Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37678863

RESUMO

Objective: This study was aimed to investigate the application value of brain magnetic resonance imaging (MRI) technique, including arterial spin labeling (ASL) and diffusion tensor imaging (DTI) in patients with systemic lupus erythematosus (SLE) and cognitive dysfunction (CDF). Methods: A total of 50 patients with SLE admitted to the hospital from September 2020 to December 2022 were selected and divided into the group with CDF (n = 21) and the group without CDF (n = 29) according to the score of Montreal Cognitive Assessment Scale (MoCA). Additionally, 10 healthy individuals who underwent physical examinations during the same period were recruited as controls. After the conventional MRI, DTI and ASL data of all subjects were collected, statistical parametric mapping software combined with voxel morphology is applied for gray matter volume, white matter and gray matter cerebral blood flow (CBF) analysis among different groups. Results: There is a statistically significant difference in conventional MRI findings between the SLE group and the control group (P < .05). However, There was no significant difference in white matter fractional anisotropy (FA) values between the two groups (P > .05). The apparent diffusion coefficients (ADC) of the right precuneus and the right Brodmann's area 21 and 6 in SLE patients with CDF were significantly higher than SLE patients without CDF (P < .05). In comparison to the non-CDF group, the CDF group exhibited reduced gray matter volume, primarily in the anterior cingulate gyrus, left frontal lobe, and right insula (P < .05). Meanwhile, the white matter and gray matter cerebral blood flow (CBF) of SLE patients with CDF were significantly lower than those without CDF. (P < .05). Correlation analysis showed that the MoCA score was positively associated with the volume of gray matter in the right insula, bilateral frontal lobe, left temporal lobe, and cingulate gyrus (P < .05). Additionally, MoCA score was also found to be positively associated with the CBF of white matter and gray matter (P < .05). Conclusions: Alterations in gray matter volume and CBF in SLE patients are closely associated with combined CDF and can be observed by DTI and ASL techniques.

2.
Int J Biol Macromol ; 253(Pt 3): 126878, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703987

RESUMO

KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.

3.
Anal Chim Acta ; 1278: 341715, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709458

RESUMO

Herein, powerful DNA strand displacement reaction and sensitive electrochemical analysis method were ingeniously integrated to develop a programmable biosensing platform. Using DNA as the detection model, a cascade amplification system based on catalytic hairpin assembly and entropy-driven catalytic was constructed, and the reaction rate and signal amplification effect were significantly improved. The product of the cascade amplification circuit could undergo strand displacement reaction with the signal probe on the electrode surface to obtain sensitive electrochemical signal changes and realize highly sensitive detection of the target. In addition, without redesigning the DNA sequences in the cascade amplification circuit, the by-product strand typically wasted in traditional entropy-driven catalytic reactions can be fully utilized to construct a single-signal output biosensing system and even a dual-signal output ratiometric biosensing platform, improving the detection repeatability and reliability of the system, and expanding the application of DNA strand displacement reaction in electrochemical biosensing. Furthermore, benefiting from the design flexibility of the DNA molecules, the constructed biosensing platform realized the sensitive detection of aptamer substrate (kanamycin as an example) and certain metal ion (mercury as an example) by simply recoding the corresponding recognition sequence, demonstrating the good versatility of the biosensing platform.


Assuntos
Técnicas Eletroquímicas , Entropia , Reprodutibilidade dos Testes , Catálise , Eletrodos
4.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686301

RESUMO

In this study, we investigated the effect of exogenous melatonin (MT) on cell wall metabolism leading to Chinese plum (Prunus salicina Lindl.) fruit softening. Exogenous MT treatment increased the endogenous MT content in plum fruits before fruit ripening. However, in mature plum fruits, exogenous MT treatment decreased the fruit hardness, pulp hardness, fruit elasticity, contents of ion-bound pectin, covalently-bound pectin, hemicellulose, and cellulose, and activities of xyloglucan endotransglycosylase/hydrolase and endo-ß-1,4-glucanase, and increased the water-soluble pectin content, and activities of pectin methyl esterase, pectin lyase, polygalacturonase, ß-galactopyranosidase, and α-L-arabinofuranosidase. Transcriptome analysis revealed that the differentially expressed genes (DEGs) associated with cell wall metabolism in the exogenous MT-treated plum fruits were mainly enriched in the pentose and glucuronate interconversions, phenylpropanoid biosynthesis, cyanoamino acid metabolism, and galactose metabolism pathways. Analysis of these DEGs revealed that exogenous MT treatment affected the expression of genes regulating the cell wall metabolism. Overall, exogenous MT treatment promotes the fruit softening of Chinese plum.


Assuntos
Melatonina , Prunus domestica , Frutas/genética , Melatonina/farmacologia , Prunus domestica/genética , Transcriptoma
5.
Cancers (Basel) ; 15(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686533

RESUMO

The mesenchymal subtype of glioblastoma (mGBM), which is characterized by rigorous vasculature, resists anti-tumor immune therapy. Here, we investigated the mechanistic link between tumor vascularization and the evasion of immune surveillance. Clinical datasets with GBM transcripts showed that the expression of the mesenchymal markers YKL-40 (CHI3L1) and Vimentin is correlated with elevated expression of PD-L1 and poor disease survival. Interestingly, the expression of PD-L1 was predominantly found in vascular endothelial cells. Orthotopic transplantation of glioma cells GL261 over-expressing YKL-40 in mice showed increased angiogenesis and decreased CD8+ T cell infiltration, resulting in a reduction in mouse survival. The exposure of recombinant YKL-40 protein induced PD-L1 and VE-cadherin (VE-cad) expression in endothelial cells and drove VE-cad-mediated nuclear translocation of ß-catenin/LEF, where LEF upregulated PD-L1 expression. YKL-40 stimulated the dissociation of VE-cad from PD-L1, rendering PD-L1 available to interact with PD-1 from CD8+-positive TALL-104 lymphocytes and inhibit TALL-104 cytotoxicity. YKL-40 promoted TALL-104 cell migration and adhesion to endothelial cells via CCR5-dependent chemotaxis but blocked its anti-vascular immunity. Knockdown of VE-cad or the PD-L1 gene ablated the effects of YKL-40 and reinvigorated TALL-104 cell immunity against vessels. In summary, our study demonstrates a novel vascular immune escape mechanism by which mGBM promotes tumor vascularization and malignant transformation.

6.
iScience ; 26(9): 107515, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664615

RESUMO

Biglycan (BGN) is a proteoglycan with branch chains and highly expressed in enteric neurons in the tumor tissue of colorectal cancer (CRC), which is negatively associated with survival rates in patients with CRC. However, how the proteoglycan promotes the progress of CRC through interacting with bacteria and regulating the immune response of enteric neurons remains largely unknown. In the present study, we found that biglycan deficiency changed tumor distribution in a colitis-associated colon cancer model. Furthermore, we revealed that BGN deficiency inhibits tumor growth in an allograft tumor model and the migration of cancer cell by upregulating interleukin-10 expression in enteric neurons. Significantly, we demonstrated that biglycan deficiency enriched the abundance of Bacteroides thetaiotaomicron through competing with it for chondroitin sulfate to inhibit CRC progress. Our work provided new insights into the interaction between host proteoglycan and gut microbiota as well as the role of enteric neurons in the tumor microenvironment.

7.
World J Surg Oncol ; 21(1): 274, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658451

RESUMO

OBJECTIVE: To report a rare gastroblastoma; discuss its clinical features, histopathological morphology, diagnosis, differential diagnosis, treatment, and prognosis; and so as to improve the understanding on this disease and provide reference for its diagnosis, treatment, and prognosis. METHODS: The diagnosis and treatment, imaging examination, pathological, and genetic data of a 19-year-old young female patient with gastroblastoma were analyzed retrospectively, and the relevant literature was reviewed and summarized. RESULTS: The patient was found to have a "gastrointestinal stromal tumor" for 3 days by physical examination in another hospital. Abdominal CT and MRI considered "solid pseudopapilloma of pancreas" and clinically planned to perform "radical pancreatoduodenectomy." During the operation, the tumor was observed to bulge from the posterior wall of the gastric antrum, and the root was located in the gastric antrum, so it was changed to "partial gastrectomy + Ronx-y gastrojejunal anastomosis." The postoperative pathology showed that the tumor was bi-differentiated between gastric epithelium and mesenchymal. Combined with the results of IHC and the opinions of several consultation units, the diagnosis of gastric blastoma (low-grade malignancy) was supported. However, the fracture rearrangement of GLI1 and EWSR1 genes was not detected by FISH. After 19 months of follow-up, no signs of tumor recurrence and metastasis were found. CONCLUSION: Combined with existing literature reports, gastroblastoma occurs in young people, equally in men and women, and tends to occur in the gastric antrum. The biological behavior of the tumor tends to be inert, and the prognosis of most cases is good. Postoperative pathology and IHC are reliable methods for the diagnosis of gastric blastoma, and surgical resection of the lesion is the preferred treatment.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Gástricas , Feminino , Humanos , Masculino , Proteína GLI1 em Dedos de Zinco/genética , Estudos Retrospectivos , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Proteína EWS de Ligação a RNA
8.
Artigo em Inglês | MEDLINE | ID: mdl-37665065

RESUMO

With the emergence of innovative technologies, including combinatorial chemistry, high-throughput screening, computer-aided drug design (CADD), artificial intelligence (AI) and big data, the importance of drug design in the field of drug discovery and development is increasing. Additionally, education in drug design plays an important role in the training of pharmaceutical talent. Starting with undergraduates, cultivating pharmaceutical design thinking, developing innovation and creativity, and establishing an interdisciplinary knowledge system will not only provide students with a solid knowledge basis but also promote the development of the pharmaceutical industry in China. This article presents the current status of pharmaceutical education and the distribution of drug design courses in China and summarizes the employment prospects of graduates, thus providing valuable references and evidence for global pharmaceutical design education.

9.
Front Plant Sci ; 14: 1233448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621881

RESUMO

With global climate warming, recurring extreme heat and high temperatures irreversibly damage plants. Raspberries, known for their nutritional and medicinal value, are in high demand worldwide. Thus, it is important to study how high-temperature stress (HTS) affects raspberries. The physiological and biochemical responses and molecular genetic mechanisms of raspberry leaves to different HTS treatments were investigated: mild high temperature at 35°C (HT35), severe high temperature at 40°C (HT40), and the control at room temperature of 25°C (CK). The physiological results suggested that leaves in both the 35°C and 40°C treatments showed maximum relative conductivity at 4 d of stress, increasing by 28.54% and 43.36%, respectively, compared to CK. Throughout the stress period (0-4 d), malondialdehyde (MDA) and soluble protein contents of raspberry leaves increased under HT35 and HT40 treatments, while soluble sugar content first decreased and then increased. Catalase (CAT) activity increased, superoxide dismutase (SOD) activity first increased and then decreased, and peroxidase (POD) activity gradually decreased. Photosynthetic and fluorescence responses of raspberry leaves showed the most severe impairment after 4 d of stress. Transcriptomics results revealed significant alterations in 42 HSP family genes, two SOD-related differentially expressed genes (DEGs), 25 POD-related DEGs, three CAT-related DEGs, and 38 photosynthesis-related DEGs under HTS. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly enriched in photosynthesis-antenna proteins, pentose and glucuronide interconversion, phenylpropane biosynthesis, and indole alkaloid biosynthesis. HTS induced excessive ROS accumulation in raspberry leaves, causing oxidative damage in plant cells and subsequently reducing photosynthesis in raspberry leaves. This reduction in photosynthesis, in turn, affects photosynthetic carbon fixation and starch and sucrose metabolism, which, combined with phenol propane biosynthesis, mitigates the HTS-induced damage.

10.
Ecotoxicol Environ Saf ; 263: 115390, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619398

RESUMO

The existing data regarding the effects of polyethylene (PE) microplastics (MPs) smaller than 5 mm in size on earthworms are insufficient to fully comprehend their toxicity. In this study, earthworms Eisenia fetida were exposed to artificially added PE at a concentration ranging from 0.05 to 20 g/kg soil (0.005%-2%) for 60 days to determine the concentration range causing negative effects on earthworms and to uncover the potential toxic mechanisms. The individual growth, reproduction, and metabolic enzyme activities, including phase I enzymes (cytochrome P450 [CYP] 1A2, 2B6, 2C9, and 3A4), and phase II metabolic enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione sulfotransferase (GST)), and metabolomics were measured. The observed variations in responses of multiple cross-scale endpoints indicated that individual indices are less responsive to PE MPs than metabolic enzymes or metabolomics. Despite the absence of significant alterations in growth inhibition based on body weight, PE MPs at concentrations equal to or exceeding 2.5 g/kg were found to exert a toxic effect on earthworms, which was evidenced by significant changes in metabolic enzyme activities (CYP1A2, 2B6, 2C9, and 3A4, SOD, CAT, and GST) and important small molecule metabolites screened based on metabolomics, likely due to the bioaccumulation of PE. The toxicity of PE MPs to earthworms is inferred to be associated with neurotoxicity, oxidative damage, decreased detoxification capacity, energy metabolism imbalance, and impaired amino acid and purine metabolism due to bioaccumulation. The findings of this study will enhance our understanding of the molecular toxicity mechanisms of PE MPs and contribute to a more accurate assessment of the ecological risks posed by PE MPs in soil.


Assuntos
Oligoquetos , Polietileno , Animais , Polietileno/toxicidade , Microplásticos , Plásticos , Metabolômica , Superóxido Dismutase , Reprodução
11.
iScience ; 26(8): 107464, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37588169

RESUMO

Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.

12.
Inflammopharmacology ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603159

RESUMO

BACKGROUND: Myocardial infarction (MI), commonly referred to as a heart attack, occurs when the blood flow to a portion of the heart is blocked, causing damage to the heart muscle. In this study, we scrutinized the cardioprotective effect of gypenoside against the isoproterenol (ISO)-induced myocardial injury (MI) in the rats. METHODS: Wistar rats were divided into four groups as follow: normal, gypenoside (10 mg/kg), ISO control, and ISO control treated with the gypenoside (2.5, 5, and 10 mg/kg). Various parameters were estimated such as infract size, hemodynamic, inflammatory, antioxidant, cardiac, cytokines, and apoptotic markers. We also estimated the gut microbiota in the faces of the experimental rats. Finally, heart tissue histopathology performed. RESULT: Dose-dependent treatment of gypenoside significantly (P < 0.001) reduced the infracted size along with suppression of the heart weight and heart ratio along with enhance the body weight. Gypenoside treatment considerably altered the level of cardiac parameters, cardiac membrane stabilizing enzyme, hemodynamic parameters, antioxidant, lipid parameters, hepatic parameters, renal parameters, inflammatory cytokines, and mediators. Gypenoside significantly (P < 0.001) suppressed the level of apoptotic markers such as caspase-3, caspase-6, and caspase-9. Gypenoside significantly (P < 0.001) altered the relative abundance of unclassified bacteria, Tenericutes, Candidatus_Saccharibacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, Firmicutes and suppressed the ratio of F/B. CONCLUSION: Gypenoside acts as a protective phytoconstituents against the ISO-induced myocardial infraction in the rats via alteration of gut microbiota, inflammatory, and oxidative stress.

13.
Mol Plant ; 16(9): 1427-1444, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37649255

RESUMO

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.


Assuntos
Produtos Biológicos , Fagopyrum , Fagopyrum/genética , Metagenômica , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fertilidade
14.
Regen Med ; 18(9): 695-706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554102

RESUMO

Aim: This study investigated the effect of allografting umbilical cord blood mononuclear cells (UCBMCs) into the scrotum on sexual function in male elderly mice. Methods: UCBMCs were injected once into the scrotal sheath cavity of elderly mice. Results: The transplanted UCBMCs survived in the scrotal sheath cavity for 1 month. The mice had significantly increased blood testosterone concentrations, cyclic guanosine monophosphate (cGMP) levels and total nitric oxide synthase (T-NOS) activity in the corpus cavernosum and an increase in the number of mouse matings within 30 min (all p = 0.000). Conclusion: Scrotum-implanted UCBMCs improve the sexual function of male elderly mice through testosterone production and the NOS/cGMP pathway, which may provide an innovative transplantation approach for the treatment of erectile dysfunction.


Assuntos
Disfunção Erétil , Sangue Fetal , Humanos , Camundongos , Masculino , Animais , Idoso , Sangue Fetal/metabolismo , Escroto/metabolismo , Disfunção Erétil/metabolismo , Pênis/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Testosterona/metabolismo , Testosterona/farmacologia
15.
Mol Immunol ; 161: 91-103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531919

RESUMO

Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.


Assuntos
Coinfecção , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Streptococcus pneumoniae , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Glicoproteínas de Hemaglutininação de Vírus da Influenza
16.
Cancer Manag Res ; 15: 825-835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601820

RESUMO

Purpose: One of the most catastrophic malignant tumors is triple negative breast cancer (TNBC). It is characterized by rapid progression in the clinic. CircRNAs are abnormally expressed in almost all cancers and play important roles in tumor immune evasion. Nevertheless, the biological roles of the circular fibroblast growth factor receptor 4 RNA (circFGFR4) in TNBC remain unclear. Methods: The expression of circFGFR4 in TNBC tissues and paired nontumor tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circFGFR4 in TNBC immune evasion was estimated by analyzing clinical tissues. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore interaction between circFGFR4 and miR-185-5p. Results: Our results indicated that circFGFR4 was significantly overexpressed in TNBC tissues. Upregulated circFGFR4 expression was correlated with decreased CD8+ T cell infiltration in tumor tissues and resistance to anti-programmed cell death 1 (PD-1) immunotherapy in TNBC patients and mice bearing TNBC tumors. Forced circFGFR4 expression inhibited CD8+ T cell infiltration in tissue sections from TNCB tumor bearing mice. Mechanistically, circFGFR4 competitively sponged miR-185-5p and prevented miR-185-5p from decreasing the levels of C-X-C motif chemokine receptor 4 (CXCR4). Conclusion: Ultimately, our results indicated that circFGFR4 plays an important role in immune evasion and anti-PD-1 immunotherapy resistance via regulates miR-185-5p/CXCR4 axis in TNBC, thus suggesting that circFGFR4 has significant potential as a biomarker for predicting sensitivity to anti-PD-1 immunotherapy and as an immunotherapeutic target for TNBC.

17.
PLoS One ; 18(8): e0289349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561709

RESUMO

Remanufacturing is a sustainable product reutilization strategy to realize responsible consumption and production. However, remanufacturing practice can be subject to deficient consumer perception, production capacity constraint, uncertain demand and government intervention. This paper considers outsourced remanufacturing mode to establish and investigate a remanufacturing supply chain (RSC) network consisting of multiple manufacturers, retailers and remanufacturers. Optimality conditions with RSC network members are derived utilizing variation inequality. Numerical examples based on data accumulated from a remanufacturing enterprise and questionnaire survey on consumer perception for remanufactured products, are presented to put the proposed model into practice. Influences of product heterogeneity (new and remanufactured products), consumer preference, production capacity constraint, product price competitiveness, market demand fluctuation, and government financial measures on RSC network production and pricing strategies are investigated through numerical analyses. Analytical results indicate that pricing for the remanufactured product would be equivalent to that of the new product when consumers value the remanufactured product at a relatively high level, however an excessive penchant for the remanufactured product is less profitable especially from the perspective of the remanufacturer. In general, an upper-middle level of consumer preference for the remanufactured product is the most favourable scenario. When remanufacturing industry is just emerging, a high tax will be imposed on the manufacturer to accumulate remanufacturing subsidy for the government to achieve its balanced budget. As the remanufacturing industry develops and consumer environmental awareness enhances, it is especially essential for the government to establish a levy-subsidy mechanism to maintain sustainable progress of the industry. Combining main conclusions with the background of Chinese remanufacturing industry, managerial implications are provided from respective perspectives of enterprises' remanufacturing operation, government financial regulation, and consumer awareness enhancement. The analyses and results are especially relevant as a reference for remanufacturing decision-makings as well as government financial regulations, thus enhancing production sustainability as well as environmental benefits.


Assuntos
Comportamento do Consumidor , Regulamentação Governamental , Humanos , Indústrias , Custos e Análise de Custo , Governo , Comércio
18.
Mult Scler Relat Disord ; 78: 104903, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37556937

RESUMO

BACKGROUND: Clinical observation has revealed that multiple sclerosis (MS) and autoimmune thyroid disease (AITD) are strongly correlated. The aim of this study was to explore the shared molecular causes of MS and AITD, and to conduct drug rearrangement on this basis, search for comorbidity drugs and feasible drugs for mutual reference between the two diseases. METHODS: Based on genome-wide association study (GWAS) data and transcriptome data, susceptibility genes and differentially expressed genes related to MS and AITD were identified by bioinformatics analysis. Pathway enrichment, gene ontology (GO), protein-protein interaction analysis, and gene-pathway network analysis of the above genes were performed to identify a common target pool, including common genes, common hub genes, and common pathways, and to explore the specific pathogenesis of the two diseases, respectively. Drugs that target the common pathways/genes were identified through the Comparative Toxicogenomics Database (CTD), DrugBank database, and Drug-Gene Interaction (DGI) Database. Common hub genes were compared with the target genes of drugs approved for treating MS/AITD and drugs under investigation identified by DrugBank and ClinicalTrials, respectively. RESULTS: We identified a pool of shared targets containing genes and pathways, including 46 common genetic susceptibility pathways and 9 common differentially expressed pathways, including JAK-STAT signaling pathway, Th17 cell differentiation, Th1 and Th2 cell differentiation, PD-L1 expression and PD-1 checkpoint pathway in cancer, etc. In addition, a total of 29 hub genes, including TYK2, JAK1, STAT3, IL2RA, HLA-DRB1, and TLR3, were identified. Drugs approved for treating MS or AITD, such as methylprednisolone, cyclophosphamide, glatiramer, natalizumab, and methimazole, can target the shared genes and pathways, among which methylprednisolone and cyclophosphamide have been shown to be beneficial for the treatment of the two diseases, indicating that these drugs have the potential to become a priority in the treatment of comorbidities. Moreover, drugs targeting multiple common genes and pathways, including tacrolimus, deucravacitinib, and nivolumab, were identified as potential drugs for the treatment of MS, AITD, and their comorbidities. CONCLUSION: We observed that T-cell activation-related genes and pathways play a major role in the pathogenesis of both MS and AITD, which may be the molecular basis of the comorbidity. Moreover, we identified a variety of drugs which may be used as priority or potential treatments for comorbidities.

19.
Mol Med Rep ; 28(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594055

RESUMO

The present study aimed to establish a model of palmitic acid (PA)­induced insulin resistance (IR) in C2C12 cells and to determine the mechanism underlying how resveratrol (RSV) improves IR. C2C12 cells were divided into the control (CON), PA, PA + RSV, PA + RSV + DNA damage­inducible transcript 4 (DDIT4)­small interfering (si)RNA and PA + RSV + MHY1485 (mTOR agonist) groups. Glucose contents in culture medium and triglyceride contents in cells were determined. Oil red O staining was performed to observe the pathological changes in the cells. Reverse transcription­quantitative PCR and western blotting were conducted to evaluate the mRNA and protein expression levels, respectively, of DDIT4, mTOR, p70 ribosomal protein S6 kinase (p70S6K), insulin receptor substrate (IRS)­1, PI3K, AKT and glucose transporter 4 (GLUT4). Compared with in the CON group, glucose uptake was decreased, cellular lipid deposition was increased, phosphorylated (p)­IRS­1, p­mTOR and p­p70S6K protein expression levels were increased, and p­PI3K, p­AKT, GLUT4 and DDIT4 protein expression levels were decreased in the PA group. By contrast, compared with in the PA group, culture medium glucose content and cellular lipid deposition were decreased, p­PI3K, p­AKT, GLUT4 and DDIT4 protein expression levels were increased, p­IRS­1 protein expression levels were decreased, and mTOR and p70S6K mRNA and protein expression levels were decreased in the PA + RSV group. Compared with in the PA + RSV group, DDIT4 protein and mRNA expression levels were reduced in the PA + RSV + DDIT4­siRNA group, but showed no change in the PA + RSV + MHY1485 group. Following transfection with DDIT4­siRNA or treatment with MHY1485, the effects of RSV on improving IR and lipid metabolism were weakened, mTOR and p70S6K protein expression levels were upregulated, p­PI3K, p­AKT and GLUT4 protein expression levels were down­regulated, p­IRS­1 protein expression levels were upregulated, and culture medium glucose content and cellular lipid deposition were increased. In conclusion, RSV may improve PA­induced IR in C2C12 cells through the DDIT4/mTOR/IRS­1/PI3K/AKT/GLUT4 signaling pathway, as well as via improvements in glucose and lipid metabolism.


Assuntos
Resistência à Insulina , Ácido Palmítico , Humanos , Ácido Palmítico/farmacologia , Resveratrol/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , RNA Mensageiro , Meios de Cultura , Fatores de Transcrição
20.
Angew Chem Int Ed Engl ; 62(39): e202307054, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37523257

RESUMO

Aryl fluorides are important structural motifs in many pharmaceuticals. Although the Balz-Schiemann reaction provides an entry to aryl fluorides from aryldiazonium tetrafluoroborates, it suffers from drawbacks such as long reaction time, high temperature, toxic solvent, toxic gas release, and low functional group tolerance. Here, we describe a general method for the synthesis of aryl fluorides from aryldiazonium tetrafluoroborates using a piezoelectric material as redox catalyst under ball milling conditions in the presence of Selectfluor. This approach effectively addresses the aforementioned limitations. Furthermore, the piezoelectric material can be recycled multiple times. Mechanistic investigations indicate that this fluorination reaction may proceed via a radical pathway, and Selectfluor plays a dual role as both a source of fluorine and a terminal reductant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...