Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Mol Ecol Resour ; 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32395878

RESUMO

The leaf resemblance of Kallima (Nymphalidae) butterflies is an important ecological adaptive mechanism that increases survival. However, the genetic mechanism underlying ecological adaptation remains unclear owing to a dearth of genomic information. Herein, we determined the karyotype (n = 31) of the dead-leaf butterfly Kallima inachus, and generated a high-quality, chromosome-level assembly (568.92 Mb; contig N50: 19.20 Mb). We also identified candidate Z and W chromosomes. To our knowledge, this is the first study to report on these aspects of this species. In the assembled genome, 15,309 protein-coding genes and 49.86% repeat elements were annotated. Phylogenetic analysis showed that K. inachus diverged from Melitaea cinxia (no leaf resemblance), both of which are in Nymphalinae, around 40 million years ago. Demographic analysis indicated that the effective population size of K. inachus decreased during the last interglacial period in the Pleistocene. The wings of adults with the pigmentary gene ebony knocked out using CRISPR/Cas9 showed phenotypes in which the orange dorsal region and entire ventral surface darkened, suggesting its vital role in the ecological adaption of dead-leaf butterflies. Our results provide important genome resources for investigating the genetic mechanism underlying protective resemblance in dead-leaf butterflies and insights into the molecular basis of protective coloration.

2.
J Healthc Eng ; 2020: 6968713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399166

RESUMO

The assistive, adaptive, and rehabilitative applications of EEG-based robot control and navigation are undergoing a major transformation in dimension as well as scope. Under the background of artificial intelligence, medical and nonmedical robots have rapidly developed and have gradually been applied to enhance the quality of people's lives. We focus on connecting the brain with a mobile home robot by translating brain signals to computer commands to build a brain-computer interface that may offer the promise of greatly enhancing the quality of life of disabled and able-bodied people by considerably improving their autonomy, mobility, and abilities. Several types of robots have been controlled using BCI systems to complete real-time simple and/or complicated tasks with high performances. In this paper, a new EEG-based intelligent teleoperation system was designed for a mobile wall-crawling cleaning robot. This robot uses crawler type instead of the traditional wheel type to be used for window or floor cleaning. For EEG-based system controlling the robot position to climb the wall and complete the tasks of cleaning, we extracted steady state visually evoked potential (SSVEP) from the collected electroencephalography (EEG) signal. The visual stimulation interface in the proposed SSVEP-based BCI was composed of four flicker pieces with different frequencies (e.g., 6 Hz, 7.5 Hz, 8.57 Hz, and 10 Hz). Seven subjects were able to smoothly control the movement directions of the cleaning robot by looking at the corresponding flicker using their brain activity. To solve the multiclass problem, thereby achieving the purpose of cleaning the wall within a short period, the canonical correlation analysis (CCA) classification algorithm had been used. Offline and online experiments were held to analyze/classify EEG signals and use them as real-time commands. The proposed system was efficient in the classification and control phases with an obtained accuracy of 89.92% and had an efficient response speed and timing with a bit rate of 22.23 bits/min. These results suggested that the proposed EEG-based clean robot system is promising for smart home control in terms of completing the tasks of cleaning the walls with efficiency, safety, and robustness.

3.
Fish Shellfish Immunol ; 102: 489-498, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32430284

RESUMO

Bisphenol A (BPA) is an industrial raw material widely used in water bottles, medical devices and food packaging, and is now ubiquitous in the environment. However, the effects of BPA on the toxicity of fish lymphocytes and the roles of microRNA (miRNA) in this process remain poorly understood. To explore the mechanism, we exposed carp spleen lymphocytes to BPA of 1, 5 and 10 nM for 24 h. The results showed that BPA induced carp lymphocyte apoptosis. BPA inhibited the expression of miR-27b-3p mRNA, thereby increasing the expression of cytochrome P450 1B1, increasing ROS levels, inhibiting SOD, CAT, GSH-PX activity, GSH content, promoting the accumulation of NOS and MDA. At the same time, BPA activated the mitochondrial apoptosis pathway, inhibited the expression of BCL-2, and promoted the expression of CytC, BAX, Caspase-9 and Caspase-3. Dual luciferase reporter system showed CYP1B1 is the target genes of miR-27b-3p and negatively regulated by it. Overexpression of miR-27b-3p partially reversed oxidative stress and apoptosis of carp spleen lymphocytes induced by BPA stimulation. Taken together, BPA exposure can target up regulate CYP1B1 expression by down regulating miR-27b-3p expression, thus causing oxidative stress and inducing apoptosis of carp spleen lymphocytes through mitochondrial pathway. Our study will provide theoretical basis for immunotoxicology mechanism research and environmental protection of BPA in fish.

4.
Aging (Albany NY) ; 122020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32432571

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative movement disorder, which is mainly due to the loss of dopaminergic neurons. Pyroptosis is a new programmed cell death characterized by NLR Family Pyrin Domain Containing 3 (NLRP3)-dependent, IL-1ß, IL-18 and Gasdermin D. Salidroside (Sal) has been reported to have neuro-protective effect. However, the roles of pyroptosis and Sal on anti-pyroptosis in PD have not been elucidated. In this study, we tested underlying mechanisms of pyroptosis in PD and neuro-protective effects of Sal. We established 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6J mice and C57BL/10ScNJ (TLR4-deficient mice) in vivo, MPTP-induced PC-12 and LPS-induced BV2 in vitro. We found that Sal could ameliorate MPTP-induced PD symptoms and reduce the levels of IL-1ß, IL-18 and Gasdermin D, which are main hallmarks of pyroptosis. Further study indicated that Sal alleviated PD through inhibiting NLRP3-dependent pyroptosis. In conclusion, pyroptosis plays a key role in PD and Sal protects dopaminergic neurons by inhibiting NLRP3-dependent pyroptosis through: (1) indirectly reducing the production of NLRP3, pro-IL-1ß and pro-IL-18 by inhibiting TLR4/MyD88/NF-κB signaling pathways, (2) directly suppressing pyroptosis through inhibiting TXNIP/NLRP3/caspase-1 signaling pathways. These results indicated that inhibiting pyroptosis or administration of Sal could be a novel therapeutic strategy for PD.

5.
Cell Cycle ; 19(11): 1298-1313, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32308116

RESUMO

OBJECTIVE: The effects of microRNAs (miRNAs) have been identified in epilepsy (Ep) in recent years, our research was focused on the functions of miR-494 in Ep and its inner mechanisms. METHODS: The Ep modeled rats induced by lithium chloride-pilocarpine were treated with agomir-miR-494 or RIPK1-siRNA. The pathology of rat hippocampal tissues was observed. Expression of miR-494, receptor-interacting protein kinase 1 (RIPK1) and nuclear factor-kappaB (NF-κB) p65 was assessed by RT-qPCR and Western blot analysis. The hippocampal neurons of epileptic rats were successfully modeled, which were transfected with miR-494 mimics or RIPK1-siRNA to determine neurons' proliferation ability and cell apoptosis. The target relation between miR-494 and RIPK1 was measured by bioinformatics website and dual luciferase gene reporter assay. RESULTS: The expression of miR-494 was reduced, while the expression of RIPK1 and NF-κB p65 was amplified in hippocampus of Ep rats. Elevated miR-494 repressed the expression of RIPK1 to ameliorate the hippocampal neuron injury, accelerate neuronal proliferation, and restrain neuronal apoptosis via inactivating the NF-κB signaling pathway, causing a deceleration of Ep development. Furthermore, amplified RIPK1 was able to reverse the amelioration of neuronal injury in Ep rats which was contributed by upregulated miR-494. CONCLUSION: We found in this study that elevated miR-494 repressed RIPK1, causing an inactivation of the NF-κB signaling pathway and acceleration of cell proliferation, and suppression of apoptosis of hippocampal neurons in Ep rats, thereby attenuating the neuron injury and Ep development. Our research may provide novel targets for the therapy of Ep.

6.
Plant Physiol Biochem ; 151: 608-620, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32335384

RESUMO

Glutamine synthetases (GS) play an essential role in Nitrogen assimilation. Nonetheless, information respecting the molecular functions of GS in drought tolerance (DT) is limited. Here we show that overexpressing cytosolic GS1 or plastidic GS2 gene in tobacco enhanced DT of both root and leaf tissues of the two transgenic seedlings (named as GS1-TR and GS2-TR). RNA-seq analysis on root tissues showed that 83 aquaporin (AQP) genes were identified. Among them, 37 differential expression genes (DEGs) were found in the GS1-TR roots under normal condition, and all were down-regulated; no any DEGs in the GS2-TR roots were found. Contrastingly, under drought, 28 and 32 DEGs of AQP were up-regulated in GS1-TR and GS2-TR roots, respectively. GC-MS analysis on leaf tissues showed that glutamine (Gln) concentrations were negatively correlated AQP expressions in the all four conditions, which suggests that Gln, as a signal molecule, can negatively regulate many AQP expressions. Prestress accumulation of sucrose and proline (Pro) and chlorophyll, and had higher activities of ROS scavengers also contribute the plant DT in both of the two transgenic plants under drought. In addition, 5-aminolevulinic acid (ALA) was up-accumulated in GS2-TR leaves solely under normal condition, which leads to its net photosynthetic rate higher than that in GS1-TR leaves. Last but not the less, the PYL-PP2C-SnRK2 core ABA-signaling pathway was uniquely activated in GS1-TR independent of drought stress (DS). Therefore, our results suggest a possible model reflecting how overexpression of wheat TaGS1 and TaGS2 regulate plant responses to drought.

7.
Zhongguo Zhong Yao Za Zhi ; 45(3): 491-496, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237505

RESUMO

Natural indigo, as one of the oldest dyes, is also a pivotal dye utilized in cotton fabrics today. A diversity of plants rich in indigo compounds belong to traditional Chinese herbal medicines. Indigo compounds have a variety of biological and pharmacological activities, including anticonvulsant, antibacterial, antifungal, antiviral and anticancer activities. A substantial progress in indigo biosynthesis has been made lately. This paper summarizes the value of indigo from the aspects of cultural history, biosynthetic pathways and the medicinal activities of its related derivatives involved in the pathways. In addition, the latest research advancements in indigo biosynthetic pathways is demonstrated in this paper, which would lay the theoretical foundation for the exploration and utilization of natural indigo.

8.
Allergy ; 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32239761

RESUMO

BACKGROUND: The clinical characteristics of novel coronavirus disease (COVID-2019) patients outside the epicenter of Hubei Province are less understood. METHODS: We analyzed the epidemiological and clinical features of all COVID-2019 cases in the only referral hospital in Shenzhen City, China, from January 11, 2020, to February 6, 2020, and followed until March 6, 2020. RESULTS: Among the 298 confirmed cases, 233 (81.5%) had been to Hubei, while 42 (14%) did not have a clear travel history. Only 218 (73.15%) cases had a fever as the initial symptom. Compared with the nonsevere cases, severe cases were associated with older age, those with underlying diseases, and higher levels of C-reactive protein, interleukin-6, and erythrocyte sedimentation rate. Slower clearance of the virus was associated with a higher risk of progression to critical condition. As of March 6, 2020, 268 (89.9%) patients were discharged and the overall case fatality ratio was 1.0%. CONCLUSIONS: In a designated hospital outside Hubei Province, COVID-2019 patients could be effectively managed by properly using the existing hospital system. Mortality may be lowered when cases are relatively mild, and there are sufficient medical resources to care and treat the disease.

9.
Gut Microbes ; : 1-8, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32329657

RESUMO

Trehalose is a disaccharide and fasting-mimetic that has been both canonized and vilified for its putative cardiometabolic and microbial effects. Trehalose analogues are currently under development to extend the key metabolic therapeutic actions of trehalose without adversely affecting host microbial communities. In the current study, we contrast the extent to which trehalose and its degradation-resistant analogue, lactotrehalose (LT), modulate microbial communities and host transcriptomic profiles. We demonstrate that trehalose and LT each exert adaptive metabolic and microbial effects that both overlap and diverge. We postulate that these effects depend both upon compound stability and bioavailability, and on stereospecific signal transduction. In context, the data suggest that trehalose is unlikely to be harmful, and yet it harbors unique effects that are not yet fully replicated by its analogues. These compounds are thus valuable probes to better define trehalose structure-function, and to offer as therapeutic metabolic agents.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32287110

RESUMO

BACKGROUND: The gold standard treatment for cholecystolithiasis is laparoscopic cholecystectomy. However, the complications of cholecystectomy have led to adoption of gallbladder-preserving surgery. The study was to investigate significance of transparent cap-assisted choledochoscopy in gallbladder-preserving surgery. MATERIALS AND METHODS: This is a retrospective study of patients who underwent gallbladder-preserving surgery by laparoscopic choledochoscopy along with choledochoscopy with or without a transparent cap from January 2018 to September 2018 in our hospital. The differences in the duration of gallbladder exploration, surgical complications, adverse events, and the recurrence of stones within 6 months after surgery were compared between 2 groups. RESULTS: Fifty patients underwent laparoscopic choledochoscopy along with choledochoscopy without transparent cap (Group A), while 50 patients underwent laparoscopic along with transparent cap-assisted choledochoscopy (Group B). Gallbladder exploration time was 27.96±12.24 minutes in Group A, and 12.04±6.01 minutes in Group B. One case had stone recurrence within 6 months in Group B, while 8 cases had stone recurrence in group A. CONCLUSIONS: Comparing with laparoscope combined with choledochoscopy, transparent cap-assisted choledochoscopy has advantages in gallbladder-preserving surgery.

11.
BMC Genomics ; 21(1): 195, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122295

RESUMO

BACKGROUND: The H+-PPase (pyrophosphatase) gene family is an important class of proton transporters that play key roles in plant development and stress resistance. Although the physiological and biochemical functions of H+-PPases are well characterized, the structural evolution and functional differentiation of this gene family remain unclear. RESULTS: We identified 124 H+-PPase members from 27 plant species using complete genomic data obtained from algae to angiosperms. We found that all analyzed plants carried H+-PPase genes, and members were not limited to the two main types (type I and II). Differentiation of this gene family occurred early in evolutionary history, probably prior to the emergence of algae. The type I and II H+-PPase genes were retained during the subsequent evolution of higher plants, and their copy numbers increased rapidly in some angiosperms following whole-genome duplication (WGD) events, with obvious expression pattern differentiation among the new copies. We found significant functional divergence between type I and II H+-PPase genes, with both showing evidence for positive selection pressure. We classified angiosperm type I H+-PPases into subtypes Ia and non-Ia, which probably differentiated at an early stage of angiosperm evolution. Compared with non-Ia subtype, the Ia subtype appears to confer some advantage in angiosperms, as it is highly conserved and abundantly expressed, but shows no evidence for positive selection. CONCLUSIONS: We hypothesized that there were many types of H+-PPase genes in the plant ancestral genome, and that different plant groups retained different types of these genes. In the early stages of angiosperm evolution, the type I H+-PPase genes differentiated into various subtypes. In addition, the expression pattern varied not only among genes of different types or subtypes, but also among copies of the same subtype. Based on the expression patterns and copy numbers of H+-PPase genes in higher plants, we propose two possible evolutionary trajectories for this gene family.

12.
J Phys Chem Lett ; : 3116-3128, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220211

RESUMO

The successful synthesis of Janus transition metal dichalcogenides offers new opportunities in two-dimensional materials due to its novel properties induced by structural mirror asymmetry. Herein, by using the first-principle calculations, the thermodynamical stability for monolayers MoSSe and WSSe is demonstrated by phonon dispersion with no imaginary frequencies. No longitudinal optical-transverse optical (LO-TO) splitting exists at the Γ point and phonon frequencies are red-shifted, since the 2D Coulomb screening effect is introduced to eliminate the spurious interaction between adjacent layers. An indirect-direct-indirect transition in band gaps for both MoSSe and WSSe is observed, and tunable mobilities can be realized by uniaxial strain, reaching up to 106 cm2 V-1 s-1 when applying 2% tensile strain along the zigzag direction to monolayer MoSSe, which provides a good platform for flexible electronic devices. Large band gaps of 2.569 and 2.666 eV are predicted for monolayers MoSSe and WSSe when considering many-body quasiparticle corrections. The enhanced electron-hole interaction caused by a weak screening effect leads to considerable binding energies for both MoSSe and WSSe, and such tightly binding excitons with large oscillator strengths generate strong absorption peaks in visible region. The remarkable properties of Janus monolayers MoSSe and WSSe make them promising in next-generation microelectronic, optoelectronic, and valleytronic devices.

13.
Environ Pollut ; 262: 114246, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32135431

RESUMO

Supported carbon quantum dots (CQDs), used as fluorescent sensors for the detection of metal ions, have rarely been used to remove heavy metals from water. Nitrogen-doped CQDs immobilized in hydrophilic silica hydrogels exhibited a more superior sensitivity and selectivity for the detection of Re(VII) and Cr(VI) than other metal ions, including Fe(III), Fe(II), Zn(II), Cu(II) and Mn(II). For the first time, low limits of detection (LOD) of 2.3 µM for Re(VII) detection and 65 nM for Cr(VI) detection were reported by a facile method. Based on the high selectivity of fluorescent silica hydrogels for Re(VII) and Cr(VI) detection, the removal of Re(VII) and Cr(VI) by graphene oxide (GO) in water was monitored with the hydrogels used as a turn-off fluorescent sensing platform. The consistent results of the sorption isotherms of each metal on GO, which were obtained from the fluorescence spectra and by UV absorption, further verified the possibility of monitoring metal removal by fluorescence detection. Remarkably, GO removed 1186 mg/g of Re(VII) but only 178 mg/g of Cr(VI). The density functional theory (DFT) calculations indicated that both Re(VII) and Cr(VI) formed stable bonds with silica hydrogels, confirming that the interactions between the metal ions and the substrate would promote the fluorescence quenching of the supported CQDs. On the other hand, Re(VII) interacted more strongly with the carboxyl groups of GO than Cr(VI). In addition, a real-time detection system was designed to alarm the service life of a GO filter used for Re(VII) removal.

14.
Medicine (Baltimore) ; 99(8): e19120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32080087

RESUMO

Osteoporosis (OP) is a disease characterized by bone mass loss, bone microstructure damage, increased bone fragility, and easy fracture. The molecular mechanism underlying OP remains unclear.In this study, we identified 217 genes associated with OP, and formed a gene set [OP-related genes gene set (OPgset)].The highly enriched GOs and pathways showed OPgset genes were significantly involved in multiple biological processes (skeletal system development, ossification, and osteoblast differentiation), and several OP-related pathways (Wnt signaling pathway, osteoclast differentiation, steroid hormone biosynthesis, and adipocytokine signaling pathway). Besides, pathway crosstalk analysis indicated three major modules, with first module consisted of pathways mainly involved in bone development-related signaling pathways, second module in Wnt-related signaling pathway and third module in metabolic pathways. Further, we calculated degree centrality of a node and selected ten key genes/proteins, including TGFB1, IL6, WNT3A, TNF, PTH, TP53, WNT1, IGF1, IL10, and SERPINE1. We analyze the K-core and construct three k-core sub-networks of OPgset genes.In summary, we for the first time explored the molecular mechanism underlying OP via network- and pathway-based methods, results from our study will improve our understanding of the pathogenesis of OP. In addition, these methods performed in this study can be used to explore pathogenesis and genes related to a specific disease.


Assuntos
Osso e Ossos/patologia , Fraturas Ósseas/etiologia , Osteoporose/genética , Adipocinas/genética , Densidade Óssea/genética , Osso e Ossos/metabolismo , Osso e Ossos/ultraestrutura , Diferenciação Celular/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/genética , Osteoporose/complicações , Osteoporose/epidemiologia , Prevalência , Via de Sinalização Wnt/genética
15.
Nurs Res ; 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084103

RESUMO

BACKGROUND: Little is known about how people respond to an analgesic adverse drug event despite the significant incidence of deaths and hospitalizations associated with analgesics adverse drug events. OBJECTIVE: The purpose of this two-phase instrument development study was to test the validity and reliability of the Analgesic Adverse Drug Event Measure (AADEM). METHODS: Content validity was established during Phase I. Six experts rated the 58-item measure developed from a pilot survey of adults who had experienced an analgesic adverse drug event. Experts' ratings supported a 17-item AADEM with a scale content validity index of .86. Phase II consisted of online administration of the AADEM to a national Qualtrics panel who reported an adverse drug event from a self-administered analgesic. Exploratory factor analysis was conducted using principal axis factoring and oblique rotation including Direct Oblimin and Promax rotations with Kaiser normalization. RESULTS: Four factors emerged from the analysis: sought care; consulted provider; discontinued or continued analgesic; and attributed adverse drug event with a total explained variance of 55.4%. Scale content validity index for the 13-item AADEM was .88. Internal consistency for the four subscales was acceptable, but low for the full 13-item AADEM. DISCUSSION: Results establish preliminary evidence for the validity and reliability of the 13-item AADEM to measure response to an analgesic adverse drug event. Next steps involve confirmatory factor analysis in a different sample to examine the underlying construct of the AADEM. The AADEM might help identify people at risk for serious analgesic adverse drug events.

16.
Cell Commun Signal ; 18(1): 4, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910866

RESUMO

Following publication of the original article [1], the authors reported that they would like to correct the second last sentence of "Authors' information" section as PW is an undergraduate, but was incorrectly described as a Ph.D. in the sentence. The sentence should read "PW is an undergraduate. YZ, YX, WX, HG, FD and YL are Ph.D.". The authors sincerely apologize for having this unintentional error in the article, and apologize for any inconvenience caused.

17.
Nanoscale ; 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31994570

RESUMO

As a new family of two-dimensional materials, MXenes have attracted increasing attention in recent years due to their widespread potential applications. In contrast to early transition metals in convention, here we expand the M element of MXene to the rare earth element lutetium. Based on the first-principles density functional calculations, the bare lutetium-based carbide MXene Lu2C is determined to be stabilized in the T-type configuration. Furthermore, both fluorine and hydroxyl terminated configurations are found to be semiconductors, and their band gaps are suitable for use in semiconductors and visible and near-infrared optical devices. The Lu2C(OH)2 configuration shows a direct band gap and possesses an ultralow work function of 1.4 eV. Both Lu2CT2 (T = F, OH) MXenes exhibit high carrier mobilities. Particularly, the electron mobility of the Lu2C(OH)2 MXene is found to be anisotropic at room temperature, with values as high as 95.19 × 103 and 217.1 × 103 cm2 V-1·s-1 in the zigzag and armchair directions, respectively, which makes Lu2C(OH)2 a promising material for nanodevices. Based on these predicted properties, our work widens the range of MXene materials and their applications in semiconducting devices.

18.
Zhongguo Zhen Jiu ; 40(1): 109-11, 2020 Jan 12.
Artigo em Chinês | MEDLINE | ID: mdl-31930910

RESUMO

A mini-infrared moxibustion instrument was developed on the base of carbon fiber heating film. This new type moxibustion instrument integrated the moxibusiton technique of TCM with modern technology. It is composed of a power module, an infrared generator module, a temperature sensor, a display screen and a main control panel. The carbon fiber is adopted as the material for infrared generator, which produces infrared rays in the range of the life light wave (from 8 to 15 µm), characterized as precise control of temperature, small gradient and wide range of temperature adjustment. The users can adjust the temperature and time of moxibustion by themselves. The instrument is small in size, light in weight, easy to carry and charge as well as comfortable and safe in application. It can be fixed directly at the required region without the posture restriction and be used whenever needed. Using PowerLab multichannel physiological recorder, the temperature carve is detected at different setting temperatures. The results show that the temperature is increased rapidly and stable.


Assuntos
Moxibustão , Pontos de Acupuntura , Fibra de Carbono , Temperatura
19.
J Neurophysiol ; 123(3): 1216-1235, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967931

RESUMO

The amygdala contributes toward emotional processes such as fear, anxiety, and social cognition. Furthermore, evidence suggests that increased excitability of basolateral amygdala (BLA) principal neurons underlie certain neuropsychiatric disorders. Gain-of-function mutations in neuronal L-type calcium channels (LTCCs) are linked to neurodevelopmental diseases, including autism spectrum disorders (ASDs). While LTCCs are expressed throughout the BLA, direct evidence for increased LTCC activity affecting BLA excitability and potentially contributing to disease pathophysiology is lacking. In this study, we utilized a pharmacological approach to examine the contributions of LTCCs to BLA principal cell excitability and synaptic activity at immature (postnatal day 7, P7) and juvenile (P21) developmental stages. Acute upregulation of LTCC activity in brain slices by application of the agonist (S)-Bay K 8644 resulted in increased intrinsic excitability properties including firing frequency response, plateau potential, and spike-frequency adaptation selectively in P7 neurons. Contrastingly, for P21 neurons, the main effect of (S)-Bay K 8644 was to enhance burst firing. (S)-Bay K 8644 increased spontaneous inhibitory synaptic currents at both P7 and P21 but did not affect evoked synaptic currents at either stage. (S)-Bay K 8644 did not alter P7 spontaneous excitatory synaptic currents, although it increased current amplitude in P21 neurons. Overall, the results provide support for the notion that alteration of LTCC activity at specific periods of early brain development may lead to functional alterations to neuronal network activity and subsequently contribute to underlying mechanisms of amygdala-related neurological disorders.NEW & NOTEWORTHY The role of L-type calcium channels (LTCCs) in regulating neuronal electrophysiological properties during development remains unclear. We show that in basolateral amygdala principal neurons, an increase of LTCC activity alters both neuronal excitability and synaptic activity. The results also provide evidence for the distinct contributions of LTCCs at different stages of neurodevelopment and shed insight into our understanding of LTCC dysfunction in amygdala-related neurological disorders.

20.
Brain Res ; 1727: 146558, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794706

RESUMO

BACKGROUND AND PURPOSE: Epilepsy is one of the most common diseases of the nervous system. Approximately one-third of epilepsy cases are drug-resistant, among which generalized-onset seizures are very common. The present study aimed to analyze abnormalities of the thalamocortical fiber pathways in each hemisphere of the brains of patients with drug-resistant generalized epilepsy. MATERIALS AND METHODS: The thalamocortical structural pathways were identified by diffusion tensor imaging (DTI) in 15 patients with drug-resistant generalized epilepsy and 16 gender/age-matched controls. The thalami of both groups were parcellated into subregions according to the local thalamocortical connectivity pattern. DTI measures of thalamocortical connections were compared between the two groups. RESULTS: Probabilistic tractography analyses showed that fractional anisotropy of thalamocortical pathways in patients with epilepsy decreased significantly, and the radial diffusivity of the left thalamus pathways with homolateral motor and parietal-occipital cortical regions in the drug-resistant epilepsy group increased significantly. In addition to the right thalamus pathway and prefrontal cortical region, fractional anisotropy of all other pathways was inversely correlated with disease duration. CONCLUSION: The results provide evidence indicating widespread bilateral abnormalities in the thalamocortical pathways in epilepsy patients and imply that the degree of abnormality in the pathway increases with the disease duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA