NB biomaterials could kill HeLa cells sustainably. Under UV and NIR irradiation, HeLa cells could be killed rapidly because of the burst release of DOX. The co-assembled supramolecular NB biomaterials with dual-responsiveness, tunable rheological properties and multi-drug encapsulating ability might have potential in biomedical engineering.


Assuntos
Materiais Biocompatíveis/química , Lipopeptídeos/química , Nanotubos/química , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/metabolismo , Difusão , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Raios Infravermelhos , Fótons , Reologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Resistência ao Cisalhamento , Raios Ultravioleta
8.
Langmuir ; 35(30): 9841-9847, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31268331

RESUMO

The coassembly behavior of peptide amphiphiles (PAs) C4-Bhc-EE-NH2 and C14-FKK-NH2 has been investigated by transmission electron microscopy, atomic force microscopy, fluorescence microscopy, circular dichroism, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance. These two PAs coassembled into nanofibers by electrostatic and π-π stacking interactions at a low concentration and further aggregated into nanofiber bundles via charge complementation on the surface of nanofibers. As the charge number varied with pH, the bundles could be disassembled/assembled with pH regulation. More interestingly, as C4-Bhc-EE-NH2 was a photodegradable molecule, the bundles could also be responsive to both ultraviolet (UV) and near-infrared (NIR) light. In contrast to the reversible pH-dependent response, the light responses were irreversible as C4-Bhc-EE-NH2 broke under UV or NIR radiation. The highlight of this article is that structural changes were realized for control at the aggregate level, not only at the molecular level. With this inspiration, we hope that we can support the novel biomaterial construction and exploitation of new functions of biomaterials.

9.
R Soc Open Sci ; 6(5): 190219, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218061

RESUMO

Heat-shock protein of 90 kDa (Hsp90) is a key molecular chaperone involved in folding the synthesized protein and controlling protein quality. Conformational dynamics coupled to ATPase activity in N-terminal domain is essential for Hsp90's function. However, the relevant process is still largely unknown in plant Hsp90s, especially those required for plant embryogenesis which is inextricably tied up with human survival. Here, AtHsp90.6, a member of Hsp90 family in Arabidopsis, was firstly identified as a protein essential for embryogenesis. Thus we modelled AtHsp90.6 in its functionally closed 'lid-down' and open 'lid-up' states, exploring the nucleotide binding mechanism in these two states. Free energy landscape and electrostatic potential analysis revealed the switching mechanism between these two states. Collectively, this study quantitatively analysed the conformational changes of AtHsp90.6 bound to ATP or ADP. This result may help us understand the mechanism of action of AtHsp90.6 in future.

10.
Biotechnol Biofuels ; 12: 95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044008

RESUMO

Background: Starch is an inexpensive and renewable raw material for numerous industrial applications. However, most starch-based products are not cost-efficient due to high-energy input needed in traditional enzymatic starch conversion processes. Therefore, α-amylase with high efficiency to directly hydrolyze high concentration raw starches at a relatively lower temperature will have a profound impact on the efficient application of starch. Results: A novel raw starch digesting α-amylase (named AmyZ1) was screened and cloned from a deep-sea bacterium Pontibacillus sp. ZY. Phylogenetic analysis showed that AmyZ1 was a member of subfamily 5 of glycoside hydrolase family 13. When expressed in Escherichia coli, the recombinant AmyZ1 showed high activity at pH 6.0-7.5 and 25-50 °C. Its optimal pH and temperature were 7.0 and 35 °C, respectively. Similar to most α-amylases, AmyZ1 activity was enhanced (2.4-fold) by 1.0 mM Ca2+. Its half-life time at 35 °C was also extended from about 10 min to 100 min. In comparison, AmyZ1 showed a broad substrate specificity toward raw starches, including those derived from rice, corn, and wheat. The specific activity of AmyZ1 towards raw rice starch was 12,621 ± 196 U/mg, much higher than other reported raw starch hydrolases. When used in raw starch hydrolyzing process, AmyZ1 hydrolyzed 52%, 47% and 38% of 30% (w/v) rice, corn, and wheat starch after 4 h incubation. It can also hydrolyze marine raw starch derived from Chlorella pyrenoidosa, resulting in 50.9 mg/g DW (dry weight of the biomass) of reducing sugars after 4 h incubation at 35 °C. Furthermore, when hydrolyzing raw corn starch using the combination of AmyZ1 and commercial glucoamylase, the hydrolysis rate reached 75% after 4.5 h reaction, notably higher than that obtained in existing starch-processing industries. Conclusions: As a novel raw starch-digesting α-amylase with high specific activity, AmyZ1 efficiently hydrolyzed raw starches derived from both terrestrial and marine environments at near ambient temperature, suggesting its application potential in starch-based industrial processes.

11.
Biochem Biophys Res Commun ; 514(4): 1122-1127, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31101334

RESUMO

Toxin-antitoxin (TA) systems play critical roles in the environment adaptation of bacteria. Allosteric coupling between the N-terminal DNA-binding domain and the C-terminal toxin-binding domain of antitoxins contributes to conditional cooperativity in the functioning of type II TA. Herein, using circular dichroism (CD), nuclear magnetic resonance (NMR), X-ray crystallography, and size exclusion chromatography (SEC), the structure and DNA binding of CopASO, a newly identified type II antitoxin in Shewanella oneidensis, were investigated. Our data show that CopASO is a typical RHH antitoxin with an ordered N-terminal domain and a disordered C-terminal domain, and furthermore indicate that the C-terminal domain facilitates DNA binding of the N-terminal domain, which in turn induces the C-terminal domain to fold and associate.

12.
FEBS J ; 286(16): 3129-3147, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30993866

RESUMO

The autoantigen La protein is an important component of telomerase and a predominantly nuclear phosphoprotein. As a telomerase subunit, La protein associates with the telomerase ribonucleoprotein and influences telomere length. In the reverse transcription, La protein stimulates enzymatic activity and increases repeated addition processivity of telomerase. As nuclear phosphoprotein, La protein binds the 3' poly(U)-rich elements of nascent RNA polymerase III transcripts to facilitate its correct folding and maturation. In this work, we identified a La protein homolog (TbLa) from Trypanosoma brucei (T. brucei). We revealed that TbLa interacts with ribosome-associated protein P34/P37, 40S ribosomal protein SA, and 60S ribosomal subunit L5 in T. brucei. In the interactions between TbLa protein and (P34/P37)/L5/SA, RNA recognition motif (RRM) domain of TbLa was indicated to make the major contribution to the processes. We determined the solution structure of TbLa RRM domain. NMR chemical shift perturbations revealed that the positively charged RNA-binding pocket of TbLa RRM domain is responsible for its interaction with ribosomal and ribosome-associated proteins P37/L5/SA. Furthermore, depletion of TbLa affected the maturation process of 5S rRNA and ribosomal assembly, suggesting TbLa protein might play a significant role in the ribosomal biogenesis pathway in T. brucei. Taken together, our results provide a novel insight and structural basis for better understanding the roles of TbLa and RRM domain in ribosomal biogenesis in T. brucei. DATABASE: Structural data are available in the PDB under the accession number 5ZUH.

13.
Gene ; 697: 123-130, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30794916

RESUMO

Haematococcus pluvialis is an economic microalga to produce astaxathin. To study the nitrogen metabolic process of H. pluvialis, the transcription level and enzyme content of nitrite reductase at different nitrate and phosphorus concentrations were studied. In this research, nitrite reductase gene (nir) was first cloned from H. pluvialis, which consists of 5592 nucleotides and includes 12 introns. The cDNA ORF is 1776 bp, encoding a 592 amino acid protein with two conserved domains. Phylogenetic analysis showed that the nir gene in H. pluvialis had the highest affinity with other freshwater green algae. Nitrogen and phosphorus play an important role in the growth of H. pluvialis. The single factor experiments of nitrogen on growth conditions showed that the group with 0.2 g/L NaNO3 had a relative high biomass. The single factor experiments of phosphorus on growth conditions showed that the group with 0.06 g/L K2HPO4 had a relative high biomass. The transcription level and enzymatic activity of nitrite reductase were detected at different nitrate and phosphorus concentrations. In the absence of nitrogen and phosphorus in the medium, nitrite reductase activity is the highest. This research provides theoretical guidance for optimization of culture medium for H. pluvialis and also provides an experimental basis for understanding of nitrogen metabolism pathway in H. pluvialis.


Assuntos
Clorofíceas/genética , Nitrito Redutases/genética , Clorófitas/genética , Nitritos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia
14.
Biochem J ; 476(2): 421-431, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30626613

RESUMO

Posttranslational modifications (PTMs) of core histones, such as histone methylation, play critical roles in a variety of biological processes including transcription regulation, chromatin condensation and DNA repair. In T. brucei, no domain recognizing methylated histone has been identified so far. TbTFIIS2-2, as a potential transcription elongation factors in T. brucei, contains a PWWP domain in the N-terminus which shares low sequence similarity compared with other PWWP domains and is absent from other TFIIS factors. In the present study, the solution structure of TbTFIIS2-2 PWWP domain was determined by NMR spectroscopy. TbTFIIS2-2 PWWP domain adopts a global fold containing a five-strand ß-barrel and two C-terminal α-helices similar to other PWWP domains. Moreover, through systematic screening, we revealed that TbTFIIS2-2 PWWP domain is able to bind H4K17me3 and H3K32me3. Meanwhile, we identified the critical residues responsible for the binding ability of TbTFIIS2-2 PWWP domain. The conserved cage formed by the aromatic amino acids in TbTFIIS2-2 PWWP domain is essential for its binding to methylated histones.


Assuntos
Histonas/química , Proteínas de Protozoários/química , Fatores de Elongação da Transcrição/química , Trypanosoma brucei brucei/química , Histonas/genética , Histonas/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
15.
Eur Biophys J ; 48(1): 99-110, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30443712

RESUMO

The abundant Plasmodium falciparum merozoite surface protein MSP2, a potential malaria vaccine candidate, is an intrinsically disordered protein with some nascent secondary structure present in its conserved N-terminal region. This relatively ordered region has been implicated in both membrane interactions and amyloid-like aggregation of the protein, while the significance of the flanking-disordered region is unclear. In this study, we show that aggregation of the N-terminal conserved region of MSP2 is influenced in a length- and sequence-dependent fashion by the disordered central variable sequences. Intriguingly, MSP2 peptides containing the conserved region and the first five residues of the variable disordered regions aggregated more rapidly than a peptide corresponding to the conserved region alone. In contrast, MSP2 peptides extending 8 or 12 residues into the disordered region aggregated more slowly, consistent with the expected inhibitory effect of flanking-disordered sequences on the aggregation of amyloidogenic ordered sequences. Computational analyses indicated that the helical propensity of the ordered region of MSP2 was modulated by the adjacent disordered five residues in a sequence-dependent manner. Nuclear magnetic resonance and circular dichroism spectroscopic studies with synthetic peptides confirmed the computational predictions, emphasizing the correlation between aggregation propensity and conformation of the ordered region and the effects thereon of the adjacent disordered region. These results show that the effects of flanking-disordered sequences on a more ordered sequence may include enhancement of aggregation through modulation of the conformational properties of the more ordered sequence.


Assuntos
Amiloide/química , Antígenos de Protozoários/química , Proteínas Intrinsicamente Desordenadas/química , Agregados Proteicos , Proteínas de Protozoários/química , Sequência de Aminoácidos , Sequência Conservada , Conformação Proteica em alfa-Hélice
16.
FEBS Lett ; 593(3): 288-295, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30588612

RESUMO

Merozoite surface protein 2 (MSP2) is a potential vaccine candidate against malaria, although its functional role is yet to be elucidated. Previous studies showed that MSP2 can interact with membranes, which may facilitate merozoite invasion into the host cell. The N-terminal 25 residues of MSP2 (MSP21-25 ), which may be aggregated on the merozoite surface, play a key role in the interaction with membranes. Here, we investigated the effects of MSP21-25 -membrane interactions on the conformation and aggregation of MSP21-25 and on membrane integrity, using nanodiscs and small unilamellar vesicles as mimetics of cell membranes. MSP21-25 -membrane interactions induced the peptide to form ß-structure and to aggregate, depending on the lipid composition of the membrane. Nonfibrillar aggregates in turn disrupted the membrane.


Assuntos
Antígenos de Protozoários/química , Merozoítos/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Lipossomas Unilamelares/química
17.
Biochem J ; 475(23): 3763-3778, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30389845

RESUMO

Centrin is a conserved calcium-binding protein that plays an important role in diverse cellular biological processes such as ciliogenesis, gene expression, DNA repair and signal transduction. In Trypanosoma brucei, TbCentrin4 is mainly localized in basal bodies and bi-lobe structure, and is involved in the processes coordinating karyokinesis and cytokinesis. In the present study, we solved the solution structure of TbCentrin4 using NMR (nuclear magnetic resonance) spectroscopy. TbCentrin4 contains four EF-hand motifs consisting of eight α-helices. Isothermal titration calorimetry experiment showed that TbCentrin4 has a strong Ca2+ binding ability. NMR chemical shift perturbation indicated that TbCentrin4 binds to Ca2+ through its C-terminal domain composed of EF-hand 3 and 4. Meanwhile, we revealed that TbCentrin4 undergoes a conformational change and self-assembly induced by high concentration of Ca2+ Intriguingly, localization of TbCentrin4 was dispersed or disappeared from basal bodies and the bi-lobe structure when the cells were treated with Ca2+ in vivo, implying the influence of Ca2+ on the cellular functions of TbCentrin4. Besides, we observed the interactions between TbCentrin4 and other Tbcentrins and revealed that the interactions are Ca2+ dependent. Our findings provide a structural basis for better understanding the biological functions of TbCentrin4 in the relevant cellular processes.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cálcio/química , Conformação Proteica , Proteínas de Protozoários/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calorimetria/métodos , Dicroísmo Circular , Motivos EF Hand , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Termodinâmica
18.
Des Monomers Polym ; 21(1): 172-181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357034

RESUMO

Chitosan (CS)-acetylsalicylic acid (ASA) nanoparticles, which are well dispersed and stable in aqueous solution, have been prepared by interpolymer complexation of ASA in CS solution. The physicochemical properties of nanoparticles were investigated by using FT-IR, 1H NMR, scanning electron microscope(SEM), dynamic light scattering, and UV spectrophotometer. It was found that the carboxyl group of the ASA had firmly integrated on the amino group of CS and the ASA-CS nanoparticles were almost spherical in shape with an average diameter of less than (79.3 ± 24.6) nm in high reproducibility and showed high chemical stability against environmental changes. It was also found that the prepared nanoparticles carried a positive charge and showed the size in the range from 700 to 150 nm. The surface structure and zeta potential of nanoparticles can be controlled by different preparation processes. The factor experiment results indicated that the ASA-CS nanoparticles had satisfactory loading capacity (LC) and encapsulation efficiency (EE), 27.27% and 46.88% (data not shown), respectively. The experiments of in vitro ASA release showed that these nanoparticles provided a sustained and pH-dependent drug release manner, and the release behavior was influenced by the pH value of the medium. Preliminary pharmacology experiment exhibited prolonged circulation and higher bioavailability than that of ASA. All the results indicated that ASA/CS nanoparticles may have promising pharmaceutical application, and further pharmacological research is needed to confirm these beneficial effects.

19.
Biochem Biophys Res Commun ; 505(3): 755-760, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30293681

RESUMO

Trypanosoma brucei (T. brucei) is a parasitic protozoan causing human sleeping sickness and related animal diseases. ENT (EMSY N-terminal) domain was first found in EMSY protein which has been proved to be involved in multiple biological processes such as DNA repair, tumorigenesis, and transcriptional regulation. So far, little is known about the function and structure of ENT domains from protozoan. Q385P5 from T. brucei, containing an ENT domain at its N-terminus, is a conserved protein in related kinetoplastid parasites. In this work, the crystal structure of ENT domain of Q385P5 (TbENT) was solved at a resolution of 2.3 Å. TbENT adopts a club-like shape consisting of five helixes, which is similar to the structure of human EMSY ENT domain (HsENT). Interestingly, TbENT shows significantly different orientation on the fifth α-helix compared with HsENT. Meanwhile, human HP1 interacts with a conserved motif adjacent to EMSY ENT domain. However, this conserved binding motif is absent in Q385P5. These differences may imply the different protein interactions and roles of Q385P5 and its ENT domain in T. brucei.


Assuntos
Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Trypanosoma brucei brucei/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/genética
20.
Medicine (Baltimore) ; 97(19): e0692, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29742718

RESUMO

BACKGROUND: To treat functional constipation, both electroacupuncture (EA) therapy and transcutaneous electric nerve stimulation (TENS) are safe and effective. However, no head-to-head comparison trial has been conducted. This trial compares the efficacy of electroacupuncture relative to transcutaneous electric nerve stimulation for functional constipation. METHODS: Individuals with functional constipation will be randomly allocated to receive either EA or TENS (n = 51, each), 3 times per week for 8 weeks. The primary outcome is the percentage of participants with an average increase from baseline of 1 or more complete spontaneous bowel movements at week 8. The secondary outcome measures are the following: at the time of visits, changes in the number of complete spontaneous bowel movements, number of spontaneous bowel movements, stool character, difficulty in defecation, patients' assessment of quality of life regarding constipation (self-report questionnaire), and use of auxiliary defecation methods. DISCUSSION: The results of this trial should verify whether EA is more efficacious than TENS for relieving symptoms of functional constipation. The major limitation of the study is the lack of blinding of the participants and acupuncturist.


Assuntos
Constipação Intestinal/terapia , Eletroacupuntura , Estimulação Elétrica Nervosa Transcutânea , Protocolos Clínicos , Humanos , Qualidade de Vida , Inquéritos e Questionários , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA