Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3594-3600, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31602928

RESUMO

Cytochrome P450 family is a kind of biocatalyst widely existing in nature. It has many functions such as catalyzing the biosynthesis of plant secondary metabolites and regulating phytoremediation. Based on the analysis of proteome data of Tripterygium wilfordii,the CYP450 gene of T. wilfordii was preliminarily analyzed and predicted by various bioinformatics methods. The results showed that after the expression of T. wilfordii suspension cells was induced by methyl jasmonate,the proteomic data of T. wilfordii were obtained and analyzed,and 10 CYP450 proteins of T. wilfordii were finally screened out. By analyzing the phylogenetic tree constructed with CYP450 gene of Arabidopsis family,the 10 CYP450 proteins were clustered into 6 different CYP450 families. The physical and chemical properties of CYP450 proteins in different families were different. The secondary structure of CYP450 proteins was mainly composed of irregular curls. Eight subcellular localization results of CYP450 proteins were chloroplasts and the rest were plastids. Subsequently,the conserved domains( heme active sites) shared by CYP450 genes were found by analyzing the results of multiple sequence alignment. Finally,by analyzing the transcriptome data of T. wilfordii,the expression distribution of T. wilfordii in different tissues was preliminarily confirmed,which verified its correlation with the biosynthesis of active components of T. wilfordii,and provided important genetic resources for the analysis of biosynthesis pathway of active components of T. wilfordii.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Proteínas de Plantas/química , Tripterygium/enzimologia , Biologia Computacional , Filogenia , Proteômica , Distribuição Tecidual
2.
J Hazard Mater ; 384: 121350, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31606705

RESUMO

Peroxymonosulfate (PMS) has gained attention as oxidant for SR-AOPs. It is essential to develop a stable heterogeneous catalyst with strong hydrophilicity and high electron transfer capability for PMS activating. In this study, cobalt oxyhydroxide (CoOOH) was synthesized and activated PMS for degradation of 2,4-dichlorophenol (2,4-DCP) aiming to assess the feasibility of CoOOH/PMS system. 50 mg/L of 2,4-DCP could be 100% degraded within 120 min with 0.20 g/L CoOOH and 6 mM PMS. CoOOH/PMS system possessed a high degradation efficiency (0.0462 min-1), which was about 10 and 4 times higher than Co3O4/PMS and CoFe2O4/PMS system, respectively. Furthermore, it was found that CoOOH/PMS system displayed effective catalytic performance over broad pH range (e.g. 3-9). Importantly, the quenching tests revealed that 1O2 was identified as dominant reactive oxygen species (ROS). Co (Ⅲ) was rapidly reduced to Co (Ⅱ) owing to the efficient electron transfer rate performance of CoOOH in the catalytic reaction. Then, the regeneration of Co (Ⅱ) facilitated CoOH+ owing to the surface of CoOOH with sufficient hydroxyl group, which is crucial for PMS activation and reactive oxygen species-ROS generation. This study proposed an alternative technology based on peroxymonosulfate catalyzed by cobalt-based hydroxide for waste water treatment.

3.
Water Res ; 168: 115158, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31618695

RESUMO

Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) have been observed with rapid agricultural and industrial development in the Songnen Plain, Northeast China, but the prospective sources have not been yet apportioned. The concentration of PAHs was measured in 31 sediment samples from 11 Songnen Plain lakes in 2015. The background flux of PAHs in these lake sediments is < 463 µg m-2 year-1. The maximal concentration of 16 U.S. EPA priority PAHs (599 ng g-1) recorded in this study is lower or similar to that found in most of the lake sediments across China, but higher than remote areas, such as North America Rocky Mountains. Both concentration and flux of PAHs increased after the 1950s, which correspond to the industrial development in this area and would probably mark the beginning of the Anthropocene in this region. A chemical mass balance model estimated that straw burning was a major source of Σ13PAH (3-6 rings) during the past 200 years, with an average contribution of 22.1%, followed by forest fire (21.2%), burning of gasoline (19.1%), coal (12.2%), coke (4.8%) and diesel (3.9%), whereas the contribution from crude oil and natural gas was negligible (<1%). Straw burning (20.2-25.2%) and forest fire (16.7-30.6%) were major sources of PAHs and contributed increasing flux in the past 200 years. The elevated level of PAH recorded after 1950s in this region are also from burning of gasoline (26.1-26.4%), coal (15.3-15.8%), and coke (5.1-9.0%). The contribution of petrogenic sources (e.g., direct oil spill) to the concentration of Σ13PAH seemed to be ignorable, at least in these lakes.

4.
Sci Rep ; 9(1): 13780, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551438

RESUMO

Nanocarbon materials are considered to be active for electrochemical oxygen reduction reaction (ORR) for hydrogen peroxide (H2O2) synthesis. In the present work, a new type of fullerene 60 (C60)-carbon nanotubes (CNTs) hybrid with covalently attached C60 onto outer surface of CNTs was synthesized. The structure of C60-CNT hybrid was confirmed by physical and chemical characterizations and its conformation is proposed featuring the covalent incorporation of CNTs and C60 derivative. C60-CNT hybrid showed high efficiencies on electro-generating H2O2, owing to huge surface area and intermolecular electron-transfer in the hybrid structure. A high H2O2 production rate of 4834.57 mg L-1 h-1 (426.58 mmol L-1) was achieved at - 0.2 V vs saturated calomel electrode (SCE).

5.
Environ Sci Technol ; 53(20): 12130-12140, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31507167

RESUMO

A thick and electroactive biofilm is the key to the successful development of microbial electrochemical systems and technologies (METs). In this study, intact anaerobic granular sludge (AGS), which is a spherical and dense microbial association, was successfully demonstrated as a novel and efficient biocatalyst in METs such as microbial fuel cells. Three different strategies were explored to shift the microbial composition of AGS from methanogenic to exoelectrogenic microbes, including varying the external resistance and organic loading and manipulating the anode potential. Among all the strategies, only with positive anode potential, AGS was successfully shifted from methanogenic to exoelectrogenic conditions, as indicated by the significantly high current response (10.32 A/m2) and 100% removal of organic carbon from wastewater. Moreover, the AGS bioanode showed no significant decrease in current generation and organic removal at pH 5, indicating good tolerance of AGS to acidic conditions. Finally, 16S rRNA sequencing revealed the enrichment of exoelectrogens and inhibition of methanogens in the microbial community of AGS after anode potential control. This study provides a proof of concept for extracting electrical energy from organic wastes by exoelectrogenic AGS along with simultaneous wastewater treatment and meanwhile opens up a new paradigm to create an efficient and cost-effective exoelectrogenic biocatalyst for boosting the industrial application of METs.

6.
Chin J Nat Med ; 17(8): 575-584, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472894

RESUMO

3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is the first committed enzyme in the MVA pathway and involved in the biosynthesis of terpenes in Tripterygium wilfordii. The full-length cDNA and a 515 bp RNAi target fragment of TwHMGS were ligated into the pH7WG2D and pK7GWIWG2D vectors to respectively overexpress and silence, TwHMGS was overexpressed and silenced in T. wilfordii suspension cells using biolistic-gun mediated transformation, which resulted in 2-fold increase and a drop to 70% in the expression level compared to cells with empty vector controls. During TwHMGS overexpression, the expression of TwHMGR, TwDXR and TwTPS7v2 was significantly upregulated to the control. In the RNAi group, the expression of TwHMGR, TwDXS, TwDXR and TwMCT visibly displayed downregulation to the control. The cells with TwHMGS overexpressed produced twice higher than the control value. These results proved that differential expression of TwHMGS determined the production of triptolide in T. wilfordii and laterally caused different trends of relative gene expression in the terpene biosynthetic pathway. Finally, the substrate acetyl-CoA was docked into the active site of TwHMGS, suggesting the key residues including His247, Lys256 and Arg296 undergo electrostatic or H-bond interactions with acetyl-CoA.

7.
Planta ; 250(5): 1613-1620, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388830

RESUMO

MAIN CONCLUSION: A novel GA13-oxidase ofTripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase. It specifically catalyzes the conversion of GA9to GA20, but not GA4to GA1. Gibberellins (GAs) play essential roles in plant growth and development. Previous characterization of GA20- and GA3-oxidases yielded a large number of genetic elements that can interconvert different GAs. However, enzymes that catalyze the 13-hydroxylation step are rarely identified. Here, we report that the GA13-oxidase of Tripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase instead of reported cytochrome P450 oxygenases, among 376 differential proteins in comparative proteomics. Phylogenetic analysis showed that the enzyme resides in its own independent branch in the DOXC class. Unexpectedly, it specifically catalyzes the conversion of GA9 to GA20, but not GA4 to GA1. Contrary to the previous research, TwGA13ox transcriptional expression was upregulated ~ 146 times by exogenous application of methyl jasmonate (MeJA). RNAi targeting of TwGA13ox in T. wilfordii led to an 89.9% decrease of triptolide, a diterpenoid epoxide with extensive anti-inflammatory and anti-tumor properties. In subsequent MeJA supplementation experiments, triptolide production increased 13.4-times. TwGA13ox displayed root-specific expression. Our results provide a new GA13-oxidase from plants and elucidate the metabolic associations within the diterpenoid biosynthetic pathway (GAs, triptolide) at the genetic level.

8.
Ultrasound Med Biol ; 45(10): 2612-2622, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31371128

RESUMO

Our study aimed to investigate the correlation of the imaging features obtained using conventional ultrasound (US) and elastography (conventional strain elastography of elasticity imaging [EI], virtual touch tissue imaging [VTI] and 2-D shear wave elastography [2-D-SWE] of virtual touch tissue imaging quantification [VTIQ]) with the clinicopathologic features and immunohistochemical (IHC) subtypes of breast cancer. The sample consisted of images from 202 patients with 206 breast lesions that were confirmed as breast cancers. Lesions with HER2 overexpression (luminal B HER2+ or HER2+) had higher mean shear wave velocity (SWV) values than the others. Older patients, lower histologic grade, no lymphovascular invasion and no lymph node metastasis were associated with luminal A (p < 0.001). There were significant differences in SWV values, histologic grade and lymph node status among the different pathologic types. This association may allow the use of 2-D-SWE in the pre-operative prediction of tumor characteristics and biologic activity, which may determine the prognosis in a non-invasive manner.

9.
Food Chem ; 299: 125128, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299517

RESUMO

A novel strategy was used to produce inulin fructotransferase from Arthrobacter aurescens (Aa-IFTase) embedded in curdlan-based mesoporous silica microspheres (CMSiM-Aa-IFTase). The CMSiM-Aa-IFTase was constructed by co-entrapping cross-linked Aa-IFTase aggregates and curdlan into biomemitic silica, and the curdlan was subsequently removed by digestion with endo-ß-1,3-glucanase. During this process, the curdlan served as an agent to introduce pores in silica microspheres. The resulting CMSiM-Aa-IFTase showed higher stability and activity than free Aa-IFTase and mCLEAs-Aa-IFTase (modified cross-linked enzyme aggregates with Aa-IFTase). Furthermore, the CMSiM-Aa-IFTase displayed good reusability and excellent storage stability. The excellent catalytic performances were due to the combinational structure from the cross-linked enzyme aggregates and hard shell of mesoporous silica microspheres, which might decrease the negative interaction between support and enzyme, and improve the mechanical properties. The CMSiM-Aa-IFTase was applicable for efficient production of Difructose Anhydride III (DFA III), and this approach should be highly valuable for preparing various mesoporous composites for catalysis.


Assuntos
Arthrobacter/enzimologia , Dissacarídeos/metabolismo , Hexosiltransferases/química , Hexosiltransferases/metabolismo , beta-Glucanas/química , Catálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hexosiltransferases/genética , Microesferas , Dióxido de Silício
10.
Environ Int ; 131: 104944, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31284105

RESUMO

Hydraulic fracturing (HF) flowback and produced water (FPW) can be toxic to aquatic life but its chemical content is largely unknown, variable and complex. Seven FPW samples were collected from a HF operation in the Duvernay Formation (Alberta, Canada) over 30 days of flowback and characterized by a nontarget workflow based on high performance liquid chromatography - high resolution mass spectrometry (HRMS). A modified Kendrick mass defect plot and MS/MS spectral interpretation revealed seven series of homologues composed of ethylene oxide (i.e. -CH2CH2O-), among which a series of aldehydes was proposed as degradation products of polyethylene glycols, and two series of alkyl ethoxylate carboxylates could be proprietary HF additives. Many other ions were confidently assigned a formula by accurate mass measurement and were subsequently prioritized for identification by matching to records in ChemSpider and the US EPA's CompTox Chemistry Dashboard. Quaternary ammonium compounds, amine oxides, organophosphorous compounds, phthalate diesters and hydroxyquinoline were identified with high confidence by MS/MS spectra (Level 3), matching to reference spectra in MassBank (Level 2) or to authentic standards (Level 1). Temporal trends showed that most of the compounds declined in abundance over the first nine days of flowback, except for phthalate diesters and hydroxyquinoline that were still observed on Day 30 and had disappearance half-lives of 61 and 91 days, respectively. All the compounds followed first-order disappearance kinetics in flowback, except for polyoxygenated acids which followed second-order kinetics. This analysis and the workflow, based largely on public on-line databases, enabled profiling of complex organic compounds in HF-FPW, and will likely be useful for further understanding the toxicity and chemical fate of HF-FPW.

11.
Bioresour Technol ; 290: 121743, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323514

RESUMO

Resource efficient and novel practices to produce proteinaceous food and feed sources can partially alleviate the protein scarcity problem. The conversion of low-value waste streams into single cell protein (SCP) seems a potent solution. This study evaluated the possibility of urban biowaste valorization through coupling anaerobic digestion and SCP production, and feeding a methanotroph mixed-culture with raw and upgraded biogas. In respect to nitrogen supply, the mixed-culture could grow well providing nutrients by direct addition of pasteurized centrifuged-filtered digestate or by adding electrochemically extracted ammonium from the digestate. The SCP yield on methane varied from 0.59 to 0.76 g cell dry weight (CDW)/g CH4. A high yield on methane (0.87 g CDW/g CH4) proved that biogas is a good substitute for natural gas for scaled-up microbial protein production. In addition, the produced SCP was rich in essential amino acids, marking the produced biomass comparable with other protein sources.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Reatores Biológicos , Proteínas na Dieta , Nitrogênio
12.
Food Chem ; 298: 125087, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272052

RESUMO

In this study, comprehensive analysis was performed to evaluate the impact of high hydrostatic pressure (HHP) and traditional thermal processing methods (baking and steaming) on cod proteins. Results showed that HHP, but not baking or steaming, was able to increase the content of soluble protein nitrogen (1.42-fold), compared with control. Total peptide contents of HHP-treated samples were also significantly higher than baked and steamed ones. In addition, protein oxidation was greatly increased after baking (1.56-fold) and steaming (1.97-fold), whereas HHP did not exhibit any appreciable effect. Furthermore, the allergenicity of cod was significantly reduced after HHP as reflected by the attenuated IgE and IgG-binding capacities (67-84% relative to control), while baking and steaming resulted in higher allergenicity. This study strongly supports the potential of HHP for reducing allergenicity, avoiding protein oxidation, and improving digestibility of cod and other protein-rich foods susceptible to quality deterioration during thermal processing.


Assuntos
Proteínas de Peixes da Dieta/química , Hipersensibilidade Alimentar/prevenção & controle , Indústria de Processamento de Alimentos/métodos , Gadus morhua , Animais , Culinária , Digestão , Produtos Pesqueiros/análise , Proteínas de Peixes da Dieta/farmacocinética , Hipersensibilidade Alimentar/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pressão Hidrostática , Imunoglobulina G/metabolismo , Nitrogênio/análise , Oxirredução , Carbonilação Proteica , Vapor , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química
13.
Oxid Med Cell Longev ; 2019: 9549506, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205591

RESUMO

It has been demonstrated that vagus nerve stimulation (VNS) plays a protective role in ischemia/reperfusion (I/R) injury of various organs. The present study investigates the protective effect of VNS on hepatic I/R injury and the potential mechanisms. Male Sprague-Dawley rats were randomly allocated into three groups: the sham operation group (Sham; n = 6, sham surgery with sham VNS); the I/R group (n = 6, hepatic I/R surgery with sham VNS); and the VNS group (n = 6, hepatic I/R surgery plus VNS). The I/R model was established by 1 hour of 70% hepatic ischemia. Tissue samples and blood samples were collected after 6 hours of reperfusion. The left cervical vagus nerve was separated and stimulated throughout the whole I/R process. The stimulus intensity was standardized to the voltage level that slowed the sinus rate by 10%. VNS significantly reduced the necrotic area and cell death in I/R tissues. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were also decreased by VNS. In addition, VNS suppressed inflammation, oxidative stress, and apoptosis in I/R tissues. VNS significantly increased the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) in the liver. These data indicated that VNS may attenuate hepatic I/R injury by inhibiting inflammation, oxidative stress, and apoptosis possibly via the Nrf2/HO-1 pathway.

14.
Bioresour Technol ; 288: 121575, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158777

RESUMO

Anaerobic digestion (AD) with thermal hydrolysis pretreatment is widely used as an efficient sludge treatment nowadays. However, the evolution of microbial community (especially for the archaea community), the fate of antibiotic resistance genes (ARGs), and their associations during such process in full-scale sludge treatment plants are rarely reported. Therefore, these scientific questions were explored at two full-scale sludge treatment plants through high-throughput sequencing and quantitative PCR. Results showed that Methanobacterium and Methanosphaera were the dominant archaea in thermal hydrolyzed sludge. The predominant bacteria in the sludge first shifted from nutrients removal functional bacteria to spore-forming bacteria after thermal hydrolysis, and then shifted to fermentative bacteria after AD. The full-scale plants could select ermB, ermF, mefA/E, qnrS and tetM. Though the bacteria and archaea biomass and community largely influenced the fate of ARGs, multiple linear regression analysis showed that the total ARGs were mainly affected by mobile genetic elements (MGEs).


Assuntos
Microbiota , Esgotos , Anaerobiose , Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos , Hidrólise , Águas Residuárias
15.
Plant Sci ; 285: 184-192, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203883

RESUMO

Tripterygium wilfordii is known to contain various types of bioactive diterpenoids that exhibit many remarkable activities. Many studies have recently been targeted toward the elucidation of the diterpenoids biosynthetic pathways in attempts to obtain these compounds with a view to solving the dilemma of low yield in plants. However, the short-chain prenyltransferases (SC-PTSs) responsible for the formation of geranylgeranyl diphosphate (GGPP), a crucial precursor for synthesizing the skeleton structures of diterpenoids, have not been characterized in depth. Here, T. wilfordii transcriptome data were used to identify eight putative GGPPSs, including two small subunits of geranyl diphosphate synthase (GPPS.SSU). Of them, GGPPS1, GGPPS7, GGPPS8, GPPS.SSU II and GPPS.SSU were translocated mainly into chloroplasts, and GGPPS8 exhibited the optimal catalytic efficiency with respect to catalyzing the formation of GGPP. In addition, the expression pattern of GGPPS8 was similar to that of downstream terpene synthase genes that are directly correlated with triptolide production in roots, indicating that GGPPS8 was most likely to participate in triptolide biosynthesis in roots among the studied enzymes. GPPS.SSU was inactive alone but interacted with GGPPS1, GGPPS7 and GGPPS8 to change the product from GGPP to GPP. These findings implicate that these candidate genes can be regulated to shift the metabolic flux toward diterpenoid formation, increasing the yields of bioactive diterpenoids in plants.


Assuntos
Diterpenos/metabolismo , Farnesiltranstransferase/metabolismo , Proteínas de Plantas/metabolismo , Tripterygium/metabolismo , Clonagem Molecular , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Tripterygium/enzimologia , Tripterygium/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Nat Commun ; 10(1): 2025, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048681

RESUMO

Combined checkpoint blockade (e.g., PD1/PD-L1) with traditional clinical therapies can be hampered by side effects and low tumour-therapeutic outcome, hindering broad clinical translation. Here we report a combined tumour-therapeutic modality based on integrating nanosonosensitizers-augmented noninvasive sonodynamic therapy (SDT) with checkpoint-blockade immunotherapy. All components of the nanosonosensitizers (HMME/R837@Lip) are clinically approved, wherein liposomes act as carriers to co-encapsulate sonosensitizers (hematoporphyrin monomethyl ether (HMME)) and immune adjuvant (imiquimod (R837)). Using multiple tumour models, we demonstrate that combining nanosonosensitizers-augmented SDT with anti-PD-L1 induces an anti-tumour response, which not only arrests primary tumour progression, but also prevents lung metastasis. Furthermore, the combined treatment strategy offers a long-term immunological memory function, which can protect against tumour rechallenge after elimination of the initial tumours. Therefore, this work represents a proof-of-concept combinatorial tumour therapeutics based on noninvasive tumours-therapeutic modality with immunotherapy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia/métodos , Metástase Neoplásica/terapia , Neoplasias/terapia , Terapia por Ultrassom/métodos , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Hematoporfirinas/administração & dosagem , Humanos , Imiquimode/administração & dosagem , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Resultado do Tratamento
17.
Cell Signal ; 61: 10-19, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31075398

RESUMO

Angio-associated migratory cell protein (AAMP) is expressed in some human cancer cells. Previous studies have shown AAMP high expression predicted poor prognosis. But its biological role in non-small cell lung cancer (NSCLC) cells is still unknown. In our present study, we attempted to explore the functions of AAMP in NSCLC cells. According to our findings, AAMP knockdown inhibited lung cancer cell proliferation and inhibited lung cancer cell tumorigenesis in the mouse xenograft model. Epidermal growth factor receptor (EGFR) is a primary receptor tyrosine kinase (RTK) that promotes proliferation and plays an important role in cancer pathology. We found AAMP interacted with EGFR and enhanced its dimerization and phosphorylation at tyrosine 1173 which activated ERK1/2 in NSCLC cells. In addition, we showed AAMP conferred the lung cancer cells resistance to chemotherapeutic agents such as icotinib and doxorubicin. Taken together, our data indicate that loss of AAMP from NSCLC inhibits tumor growth and elevates drug sensitivity, and these findings have clinical implications to treat NSCLC cancers.

18.
Bioresour Technol ; 286: 121413, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31078978

RESUMO

The present study proposes a novel alternative method of the current biogas upgrading techniques by converting CO2 (in the biogas) into valuable chemicals (e.g., volatile fatty acids) using H2 as energy source and acetogenic mixed culture as biocatalyst. The influence of thermal treatment (90 °C) on the inhibition of the methanogenic archaea and enriching the acetogenic bacteria in different inocula (mesophilic and thermophilic) was initially tested. The most efficient inoculum that achieved the highest performance through the fermentation process was further used to define the optimum H2/CO2 gas ratio that secures maximum production yield of chemicals and maximum biogas upgrading efficiency. In addition, 16S rRNA analysis of the microbial community was conducted at the end of the experimental period to target functional microbes. The maximum biogas content (77% (v/v)) and acetate yield (72%) were achieved for 2H2:1CO2 ratio (v/v), with Moorella sp. 4 as the most dominant thermophilic acetogenic bacterium.


Assuntos
Biocombustíveis , Microbiota , Reatores Biológicos , Dióxido de Carbono , Fermentação , Metano , RNA Ribossômico 16S
19.
Ecotoxicol Environ Saf ; 180: 600-609, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31132555

RESUMO

In the present study, we compared the toxicity and associated chemical characterizations of flowback and produced water (FPW) collected from a single horizontal hydraulically fractured well at different time points during FPW production. Since few studies on whole mixture toxicity related to FPW exist, our aims were to determine both overall toxicity of the FPW mixture in a suite of organisms (Daphnia magna, Lumbriculus variegatus, Danio rerio, and Oncorhynchus mykiss) and also determine if toxicity changes depending on variation in FPW chemical properties as a function of time sampled (1.33, 72, and 228 h FPW samples collected immediately post-well production onset were analyzed in current study). FPW chemical composition was determined via quadra-pole inductively coupled plasma - mass spectrometry/mass spectrometry (ICP-MS/MS), full-scan high performance liquid chromatography/Orbitrap mass spectrometry (HPLC/Orbitrap-MS), and gas chromatography-mass spectrometry (GC-MS). We observed that FPW sampled later in the production process contained higher ion and total dissolved solids concentrations, whereas the highest concentrations of dissolved organic compounds were observed in the earliest FPW sample analyzed. Toxicity associated with FPW exposure was deemed to be species-specific to a certain extent, but general trends revealed the earliest FPW sampled contained highest toxic potential. Accordingly, we theorize that although the saline conditions of FPW are the foremost toxicological drivers to freshwater organisms, dissolved organics associated with FPW significantly contribute to the overall toxicity of exposed organisms.


Assuntos
Fraturamento Hidráulico , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Daphnia/efeitos dos fármacos , Modelos Biológicos , Oligoquetos/efeitos dos fármacos , Oncorhynchus mykiss , Espectrometria de Massas em Tandem , Águas Residuárias/química , Poluentes Químicos da Água/química , Peixe-Zebra
20.
Oxid Med Cell Longev ; 2019: 9208949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944700

RESUMO

Vagus nerve stimulation (VNS) has been shown to attenuate ischemia-reperfusion (I/R) injury in multiple organs. The present study aimed at investigating whether VNS could exert protective effects against I/R injury in the skeletal muscle. Male Sprague-Dawley rats were randomly divided into 3 groups: the control, I/R, and I/R+VNS groups. The skeletal muscle I/R (SMI/R) model was induced by occlusion of the left femoral artery for 2.5 hours followed by reperfusion for 2 hours. The vagal nerve trunk was separated, and VNS was performed during the whole I/R process. The intensity of VNS was optimized in each rat to obtain a 10% reduction in the heart rate relative to the value before stimulation. After the experiment, the blood sample and left gastrocnemius muscle tissues were collected for histological examination, biochemical analysis, and molecular biological detection. During the I/R process, VNS significantly reduced cellular apoptosis, necrosis, and inflammatory cell infiltration compared to sham VNS. The VNS treatment also decreased the inflammatory response, alleviated oxidative stress, and improved vascular endothelial function (p < 0.05 for each). In contrast, the I/R group showed an opposite effect compared to the control group. The present study indicated that VNS could protect against SMI/R injury by suppressing excessive inflammation, alleviating oxidative stress, and preserving vascular endothelial function.


Assuntos
Músculo Esquelético/lesões , Traumatismo por Reperfusão/complicações , Estimulação do Nervo Vago/métodos , Doença Aguda , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA